메뉴 건너뛰기




Volumn 35, Issue 8, 1999, Pages 2591-2596

Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ERROR ANALYSIS; FEEDFORWARD NEURAL NETWORKS; MATHEMATICAL MODELS; SALINITY MEASUREMENT; FORECASTING; NEURAL NETWORKS; NUMERICAL ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; WATER RESOURCES;

EID: 0032855262     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/1999WR900150     Document Type: Article
Times cited : (56)

References (24)
  • 1
    • 84972493978 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Comment on by B. Cheng and D. M. Titterington
    • Breiman, L., Comment on "Neural networks: A review from a statistical perspective" by B. Cheng and D. M. Titterington, Stat. Sci., 9(1), 38-42, 1994.
    • (1994) Stat. Sci. , vol.9 , Issue.1 , pp. 38-42
    • Breiman, L.1
  • 2
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng, B., and D. M. Titterington, Neural networks: A review from a statistical perspective, Stat. Sci., 9(1), 2-54, 1994.
    • (1994) Stat. Sci. , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 3
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • edited by D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, Morgan Kaufmann, San Francisco, Calif.
    • Fahlman, S, E., Faster-learning variations on back-propagation: An empirical study, in Proceedings of the 1988 Connectionist Models Summer School, edited by D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, pp. 38-51, Morgan Kaufmann, San Francisco, Calif., 1988.
    • (1988) Proceedings of the 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 4
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • edited by D. S. Touretzky, Morgan Kaufmann, San Francisco, Calif.
    • Fahlman, S. E., and C. Lebiere, The cascade-correlation learning architecture, in Advances in Neural Information Processing Systems 2, vol. 2, pp. 524-532, edited by D. S. Touretzky, Morgan Kaufmann, San Francisco, Calif., 1990.
    • (1990) Advances in Neural Information Processing Systems 2 , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 5
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway, J., and C. Chatfield, Time series forecasting with neural networks: A comparative study using the airline data, Appl Stat., Part 2, 47, 231-250, 1998.
    • (1998) Appl Stat. , vol.47 , Issue.PART 2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 8
    • 0028320021 scopus 로고
    • Developing practical neural network applications using back-propagation
    • Hegazy, T., P. Fazio, and O. Moselhi, Developing practical neural network applications using back-propagation, Microcomput. Civ. Eng., 9, 145-159, 1994.
    • (1994) Microcomput. Civ. Eng. , vol.9 , pp. 145-159
    • Hegazy, T.1    Fazio, P.2    Moselhi, O.3
  • 9
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.-L., H. V. Gupta, and S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process, Water. Resour. Res., 57(10), 2517-2530, 1995.
    • (1995) Water. Resour. Res. , vol.57 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 10
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs, R. A., Increased rates of convergence through learning rate adaptation, Neural Networks, 1, 295-307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 12
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier, H. R., and G. C. Dandy, The use of artificial neural networks for the prediction of water quality parameters, Water. Resour. Res., 32(4), 1013-1022, 1996.
    • (1996) Water. Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 13
    • 0031222587 scopus 로고    scopus 로고
    • Determining inputs for neural network models of multivariate time series
    • Maier, H. R., and G. C. Dandy, Determining inputs for neural network models of multivariate time series, Microcomput. Civ. Eng., 12, 353-368, 1997.
    • (1997) Microcomput. Civ. Eng. , vol.12 , pp. 353-368
    • Maier, H.R.1    Dandy, G.C.2
  • 14
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study
    • Maier, H. R., and G. C. Dandy, The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study, Environ. Model. Software, 13(2), 193-209, 1998a.
    • (1998) Environ. Model. Software , vol.13 , Issue.2 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 15
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study
    • Maier, H. R., and G. C. Dandy, Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study, Environ. Model. Software, 13(2), 179-191, 1998b.
    • (1998) Environ. Model. Software , vol.13 , Issue.2 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 18
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H., and S. Monro, A stochastic approximation method, Ann. Math. Stat., 22, 400-407, 1951.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 19
    • 84882420668 scopus 로고
    • Acceleration techniques for the backpropagation algorithm
    • Silva, F., and L. Almeida, Acceleration techniques for the backpropagation algorithm, Lect. Notes Comput. Sci., 412, 110-119, 1990.
    • (1990) Lect. Notes Comput. Sci. , vol.412 , pp. 110-119
    • Silva, F.1    Almeida, L.2
  • 20
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M., Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc., Ser. B, 36, 111-147, 1974.
    • (1974) J. R. Stat. Soc., Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 21
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah, K., and M. C. Deo, River stage forecasting using artificial neural networks, J. Hydrol. Eng., 3(1), 26-32, 1998.
    • (1998) J. Hydrol. Eng. , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 22
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H., Learning in artificial neural networks: A statistical perspective, Neural Comput., 1, 425-464, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 23
    • 0030512054 scopus 로고    scopus 로고
    • Applications of artificial neural networks to land drainage engineering
    • Yang, C. C., C. O. Prasher, and R. Lacroix, Applications of artificial neural networks to land drainage engineering, Trans. ASAE, 39(2), 525-533, 1996.
    • (1996) Trans. ASAE , vol.39 , Issue.2 , pp. 525-533
    • Yang, C.C.1    Prasher, C.O.2    Lacroix, R.3
  • 24
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • Yu, X. H., and G. A. Chen, Efficient backpropagation learning using optimal learning rate and momentum, Neural Networks, 10, 517-527, 1997.
    • (1997) Neural Networks , vol.10 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.