메뉴 건너뛰기




Volumn 333, Issue 2-4, 2007, Pages 504-516

A nonlinear perturbation model based on artificial neural network

Author keywords

Artificial neural networks; Flood forecasting; Linear perturbation model; Nonlinear perturbation model

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; NONLINEAR SYSTEMS; PERTURBATION TECHNIQUES; RAIN; RUNOFF; WEATHER FORECASTING;

EID: 33845975322     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2006.09.015     Document Type: Article
Times cited : (19)

References (41)
  • 1
    • 0032961025 scopus 로고    scopus 로고
    • River flow forecasting with a neural network model
    • Campolo M., Andreussi P., and Soldati A. River flow forecasting with a neural network model. Water Resour. Res. 35 (1999) 1191-1197
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 2
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo M., Soldati A., and Andreussi P. Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48 (2003) 381-398
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 3
    • 0035340711 scopus 로고    scopus 로고
    • A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F., and Chen Y. A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245 (2001) 153-164
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.1    Chen, Y.2
  • 4
    • 0000463206 scopus 로고
    • Storage and unit hydrograph
    • Clark C.O. Storage and unit hydrograph. Trans. ASCE 110 (1945)
    • (1945) Trans. ASCE , vol.110
    • Clark, C.O.1
  • 5
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson C.W., Abrahart R.J., Shamseldin A.Y., and Wilby R.L. Flood estimation at ungauged sites using artificial neural networks. J. Hydrol. 319 (2006) 391-409
    • (2006) J. Hydrol. , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 6
    • 0035370803 scopus 로고    scopus 로고
    • Analysing forest transpiration model errors with artificial neural networks
    • Dekker S.C., Bouten W., and Schaap M.G. Analysing forest transpiration model errors with artificial neural networks. J. Hydrol. 246 (2001) 197-208
    • (2001) J. Hydrol. , vol.246 , pp. 197-208
    • Dekker, S.C.1    Bouten, W.2    Schaap, M.G.3
  • 7
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French M.N., Krajewski W.F., and Cuykendall R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol. 137 (1992) 1-31
    • (1992) J. Hydrol. , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 8
    • 0003365285 scopus 로고    scopus 로고
    • Introduction to Pattern Recognition: Statistical, Structural, Neural, and Fuzzy Logic Approaches
    • World Scientific, Singapore
    • Friedman M., and Kandel A. Introduction to Pattern Recognition: Statistical, Structural, Neural, and Fuzzy Logic Approaches. Series in Machine Perception Artificial Intelligence 32 (1999), World Scientific, Singapore
    • (1999) Series in Machine Perception Artificial Intelligence , vol.32
    • Friedman, M.1    Kandel, A.2
  • 9
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam M.R., Watanabe K., and Saegusa H. Runoff analysis in humid forest catchment with artificial neural network. J. Hydrol. 235 (2000) 117-136
    • (2000) J. Hydrol. , vol.235 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 10
    • 0004063090 scopus 로고
    • MacMillan College Publishing Company, New York, USA
    • Haykin S. Neural Networks (1994), MacMillan College Publishing Company, New York, USA
    • (1994) Neural Networks
    • Haykin, S.1
  • 11
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 (1995) 2517-2530
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 12
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol. 233 (2000) 138-153
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 13
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A., Sudheer K.P., and Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Process 18 (2004) 571-581
    • (2004) Hydrol. Process , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 14
    • 0026613406 scopus 로고
    • River flow forecasting, part 2, algebraic development of linear modelling techniques
    • Kachroo R.K., and Liang G.C. River flow forecasting, part 2, algebraic development of linear modelling techniques. J. Hydrol. 133 (1992) 17-40
    • (1992) J. Hydrol. , vol.133 , pp. 17-40
    • Kachroo, R.K.1    Liang, G.C.2
  • 15
    • 0024219553 scopus 로고
    • Application of the linear perturbation model (LPM) to flood routing on the Mekong River
    • Kachroo R.K., Liang G.C., and O'Connor K.M. Application of the linear perturbation model (LPM) to flood routing on the Mekong River. Hydrol. Sci. J. 33 2-4 (1988) 193-214
    • (1988) Hydrol. Sci. J. , vol.33 , Issue.2-4 , pp. 193-214
    • Kachroo, R.K.1    Liang, G.C.2    O'Connor, K.M.3
  • 16
    • 0035977694 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • Khalil M., Panu U.S., and Lennox W.C. Groups and neural networks based streamflow data infilling procedures. J. Hydrol. 241 (2001) 153-176
    • (2001) J. Hydrol. , vol.241 , pp. 153-176
    • Khalil, M.1    Panu, U.S.2    Lennox, W.C.3
  • 17
    • 0024163794 scopus 로고
    • Linear models for river flow routing on large catchments
    • Liang G.C., and Nash J.E. Linear models for river flow routing on large catchments. J. Hydrol. 103 (1988) 157-188
    • (1988) J. Hydrol. , vol.103 , pp. 157-188
    • Liang, G.C.1    Nash, J.E.2
  • 18
    • 0034737033 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • Luk K.C., Ball J.E., and Sharma A. Groups and neural networks based streamflow data infilling procedures. J. Hydrol. 227 (2000) 56-65
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 19
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrolog. Sci. J. 41 (1996) 399-417
    • (1996) Hydrolog. Sci. J. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 20
    • 0020873423 scopus 로고
    • A hybrid model for flood forecasting on large catchments
    • Nash J.E., and Brasi B.I. A hybrid model for flood forecasting on large catchments. J. Hydrol. 65 (1983) 125-137
    • (1983) J. Hydrol. , vol.65 , pp. 125-137
    • Nash, J.E.1    Brasi, B.I.2
  • 22
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • Nash J.E., and Sutcliffe J. River flow forecasting through conceptual models. J. Hydrol. 10 (1970) 282-290
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.2
  • 23
    • 0001806713 scopus 로고
    • A constrained parameter estimation technique for nonlinear model in hydrology
    • Cirani T.A., Mairone U., and Wallis J.R. (Eds), Wiley, Chichester
    • Natale L., and Todini E. A constrained parameter estimation technique for nonlinear model in hydrology. In: Cirani T.A., Mairone U., and Wallis J.R. (Eds). Mathematical Models for surface Water Hydrology (1977), Wiley, Chichester 109-147
    • (1977) Mathematical Models for surface Water Hydrology , pp. 109-147
    • Natale, L.1    Todini, E.2
  • 24
    • 33845981754 scopus 로고    scopus 로고
    • ANN Modeling in Watershed Hydrology
    • Singh V.P., Frevert D.K., and Meyer S.P. (Eds), Water Resources Publications, Littleton, Colorado
    • Ojha C.S.P., and Singh V.P. ANN Modeling in Watershed Hydrology. In: Singh V.P., Frevert D.K., and Meyer S.P. (Eds). Mathematical Models of Large Watershed Hydrology[M] (2001), Water Resources Publications, Littleton, Colorado 67-88
    • (2001) Mathematical Models of Large Watershed Hydrology[M] , pp. 67-88
    • Ojha, C.S.P.1    Singh, V.P.2
  • 25
    • 0347135926 scopus 로고    scopus 로고
    • Modelling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurka M.P., Kothyari U.C., and Chaube U.C. Modelling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285 (2004) 96-113
    • (2004) J. Hydrol. , vol.285 , pp. 96-113
    • Rajurka, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 27
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • Gaovindraju R.S., and Rao A.R. (Eds), Kluwer Academic Publishers, Dordrecht
    • Salas J.D., Markus M., and Tokar A.A. Streamflow forecasting based on artificial neural networks. In: Gaovindraju R.S., and Rao A.R. (Eds). Artificial Neural Networks in Hydrology [M] (2000), Kluwer Academic Publishers, Dordrecht 23-51
    • (2000) Artificial Neural Networks in Hydrology [M] , pp. 23-51
    • Salas, J.D.1    Markus, M.2    Tokar, A.A.3
  • 28
    • 33845983186 scopus 로고    scopus 로고
    • Sarle, W.S., 1995. Stopped training and other remedies for over-fitting. In: Proceedings of the Twenty-seventh Symposium on the Interface of Computing Science and Statistics. pp. 352-360.
  • 29
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 30
    • 0035701248 scopus 로고    scopus 로고
    • A nonlinear neural network technique for updating river flow forecasts
    • Shamseldin A.Y., and O'Connor K.M. A nonlinear neural network technique for updating river flow forecasts. Hydrol. Earth Syst. Sci. 5 (2001) 577-597
    • (2001) Hydrol. Earth Syst. Sci. , vol.5 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 31
    • 0001243354 scopus 로고
    • Stream flow from rainfall by the unit-hydrograph method
    • Sherman L.K. Stream flow from rainfall by the unit-hydrograph method. Eng. News Rec. 108 (1932)
    • (1932) Eng. News Rec. , vol.108
    • Sherman, L.K.1
  • 32
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A.W., and Fernando T.M.K.G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 265 (2002) 225-245
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 33
    • 0029416249 scopus 로고
    • Neural network models of the rainfall-runoff process
    • Smith J., and Eli R.N. Neural network models of the rainfall-runoff process. J. Water Resour. Plan. Man.-ASCE 121 (1995) 499-508
    • (1995) J. Water Resour. Plan. Man.-ASCE , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 34
    • 0010750421 scopus 로고
    • Using CLS for daily or longer period rainfall-runoff modelling
    • Cirani T.A., Maione U., and Wallis J.R. (Eds), Wiley, Chichester
    • Todini E., and Wallis J.R. Using CLS for daily or longer period rainfall-runoff modelling. In: Cirani T.A., Maione U., and Wallis J.R. (Eds). Mathematical Models for Surface Water Hydrology (1977), Wiley, Chichester 149-179
    • (1977) Mathematical Models for Surface Water Hydrology , pp. 149-179
    • Todini, E.1    Wallis, J.R.2
  • 35
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby R.L., Abrahart R.J., and Dawson C.W. Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48 (2003) 163-181
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 36
    • 0026358736 scopus 로고
    • Identification of a constrained nonlinear hydrological system described by Volterra functional series
    • Xia J. Identification of a constrained nonlinear hydrological system described by Volterra functional series. Water Resour. Res. 27 (1991) 2415-2420
    • (1991) Water Resour. Res. , vol.27 , pp. 2415-2420
    • Xia, J.1
  • 37
    • 0031574286 scopus 로고    scopus 로고
    • A nonlinear perturbation model considering catchment wetness and its application in river flow forecasting
    • Xia J., O'Connor K.M., Kachroo R.K., and Liang G.C. A nonlinear perturbation model considering catchment wetness and its application in river flow forecasting. J. Hydrol. 200 (1997) 164-178
    • (1997) J. Hydrol. , vol.200 , pp. 164-178
    • Xia, J.1    O'Connor, K.M.2    Kachroo, R.K.3    Liang, G.C.4
  • 38
    • 3242694434 scopus 로고    scopus 로고
    • Effects of the catchment runoff coefficient on the performance of TOPMODEL in rainfall-runoff modeling
    • Xiong L., and Guo S.L. Effects of the catchment runoff coefficient on the performance of TOPMODEL in rainfall-runoff modeling. Hydrol. Process 18 (2004) 1823-1836
    • (2004) Hydrol. Process , vol.18 , pp. 1823-1836
    • Xiong, L.1    Guo, S.L.2
  • 39
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • Xiong L., and O'Connor K.M. Comparison of four updating models for real-time river flow forecasting. Hydrol. Sci. J. 47 (2002) 621-639
    • (2002) Hydrol. Sci. J. , vol.47 , pp. 621-639
    • Xiong, L.1    O'Connor, K.M.2
  • 40
    • 5044234787 scopus 로고    scopus 로고
    • Comparison of three updating schemes using Artificial Neural Network in flow forecasting
    • Xiong L., O'Connor K.M., and Guo S.L. Comparison of three updating schemes using Artificial Neural Network in flow forecasting. Hydrol. Earth Syst. Sci. 8 2 (2004) 247-255
    • (2004) Hydrol. Earth Syst. Sci. , vol.8 , Issue.2 , pp. 247-255
    • Xiong, L.1    O'Connor, K.M.2    Guo, S.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.