메뉴 건너뛰기




Volumn 21, Issue 14, 2007, Pages 1848-1859

Predicting and forecasting flow discharge at sites receiving significant lateral inflow

Author keywords

ANN; Feed forward back propagation; Flood hydrograph; Flow stage; Forecasting; Lead time; Modified Muskingum method; Prediction; Rating curve

Indexed keywords

FLOOD FORECASTING; FLOOD HYDROGRAPH; MODIFIED MUSKINGUM METHOD;

EID: 34447334519     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.6320     Document Type: Article
Times cited : (49)

References (25)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee. 2000a. Artificial neural networks in hydrology. I: preliminary concepts. Journal of Hydrologic Engineering, ASCE 5(2): 115-123.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee. 2000b. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, ASCE 5(2): 124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 33751219944 scopus 로고    scopus 로고
    • A simple river stage forecasting model for sites without rating curve
    • Hamza MH ed, IASTED Acta Press: Anaheim, CA;
    • Barbetta S, Melone F, Moramarco T. 2004. A simple river stage forecasting model for sites without rating curve. In Applied Simulation and Modelling, Hamza MH (ed). IASTED Acta Press: Anaheim, CA; 207-212.
    • (2004) Applied Simulation and Modelling , pp. 207-212
    • Barbetta, S.1    Melone, F.2    Moramarco, T.3
  • 4
    • 32544444183 scopus 로고    scopus 로고
    • Hydraulic-hydrologic components of an operational system for a dam management
    • Singh VP, Yadava RN eds, Allied Publishers: New Delhi;
    • Barbetta S, Melone F, Moramarco T, Singh VP. 2003. Hydraulic-hydrologic components of an operational system for a dam management. In Watershed Hydrology, Singh VP, Yadava RN (eds). Allied Publishers: New Delhi; 252-262.
    • (2003) Watershed Hydrology , pp. 252-262
    • Barbetta, S.1    Melone, F.2    Moramarco, T.3    Singh, V.P.4
  • 6
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu HK. 2003. Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrological Sciences Journal 48(3): 349-362.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-362
    • Cigizoglu, H.K.1
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson WC, Wilby R. 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 43(1): 47-66.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 8
    • 34447333999 scopus 로고    scopus 로고
    • Calculating Hydrographs from Stage Records
    • Graz, Austria, 22-27 August
    • Fenton JD. 1999. Calculating Hydrographs from Stage Records, XXVIII IAHR Congress, Graz, Austria, 22-27 August 1999.
    • (1999) XXVIII IAHR Congress
    • Fenton, J.D.1
  • 9
    • 0028667768 scopus 로고
    • A flood routing Muskingum type simulation and forecasting model based on level data alone
    • Franchini M, Lamberti P. 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone. Water Resources Research 30(7): 2183-2196.
    • (1994) Water Resources Research , vol.30 , Issue.7 , pp. 2183-2196
    • Franchini, M.1    Lamberti, P.2
  • 12
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalization beyond the calibration range
    • Imrie CE, Durucan S, Korre A. 2000. River flow prediction using artificial neural networks: generalization beyond the calibration range. Journal of Hydrology 233: 138-153.
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 13
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model. 2. Applications and results
    • Kitanidis PK, Bras R. 1980. Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resources Research 16(6): 1034-1044.
    • (1980) Water Resources Research , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.2
  • 15
    • 0028176324 scopus 로고
    • Comparison of simple versus complex distributed runoff models on a midsize semiarid watershed
    • Michaud JD, Sorooshian S. 1994. Comparison of simple versus complex distributed runoff models on a midsize semiarid watershed. Water Resources Research 30(3): 593-605.
    • (1994) Water Resources Research , vol.30 , Issue.3 , pp. 593-605
    • Michaud, J.D.1    Sorooshian, S.2
  • 16
    • 0034114720 scopus 로고    scopus 로고
    • A practical method for analysis of river waves and for kinematic wave routing in natural channel networks
    • Moramarco T, Singh VP. 2000. A practical method for analysis of river waves and for kinematic wave routing in natural channel networks. Hydrological Processes 14: 51-62.
    • (2000) Hydrological Processes , vol.14 , pp. 51-62
    • Moramarco, T.1    Singh, V.P.2
  • 18
    • 1642538316 scopus 로고    scopus 로고
    • Estimating the cross-sectional mean velocity in natural channels using Chiu's velocity distribution
    • Moramarco T, Saltalippi C, Singh VP. 2004. Estimating the cross-sectional mean velocity in natural channels using Chiu's velocity distribution. Journal of Hydrologic Engineering 9(1): 42-50.
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 42-50
    • Moramarco, T.1    Saltalippi, C.2    Singh, V.P.3
  • 22
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal 47(6): 879-892.
    • (2002) Hydrological Sciences Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 24
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modelling using artificial neural networks and conceptual models
    • Tokar SA, Markus M. 2000. Precipitation-runoff modelling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering, ASCE 5(2): 156-161.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 156-161
    • Tokar, S.A.1    Markus, M.2
  • 25
    • 0003541634 scopus 로고    scopus 로고
    • U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA
    • U.S. Army Corps of Engineers. 1998. HEC-RAS: River Analysis System: Application Guide. Hydrologic Engineering Center: Davis, CA.
    • (1998) HEC-RAS: River Analysis System: Application Guide


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.