메뉴 건너뛰기




Volumn 22, Issue 7, 2007, Pages 1066-1072

An Artificial Neural Network model for mountainous water-resources management: The case of Cyprus mountainous watersheds

Author keywords

Artificial neural networks; Back propagation algorithm; Maximum volume of water flow; Water resources management

Indexed keywords

BACKPROPAGATION; FLOW OF WATER; NEURAL NETWORKS; RAIN; WATER RESOURCES; WATERSHEDS;

EID: 33846820421     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2006.05.026     Document Type: Article
Times cited : (80)

References (45)
  • 1
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling and Software
    • Almasri M.N., and Kaluarachchi J.J. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling and Software. Elsevier Science 20 7 (2005) 851-871
    • (2005) Elsevier Science , vol.20 , Issue.7 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 2
    • 21844453935 scopus 로고    scopus 로고
    • 0018-3830 Berlin, New York, Walter De Gruyter & Co
    • Avramidis S., and Iliadis L. Wood-Water Isotherm Prediction with Artificial Neural Networks: a Preliminary Study". Holzforschung, 0018-3830 59 3 (2005) 336-341 Berlin, New York, Walter De Gruyter & Co
    • (2005) Holzforschung , vol.59 , Issue.3 , pp. 336-341
    • Avramidis, S.1    Iliadis, L.2
  • 4
    • 18744406978 scopus 로고    scopus 로고
    • Thermal properties estimation via real time neural network learning
    • Boillereaux L., Cadet C., and Le Bail A. Thermal properties estimation via real time neural network learning. Journal of Food Engineering 57 (2003) 17-23
    • (2003) Journal of Food Engineering , vol.57 , pp. 17-23
    • Boillereaux, L.1    Cadet, C.2    Le Bail, A.3
  • 5
    • 33846823881 scopus 로고    scopus 로고
    • Bowers, J.A., Shedrow, C.B., 2000. Predicting Stream Water Quality using Artificial Neural Networks. Westinghouse Savannah River Company, SRS Ecology Environmental Information Document, MS-2000-00112. Savannah River Site, Aiken, SC 29808, US Department of Energy.
  • 9
    • 33846793416 scopus 로고    scopus 로고
    • Simulation Modelling Practice and Theory
    • Chungen Y., Rosendahl L., and Luo Z. Simulation Modelling Practice and Theory. Elsevier Science vol. 11 (2003) 211-222
    • (2003) Elsevier Science , vol.11 , pp. 211-222
    • Chungen, Y.1    Rosendahl, L.2    Luo, Z.3
  • 10
    • 33846831482 scopus 로고    scopus 로고
    • Dibike, Y., Solomatine, D., 1999. River Flow Forecasting Using Artificial Neural Networks European Geophysical Society (EGS) XXIV General Assembly, The Hague, The Netherlands.
  • 15
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling and Software
    • Hamed M.M., Khalafallah M.G., and Hassanien E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling and Software. Elsevier Science 19 10 (2004) 919-928
    • (2004) Elsevier Science , vol.19 , Issue.10 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 17
    • 0036466560 scopus 로고    scopus 로고
    • Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network
    • Hussain M.A., Safiur Rahman M., and Ng C.W. Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network. Journal of Food Engineering 51 (2002) 239-248
    • (2002) Journal of Food Engineering , vol.51 , pp. 239-248
    • Hussain, M.A.1    Safiur Rahman, M.2    Ng, C.W.3
  • 18
    • 33846802466 scopus 로고    scopus 로고
    • Iliadis, L., Maris, F., 2005. An Artificial Neural Network to Estimate Average Maximum Instant Water-Flow of Watersheds. Proceedings of the ninth International Conference of Engineering Applications of Neural Networks, Lille, France, pp. 215-222.
  • 19
    • 33846844369 scopus 로고    scopus 로고
    • Iliadis, L., Spartalis, S., Maris, F., Marinos, D., 2004. A Decision Support System Unifying Trapezoidal Function Membership Values Using T-Norms: The Case of River Evros Torrential Risk Estimation. Proceedings of the ICNAAM (International Conference in Numerical Analysis and Applied Mathematics) Greece. J. Wiley-VCH Verlag GmbH Publishing Co., Weinheim Germany, pp.173-177, ISBN 3-527-40563-1.
  • 21
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks 1 (1988) 295-307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 22
    • 33846844368 scopus 로고    scopus 로고
    • Department of water development, Ministry of Agriculture, Natural Resources and Environment of the Republic of Cyprus, Organization for the Nutrition and Health of the United Nations
    • Klohn W. Re-evaluation of Water Resources and of Water Demands of the Island (2002), Department of water development, Ministry of Agriculture, Natural Resources and Environment of the Republic of Cyprus, Organization for the Nutrition and Health of the United Nations
    • (2002) Re-evaluation of Water Resources and of Water Demands of the Island
    • Klohn, W.1
  • 25
    • 0005946796 scopus 로고    scopus 로고
    • Control of Water Levels in Polder Areas Using Neural Networks and Fuzzy Adaptive Systems
    • Research Studies Press, Baldock, UK pp. 509-518
    • Lobbrecht A.H., and Solomatine D.P. Control of Water Levels in Polder Areas Using Neural Networks and Fuzzy Adaptive Systems. Water Industry Systems: Modelling and Optimization Applications vol. 1 (1999), Research Studies Press, Baldock, UK pp. 509-518
    • (1999) Water Industry Systems: Modelling and Optimization Applications , vol.1
    • Lobbrecht, A.H.1    Solomatine, D.P.2
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 15 1 (2000) 101-124
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 1642336479 scopus 로고    scopus 로고
    • Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
    • Maier H.R., Morgan N., and Chow C.W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling & Software 19 5 (2004) 485-494
    • (2004) Environmental Modelling & Software , vol.19 , Issue.5 , pp. 485-494
    • Maier, H.R.1    Morgan, N.2    Chow, C.W.K.3
  • 29
    • 0003453353 scopus 로고    scopus 로고
    • Pearson Prentice Hall, Upper Saddle River, New Jersey pp. 108-168
    • McCuen R. Hydrologic Analysis and Design. third ed. (2005), Pearson Prentice Hall, Upper Saddle River, New Jersey pp. 108-168
    • (2005) Hydrologic Analysis and Design. third ed.
    • McCuen, R.1
  • 30
    • 33846836226 scopus 로고    scopus 로고
    • Minai, A.A., Williams, R.D., 1990. Acceleration of back-propagation through learning rate and momentum adaptation. International Joint Conference on Neural Networks I, 676-679.
  • 31
    • 0035169271 scopus 로고    scopus 로고
    • Unification of food water sorption isotherms using artificial neural networks
    • Myhara R.M., and Sablani S. Unification of food water sorption isotherms using artificial neural networks. Drying Technology 19 8 (2001) 1543-1554
    • (2001) Drying Technology , vol.19 , Issue.8 , pp. 1543-1554
    • Myhara, R.M.1    Sablani, S.2
  • 32
    • 33846812681 scopus 로고    scopus 로고
    • Neuralware, 2001. Getting Started. A Tutorial for Neuralworks Professional II/PLUS. Carnegie, PA, USA.
  • 33
    • 33846788232 scopus 로고    scopus 로고
    • Neuralworks II/Plus Supplement, 2001, Carnegie, PA, USA.
  • 34
    • 33846832679 scopus 로고    scopus 로고
    • Neuralworks Reference Guide, 2001, Carnegie, PA, USA.
  • 35
    • 0005331171 scopus 로고    scopus 로고
    • Evaluation of neural network architectures for cereal grain classification using morphological features
    • Paliwal J., Visen N.S., and Jayas D.S. Evaluation of neural network architectures for cereal grain classification using morphological features. Journal of Agricultural Engineering 79 4 (2001) 361-370
    • (2001) Journal of Agricultural Engineering , vol.79 , Issue.4 , pp. 361-370
    • Paliwal, J.1    Visen, N.S.2    Jayas, D.S.3
  • 39
    • 0036568112 scopus 로고    scopus 로고
    • Neural networks for predicting thermal conductivity of bakery products
    • Sablani S.S., Baik O.-D., and Marcotte M. Neural networks for predicting thermal conductivity of bakery products. Journal of Food Engineering 52 (2002) 299-304
    • (2002) Journal of Food Engineering , vol.52 , pp. 299-304
    • Sablani, S.S.1    Baik, O.-D.2    Marcotte, M.3
  • 40
    • 9944235074 scopus 로고    scopus 로고
    • Hydrologic modeling and forecasting: role of thresholds. Environmental Modelling and Software Journal
    • Sivakumar B. Hydrologic modeling and forecasting: role of thresholds. Environmental Modelling and Software Journal. Elsevier Science 20 5 (2005) 515-519
    • (2005) Elsevier Science , vol.20 , Issue.5 , pp. 515-519
    • Sivakumar, B.1
  • 41
    • 0032030141 scopus 로고    scopus 로고
    • Prediction of psychrometric parameters using neural networks
    • Sreekanth S., Ramaswamy H.S., and Sablani S.S. Prediction of psychrometric parameters using neural networks. Drying Technology 16 3-5 (1998) 825-837
    • (1998) Drying Technology , vol.16 , Issue.3-5 , pp. 825-837
    • Sreekanth, S.1    Ramaswamy, H.S.2    Sablani, S.S.3
  • 42
    • 33846835535 scopus 로고    scopus 로고
    • Thamarai, S., Malmathanraj, R., 2005. Missile Defense and Interceptor Allocation by Modified Bionet Neural Network. In: Proceedings of the ninth International Conference of Engineering Applications of Neural Networks, Lille, France, pp. 299-306.
  • 43
    • 33846830996 scopus 로고    scopus 로고
    • UNESCO home page, 1998-2000. .
  • 44
    • 33846834880 scopus 로고    scopus 로고
    • Van Looy, S., Meeus, J., Wyns, B., Vander Cruyssen, B., Boullart, L., Keyser, F., 2005. Comparison of Machine Learning Models for Prediction of Dose Increase in Patients with Rheumatoid Arthritis. Proceedings of the ninth International Conference of Engineering Applications of Neural Networks, Lille, France, pp. 189-196.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.