-
1
-
-
0004368739
-
Learning from hints
-
Abu-Mostafa, Y. (1994) Learning from hints. J. Complexity 10(1), 165-178.
-
(1994)
J. Complexity
, vol.10
, Issue.1
, pp. 165-178
-
-
Abu-Mostafa, Y.1
-
2
-
-
0034174280
-
Artificial neural networks in hydrology. I. Preliminary concepts
-
ASCE Task Committee on Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology. I. Preliminary concepts. J. Hydrol. Engng. 5(2), 115-123.
-
(2000)
J. Hydrol. Engng.
, vol.5
, Issue.2
, pp. 115-123
-
-
-
3
-
-
0034174396
-
Artificial neural networks in hydrology. II. Hydrologic applications
-
ASCE Task Committee on Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology. II. Hydrologic applications. J. Hydrol. Engng. 5(2), 124-137.
-
(2000)
J. Hydrol. Engng.
, vol.5
, Issue.2
, pp. 124-137
-
-
-
4
-
-
0346966878
-
A low-sensitivity recurrent neural network
-
Back, A. D. & Tsoi, A. C. (1998) A low-sensitivity recurrent neural network. Neural Comput. 10, 165-188.
-
(1998)
Neural Comput.
, vol.10
, pp. 165-188
-
-
Back, A.D.1
Tsoi, A.C.2
-
5
-
-
0042741058
-
Does extra knowledge necessarily improve generalization?
-
Barber, D. & Saad, D. (1996) Does extra knowledge necessarily improve generalization? Neural Comput. 8, 202-214.
-
(1996)
Neural Comput.
, vol.8
, pp. 202-214
-
-
Barber, D.1
Saad, D.2
-
6
-
-
38249028279
-
Nonlinear least absolute values and minimal model fitting
-
Bos, A. V. D. (1989) Nonlinear least absolute values and minimal model fitting. Automatica 24, 803-809.
-
(1989)
Automatica
, vol.24
, pp. 803-809
-
-
Bos, A.V.D.1
-
7
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop, C. M. (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput. 7, 108-116.
-
(1995)
Neural Comput.
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
8
-
-
0032688155
-
River flood forecasting with a neural network model
-
Campolo, M., Andreussi, P. & Soldati A. (1999) River flood forecasting with a neural network model. Water Resour. Res. 35(4), 1191-1197.
-
(1999)
Water Resour. Res.
, vol.35
, Issue.4
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
9
-
-
0038240745
-
Artificial neural network approach to flood forecasting in the River Arno
-
Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 381-398
-
-
Campolo, M.1
Soldati, A.2
Andreussi, P.3
-
10
-
-
0026625982
-
Sensitivity analysis of multilayer perceptron with differentiable activation function
-
Choi, J. Y. & Choi, T. H. (1992) Sensitivity analysis of multilayer perceptron with differentiable activation function. IEEE Trans. Neural Networks 3, 101-107.
-
(1992)
IEEE Trans. Neural Networks
, vol.3
, pp. 101-107
-
-
Choi, J.Y.1
Choi, T.H.2
-
11
-
-
0020737080
-
Simulating soil water recession coefficients for agricultural watersheds
-
Choudhury, B. J. & Blanchard, B. J. (1983) Simulating soil water recession coefficients for agricultural watersheds. Water Resour. Bull. 19(2), 241-247.
-
(1983)
Water Resour. Bull.
, vol.19
, Issue.2
, pp. 241-247
-
-
Choudhury, B.J.1
Blanchard, B.J.2
-
12
-
-
0038240755
-
Estimation, forecasting and extrapolation of river flows by artificial neural networks
-
Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 349-361
-
-
Cigizoglu, H.K.1
-
13
-
-
0033982910
-
Training neural networks to be insensitive to weight random variations
-
Conti, M., Orcioni, S. Turchetti, C. (2000) Training neural networks to be insensitive to weight random variations. Neural Networks 13, 125-132.
-
(2000)
Neural Networks
, vol.13
, pp. 125-132
-
-
Conti, M.1
Orcioni, S.2
Turchetti, C.3
-
14
-
-
0002554101
-
Daily reservoir inflow forecasting using ANNs with stopped training approach
-
Coulibaly, P., Anctil, A. Bobée, B. (2000) Daily reservoir inflow forecasting using ANNs with stopped training approach. J. Hydrol. 230, 245-257.
-
(2000)
J. Hydrol.
, vol.230
, pp. 245-257
-
-
Coulibaly, P.1
Anctil, A.2
Bobée, B.3
-
15
-
-
0034749335
-
Hydrological modeling using artificial neural networks
-
Dawson, C. W. & Wilby, R. L. (2001) Hydrological modeling using artificial neural networks. Progr. Phys. Geogr. 25(1), 80-108.
-
(2001)
Progr. Phys. Geogr.
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
16
-
-
0026953305
-
Improving generalization using double backpropagation
-
Drucker, H. & Cun, Y. L. (1992) Improving generalization using double backpropagation. IEEE Trans. Neural Networks 3(6), 991-997.
-
(1992)
IEEE Trans. Neural Networks
, vol.3
, Issue.6
, pp. 991-997
-
-
Drucker, H.1
Cun, Y.L.2
-
17
-
-
0003420910
-
The cascade-correlation learning architecture
-
Tech. Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
-
Fahlman, S. E. & Lebiere, C. (1991) The cascade-correlation learning architecture. Tech. Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
-
(1991)
-
-
Fahlman, S.E.1
Lebiere, C.2
-
18
-
-
0029413797
-
Artificial network modeling of the rainfall-runoff process
-
Hsu, K.-L., Gupta, H. V. & Sorooshian, S. (1995) Artificial network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517-2530.
-
(1995)
Water Resour. Res.
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.-L.1
Gupta, H.V.2
Sorooshian, S.3
-
19
-
-
0002477392
-
-
Dalian Maritime University Press, Dalian, China (in Chinese)
-
Hu, T. S. (1997) Neural Optimization and Prediction. Dalian Maritime University Press, Dalian, China (in Chinese).
-
(1997)
Neural Optimization and Prediction
-
-
Hu, T.S.1
-
20
-
-
0035472003
-
River flow time series prediction with range-dependent neural network
-
Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with range-dependent neural network. Hydrol. Sci. J. 46(5), 729-746.
-
(2001)
Hydrol. Sci. J.
, vol.46
, Issue.5
, pp. 729-746
-
-
Hu, T.S.1
Lam, K.C.2
Ng, S.T.3
-
21
-
-
0034641121
-
River flow prediction using artificial neural networks: Generalization beyond the calibration range
-
Imrie, C. E., Durucan, S. & Korre, A. (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J. Hydrol. 233, 138-153.
-
(2000)
J. Hydrol.
, vol.233
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
22
-
-
0033197895
-
Application of ANN for reservoir inflow prediction and operation
-
Jain, S. K., Das, A. Srivastava, D. K. (1999) Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. ASCE 125(5), 263-271.
-
(1999)
J. Water Resour. Plan. Manage. ASCE
, vol.125
, Issue.5
, pp. 263-271
-
-
Jain, S.K.1
Das, A.2
Srivastava, D.K.3
-
23
-
-
0030273576
-
Merging back-propagation and Hebbian learning rules for robust classifications
-
Jeong, D. G. & Lee, S. Y. (1996) Merging back-propagation and Hebbian learning rules for robust classifications. Neural Networks 9(7), 1213-1222.
-
(1996)
Neural Networks
, vol.9
, Issue.7
, pp. 1213-1222
-
-
Jeong, D.G.1
Lee, S.Y.2
-
24
-
-
0028667489
-
Neural networks for river flow prediction
-
Karunanithi, N., Grennery, W. J., Whitley, D. & Bovee, K. (1994) Neural networks for river flow prediction. J. Comput. Civil Engng 8(2), 201-219.
-
(1994)
J. Comput. Civil Engng.
, vol.8
, Issue.2
, pp. 201-219
-
-
Karunanithi, N.1
Grennery, W.J.2
Whitley, D.3
Bovee, K.4
-
25
-
-
0035258639
-
Learning object representations using a priori constraints ORASSYLL
-
Krüger, N. (2001) Learning object representations using a priori constraints ORASSYLL, Neural Comput. 13, 389-410.
-
(2001)
Neural Comput.
, vol.13
, pp. 389-410
-
-
Krüger, N.1
-
26
-
-
0032920124
-
Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
-
Legates, D. R. & McCabe, G. J., Jr (1999) Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233-241.
-
(1999)
Water Resour. Res.
, vol.35
, Issue.1
, pp. 233-241
-
-
Legates, D.R.1
McCabe Jr., G.J.2
-
27
-
-
0029777584
-
Robust error measures for supervised neural network learning with outliers
-
Liano, K. (1996) Robust error measures for supervised neural network learning with outliers. IEEE Trans. Neural Networks 7(1), 246-250.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, Issue.1
, pp. 246-250
-
-
Liano, K.1
-
28
-
-
0034737033
-
A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
-
Luk, K. C., Ball, J. E. & Sharma, A. (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227, 56-65.
-
(2000)
J. Hydrol.
, vol.227
, pp. 56-65
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
29
-
-
0033957764
-
Neural networks for the prediction and forecasting of water variables: A review of modeling issues and applications
-
Maier, H. R. & Dandy, G. C. (2000) Neural networks for the prediction and forecasting of water variables: a review of modeling issues and applications. Environ. Modelling & Software, 15, 101-124.
-
(2000)
Environ. Modelling & Software
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
30
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 4(3), 399-417.
-
(1996)
Hydrol. Sci. J.
, vol.4
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
31
-
-
0014776873
-
River flow forecasting through conceptual models, Part I. A discussion of principles
-
Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual models, Part I. A discussion of principles. J. Hydrol. 10, 282-290.
-
(1970)
J. Hydrol.
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
32
-
-
0029341842
-
Sensitivity analysis of single hidden-layer neural networks with threshold functions
-
Oh, S. H. & Lee, Y. (1995) Sensitivity analysis of single hidden-layer neural networks with threshold functions. IEEE Trans. Neural Networks 6(4), 1005-1008.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, Issue.4
, pp. 1005-1008
-
-
Oh, S.H.1
Lee, Y.2
-
33
-
-
0026711368
-
Improving the convergence of back propagation problem
-
Ooyen, A. V. & Nichhuis, B. (1992) Improving the convergence of back propagation problem. Neural Networks 5, 465-471.
-
(1992)
Neural Networks
, vol.5
, pp. 465-471
-
-
Ooyen, A.V.1
Nichhuis, B.2
-
34
-
-
0033145304
-
Multilayer neural networks and function reconstruction by using a prior knowledge
-
Pedroza, L. C. & Pedreira, C. E. (1999) Multilayer neural networks and function reconstruction by using a prior knowledge. Int. J. Neural Systems 9(3), 251-256.
-
(1999)
Int. J. Neural Systems
, vol.9
, Issue.3
, pp. 251-256
-
-
Pedroza, L.C.1
Pedreira, C.E.2
-
35
-
-
0029413038
-
Multivariate modeling of water resources time series using artificial neural networks
-
Raman, H. & Sunilkumar, N. (1995) Multivariate modeling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40(2), 145-163.
-
(1995)
Hydrol. Sci. J.
, vol.40
, Issue.2
, pp. 145-163
-
-
Raman, H.1
Sunilkumar, N.2
-
36
-
-
0010481518
-
Building cost functions minimizing to some summary statistics
-
Saerens, M. (2000) Building cost functions minimizing to some summary statistics. IEEE Trans. Neural Networks 11(6), 1263-1271.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.6
, pp. 1263-1271
-
-
Saerens, M.1
-
37
-
-
0033535432
-
A non-linear rainfall-runoff model using an artificial neural network
-
Sajikumar, N. & Thandaveswara, B. S. (1999) A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 216, 32-55.
-
(1999)
J. Hydrol.
, vol.216
, pp. 32-55
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
38
-
-
0008294826
-
Antecedent retention index predicts soil moisture
-
Saxton, K. E. & Lentz, A. T. (1967) Antecedent retention index predicts soil moisture. J. Hydraul. Div. ASCE 93(4), 223-241.
-
(1967)
J. Hydraul. Div. ASCE
, vol.93
, Issue.4
, pp. 223-241
-
-
Saxton, K.E.1
Lentz, A.T.2
-
39
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modeling
-
Shamseldin, A. Y. (1997) Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199, 272-294.
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
40
-
-
0031259688
-
Methods for combining the outputs of different rainfall-runoff models
-
Shamseldin, A. Y., O'Connor, K. M. & Liang, G. C. (1997) Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 197, 203-229.
-
(1997)
J. Hydrol.
, vol.197
, pp. 203-229
-
-
Shamseldin, A.Y.1
O'Connor, K.M.2
Liang, G.C.3
-
41
-
-
0037565156
-
Modeltrees as an alternative to neural networks in rainfall-runoff modelling
-
Solomatine, D. P., Khada, N. & Dulal, K. N. (2003) Modeltrees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48(3), 399-411.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Khada, N.2
Dulal, K.N.3
-
42
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Engng. 4(3), 232-239.
-
(1999)
J. Hydrol. Engng.
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
43
-
-
0037388711
-
Detection of conceptual model rainfall-runoff processes inside an artificial neural network
-
Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.2
, pp. 163-181
-
-
Wilby, R.L.1
Abrahart, R.J.2
Dawson, C.W.3
-
44
-
-
0033019602
-
Short term streamflow forecasting using artificial neural network
-
Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term streamflow forecasting using artificial neural network. J. Hydrol. 214, 32-48.
-
(1999)
J. Hydrol.
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
45
-
-
0034100712
-
Prediction of watershed runoff using Bayesian concepts and modular neural networks
-
Zhang, B. & Govindaraju, R. S. (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36(3), 753-763.
-
(2000)
Water Resour. Res.
, vol.36
, Issue.3
, pp. 753-763
-
-
Zhang, B.1
Govindaraju, R.S.2
|