메뉴 건너뛰기




Volumn 273, Issue 1-4, 2003, Pages 18-34

Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds

Author keywords

Artificial neural networks; Geomorphology; Hydrologic models; Unit hydrographs

Indexed keywords

COMPUTER SIMULATION; NEURAL NETWORKS; RAIN; WATERSHEDS;

EID: 0037466126     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-1694(02)00313-X     Document Type: Article
Times cited : (96)

References (45)
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, 2. Hydrologic applications
    • ASCE Task Committee, 2000. Artificial neural networks in hydrology, 2. Hydrologic applications. ASCE Journal of Hydrologic Engineering 5 (2), 124-137.
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0018656452 scopus 로고
    • On the generalized kinematic routing method
    • Beven, K., 1979. On the generalized kinematic routing method. Water Resources Research 15 (5), 1238-1242.
    • (1979) Water Resources Research , vol.15 , Issue.5 , pp. 1238-1242
    • Beven, K.1
  • 4
    • 0024165506 scopus 로고
    • On hydrological heterogeneity - Catchment morphology and catchment response
    • Beven, K., 1988. On hydrological heterogeneity - catchment morphology and catchment response. Journal of Hydrology 100, 353-375.
    • (1988) Journal of Hydrology , vol.100 , pp. 353-375
    • Beven, K.1
  • 5
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent stream-flow conditions in British Coulmbia, Canada using ensemble neural networks
    • Cannon, A.J., Whitfield, P.H., 2002. Downscaling recent stream-flow conditions in British Coulmbia, Canada using ensemble neural networks. Journal of Hydrology 259, 136-151.
    • (2002) Journal of Hydrology , vol.259 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 6
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F.-J., Chen, Y.-C., 2001. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology 245, 153-164.
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.-J.1    Chen, Y.-C.2
  • 8
    • 0025573111 scopus 로고
    • The shape parameters of the geomorphologic unit hydrograph
    • Chutta, P., Dooge, J.C.I., 1990. The shape parameters of the geomorphologic unit hydrograph. Journal of Hydrology 117, 81-97.
    • (1990) Journal of Hydrology , vol.117 , pp. 81-97
    • Chutta, P.1    Dooge, J.C.I.2
  • 9
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., Anctil, F., Bobee, B., 2001. Multivariate reservoir inflow forecasting using temporal neural networks. ASCE Journal of Hydrologic Engineering 6 (5), 367-376.
    • (2001) ASCE Journal of Hydrologic Engineering , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 12
    • 0028416331 scopus 로고
    • Neural networks in Civil Engineering I. Principles and understanding
    • Flood, I., Kartam, N., 1994. Neural networks in Civil Engineering I. Principles and understanding. Journal of Computing in Civil Engineering 8 (2), 131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 13
    • 0003489163 scopus 로고    scopus 로고
    • Introduction
    • Govindraraju, R.S., Rao, A.R. (Eds.), Kluwer, Dordrecht, Netherlands
    • Govindaraju, R.S., Rao, A.R., 2000. Introduction. In: Govindraraju, R.S., Rao, A.R. (Eds.), Artificial Neural Networks in Hydrology, Kluwer, Dordrecht, Netherlands, pp. 1-7.
    • (2000) Artificial Neural Networks in Hydrology , pp. 1-7
    • Govindaraju, R.S.1    Rao, A.R.2
  • 14
    • 0019228361 scopus 로고
    • A representation of an instantaneous unit hydrograph from geomorphology
    • Gupta, V., Waymire, E., Wang, C., 1980. A representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research 16 (5), 855-862.
    • (1980) Water Resources Research , vol.16 , Issue.5 , pp. 855-862
    • Gupta, V.1    Waymire, E.2    Wang, C.3
  • 15
    • 0001818563 scopus 로고    scopus 로고
    • Effective and efficient modeling for streamflow forecasting
    • Govindaraju, R.S, Rao, A.R. (Eds.), Kluwer, Dordrecht
    • Gupta, H.V., Hsu, K., Sorooshian, S., 2000. Effective and efficient modeling for streamflow forecasting. In: Govindaraju, R.S, Rao, A.R. (Eds.), Artificial Neural Networks in Hydrology, Kluwer, Dordrecht, pp. 7-22.
    • (2000) Artificial Neural Networks in Hydrology , pp. 7-22
    • Gupta, H.V.1    Hsu, K.2    Sorooshian, S.3
  • 17
    • 0013454175 scopus 로고
    • Runoff hydrograph estimation using artificial neural networks
    • Topping, B., Khan, A.I. (Eds.), ASCE, Spokane, Washington
    • Hjelmfelt, A., Wang, M., 1993b. Runoff hydrograph estimation using artificial neural networks. In: Topping, B., Khan, A.I. (Eds.), Proceedings of the 18-19 June 1993 ASAE Conference, ASCE, Spokane, Washington.
    • (1993) Proceedings of the 18-19 June 1993 ASAE Conference
    • Hjelmfelt, A.1    Wang, M.2
  • 19
    • 20344399959 scopus 로고
    • Erosional development of streams and their drainage basin: Hydrophysical approach to quantitative morphology
    • Horton, R., 1945. Erosional development of streams and their drainage basin: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56, 275-370.
    • (1945) Geological Society of America Bulletin , vol.56 , pp. 275-370
    • Horton, R.1
  • 20
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K., Gupta, H., Sorooshain, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 (10), 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.2    Sorooshain, S.3
  • 21
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artificial neural network
    • Hsu, K., Gao, X., Sorooshain, S., 1997. Precipitation estimation from remotely sensed information using artificial neural network. Journal of Applied Meteorology 36 (9), 1176-1190.
    • (1997) Journal of Applied Meteorology , vol.36 , Issue.9 , pp. 1176-1190
    • Hsu, K.1    Gao, X.2    Sorooshain, S.3
  • 22
    • 0026481424 scopus 로고
    • A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types
    • Jin, C., 1992. A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types. Water Resources Research 28 (2), 479-486.
    • (1992) Water Resources Research , vol.28 , Issue.2 , pp. 479-486
    • Jin, C.1
  • 23
    • 0022264618 scopus 로고
    • Assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks
    • Karlinger, M., Troutman, B., 1985. Assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks. Water Resources Research 21 (2), 1693-1702.
    • (1985) Water Resources Research , vol.21 , Issue.2 , pp. 1693-1702
    • Karlinger, M.1    Troutman, B.2
  • 24
    • 0020873791 scopus 로고
    • The linear channel and its effect on the geomorphologic, IUH
    • Kirshen, D., Bras, R., 1983. The linear channel and its effect on the geomorphologic, IUH. Journal of Hydrology 65, 175-208.
    • (1983) Journal of Hydrology , vol.65 , pp. 175-208
    • Kirshen, D.1    Bras, R.2
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H., Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling Software 15, 101-124.
    • (2000) Environmental Modeling Software , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.C.2
  • 28
    • 0018677794 scopus 로고
    • The geomorphological structure of hydrologic response
    • Rodriguez-Iturbe, I., Valdes, J., 1979. The geomorphological structure of hydrologic response. Water Resources Research 15 (6), 1409-1420.
    • (1979) Water Resources Research , vol.15 , Issue.6 , pp. 1409-1420
    • Rodriguez-Iturbe, I.1    Valdes, J.2
  • 31
    • 0021640780 scopus 로고
    • Nash model relation to Horton order ratios
    • Rosso, R., 1984. Nash model relation to Horton order ratios. Water Resources Research 20 (7), 914-920.
    • (1984) Water Resources Research , vol.20 , Issue.7 , pp. 914-920
    • Rosso, R.1
  • 33
    • 0005602624 scopus 로고
    • Evaluation of drainage systems and slopes in Perth Amboy, New Jersey
    • Schumm, S., 1956. Evaluation of drainage systems and slopes in Perth Amboy, New Jersey. Geological Society of American Bulletin 67, 597-646.
    • (1956) Geological Society of American Bulletin , vol.67 , pp. 597-646
    • Schumm, S.1
  • 34
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamsheldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modeling. Journal of Hydrology 199, 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamsheldin, A.Y.1
  • 36
    • 0013436115 scopus 로고    scopus 로고
    • Reply to comment on The geomorphological unit hydrograph - A critical overview
    • Shamsheldin, A.Y., Nash, J.E., 1999. Reply to comment on The geomorphological unit hydrograph - a critical overview. Hydrology and Earth System Sciences 3 (2), 311-314.
    • (1999) Hydrology and Earth System Sciences , vol.3 , Issue.2 , pp. 311-314
    • Shamsheldin, A.Y.1    Nash, J.E.2
  • 39
    • 84975030700 scopus 로고
    • Quantitative analysis of watershed geomorphology
    • Strahler, A., 1957. Quantitative analysis of watershed geomorphology. EOS Transactions AGU 38 (6), 913-920.
    • (1957) EOS Transactions AGU , vol.38 , Issue.6 , pp. 913-920
    • Strahler, A.1
  • 40
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall runoff modeling using artificial neural networks
    • Tokar, A.S., Johnson, P.A., 1999. Rainfall runoff modeling using artificial neural networks. ASCE Journal of Hydrologic Engineering 4 (3), 232-239.
    • (1999) ASCE Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 41
    • 0022266430 scopus 로고
    • Unit hydrograph approximations assuming linear flow through topologically random networks
    • Troutman, B., Karlinger, M., 1985. Unit hydrograph approximations assuming linear flow through topologically random networks. Water Resources Research 21 (5), 743-754.
    • (1985) Water Resources Research , vol.21 , Issue.5 , pp. 743-754
    • Troutman, B.1    Karlinger, M.2
  • 42
    • 0019727230 scopus 로고
    • A geomorphologic synthesis of nonlinearality in surface runoff
    • Wang, C., Gupta, V., Waymire, E., 1981. A geomorphologic synthesis of nonlinearality in surface runoff. Water Resources Research 17, 545-554.
    • (1981) Water Resources Research , vol.17 , pp. 545-554
    • Wang, C.1    Gupta, V.2    Waymire, E.3
  • 45
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B., Govindaraju, R.S., 2000. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research 36 (3), 753-762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.