메뉴 건너뛰기




Volumn 50, Issue 2, 2005, Pages 299-317

A modified neural network for improving river flow prediction

Author keywords

Backpropagation; Generalization performance; Goal programming; Network sensitivity; Neural network; Objective function; Prior knowledge; Rainfall runoff transformation; River flow prediction; The South to North scheme

Indexed keywords

BACKPROPAGATION; FORECASTING; HYDROLOGY; NEURAL NETWORKS; SENSITIVITY ANALYSIS; WATERSHEDS;

EID: 17444385970     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.50.2.299.60649     Document Type: Article
Times cited : (59)

References (45)
  • 1
    • 0004368739 scopus 로고
    • Learning from hints
    • Abu-Mostafa, Y. (1994) Learning from hints. J. Complexity 10(1), 165-178.
    • (1994) J. Complexity , vol.10 , Issue.1 , pp. 165-178
    • Abu-Mostafa, Y.1
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary concepts
    • ASCE Task Committee on Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology. I. Preliminary concepts. J. Hydrol. Engng. 5(2), 115-123.
    • (2000) J. Hydrol. Engng. , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE Task Committee on Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology. II. Hydrologic applications. J. Hydrol. Engng. 5(2), 124-137.
    • (2000) J. Hydrol. Engng. , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0346966878 scopus 로고    scopus 로고
    • A low-sensitivity recurrent neural network
    • Back, A. D. & Tsoi, A. C. (1998) A low-sensitivity recurrent neural network. Neural Comput. 10, 165-188.
    • (1998) Neural Comput. , vol.10 , pp. 165-188
    • Back, A.D.1    Tsoi, A.C.2
  • 5
    • 0042741058 scopus 로고    scopus 로고
    • Does extra knowledge necessarily improve generalization?
    • Barber, D. & Saad, D. (1996) Does extra knowledge necessarily improve generalization? Neural Comput. 8, 202-214.
    • (1996) Neural Comput. , vol.8 , pp. 202-214
    • Barber, D.1    Saad, D.2
  • 6
    • 38249028279 scopus 로고
    • Nonlinear least absolute values and minimal model fitting
    • Bos, A. V. D. (1989) Nonlinear least absolute values and minimal model fitting. Automatica 24, 803-809.
    • (1989) Automatica , vol.24 , pp. 803-809
    • Bos, A.V.D.1
  • 7
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop, C. M. (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput. 7, 108-116.
    • (1995) Neural Comput. , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 8
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo, M., Andreussi, P. & Soldati A. (1999) River flood forecasting with a neural network model. Water Resour. Res. 35(4), 1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 9
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 10
    • 0026625982 scopus 로고
    • Sensitivity analysis of multilayer perceptron with differentiable activation function
    • Choi, J. Y. & Choi, T. H. (1992) Sensitivity analysis of multilayer perceptron with differentiable activation function. IEEE Trans. Neural Networks 3, 101-107.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 101-107
    • Choi, J.Y.1    Choi, T.H.2
  • 11
    • 0020737080 scopus 로고
    • Simulating soil water recession coefficients for agricultural watersheds
    • Choudhury, B. J. & Blanchard, B. J. (1983) Simulating soil water recession coefficients for agricultural watersheds. Water Resour. Bull. 19(2), 241-247.
    • (1983) Water Resour. Bull. , vol.19 , Issue.2 , pp. 241-247
    • Choudhury, B.J.1    Blanchard, B.J.2
  • 12
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 13
    • 0033982910 scopus 로고    scopus 로고
    • Training neural networks to be insensitive to weight random variations
    • Conti, M., Orcioni, S. Turchetti, C. (2000) Training neural networks to be insensitive to weight random variations. Neural Networks 13, 125-132.
    • (2000) Neural Networks , vol.13 , pp. 125-132
    • Conti, M.1    Orcioni, S.2    Turchetti, C.3
  • 14
    • 0002554101 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using ANNs with stopped training approach
    • Coulibaly, P., Anctil, A. Bobée, B. (2000) Daily reservoir inflow forecasting using ANNs with stopped training approach. J. Hydrol. 230, 245-257.
    • (2000) J. Hydrol. , vol.230 , pp. 245-257
    • Coulibaly, P.1    Anctil, A.2    Bobée, B.3
  • 15
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. (2001) Hydrological modeling using artificial neural networks. Progr. Phys. Geogr. 25(1), 80-108.
    • (2001) Progr. Phys. Geogr. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 16
    • 0026953305 scopus 로고
    • Improving generalization using double backpropagation
    • Drucker, H. & Cun, Y. L. (1992) Improving generalization using double backpropagation. IEEE Trans. Neural Networks 3(6), 991-997.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.6 , pp. 991-997
    • Drucker, H.1    Cun, Y.L.2
  • 17
    • 0003420910 scopus 로고
    • The cascade-correlation learning architecture
    • Tech. Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
    • Fahlman, S. E. & Lebiere, C. (1991) The cascade-correlation learning architecture. Tech. Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
    • (1991)
    • Fahlman, S.E.1    Lebiere, C.2
  • 18
    • 0029413797 scopus 로고
    • Artificial network modeling of the rainfall-runoff process
    • Hsu, K.-L., Gupta, H. V. & Sorooshian, S. (1995) Artificial network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 19
    • 0002477392 scopus 로고    scopus 로고
    • Dalian Maritime University Press, Dalian, China (in Chinese)
    • Hu, T. S. (1997) Neural Optimization and Prediction. Dalian Maritime University Press, Dalian, China (in Chinese).
    • (1997) Neural Optimization and Prediction
    • Hu, T.S.1
  • 20
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with range-dependent neural network
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with range-dependent neural network. Hydrol. Sci. J. 46(5), 729-746.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 729-746
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 21
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalization beyond the calibration range
    • Imrie, C. E., Durucan, S. & Korre, A. (2000) River flow prediction using artificial neural networks: generalization beyond the calibration range. J. Hydrol. 233, 138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 22
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, A. Srivastava, D. K. (1999) Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. ASCE 125(5), 263-271.
    • (1999) J. Water Resour. Plan. Manage. ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 23
    • 0030273576 scopus 로고    scopus 로고
    • Merging back-propagation and Hebbian learning rules for robust classifications
    • Jeong, D. G. & Lee, S. Y. (1996) Merging back-propagation and Hebbian learning rules for robust classifications. Neural Networks 9(7), 1213-1222.
    • (1996) Neural Networks , vol.9 , Issue.7 , pp. 1213-1222
    • Jeong, D.G.1    Lee, S.Y.2
  • 25
    • 0035258639 scopus 로고    scopus 로고
    • Learning object representations using a priori constraints ORASSYLL
    • Krüger, N. (2001) Learning object representations using a priori constraints ORASSYLL, Neural Comput. 13, 389-410.
    • (2001) Neural Comput. , vol.13 , pp. 389-410
    • Krüger, N.1
  • 26
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates, D. R. & McCabe, G. J., Jr (1999) Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 27
    • 0029777584 scopus 로고    scopus 로고
    • Robust error measures for supervised neural network learning with outliers
    • Liano, K. (1996) Robust error measures for supervised neural network learning with outliers. IEEE Trans. Neural Networks 7(1), 246-250.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.1 , pp. 246-250
    • Liano, K.1
  • 28
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk, K. C., Ball, J. E. & Sharma, A. (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227, 56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 29
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water variables: A review of modeling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for the prediction and forecasting of water variables: a review of modeling issues and applications. Environ. Modelling & Software, 15, 101-124.
    • (2000) Environ. Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 4(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.4 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 31
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part I. A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual models, Part I. A discussion of principles. J. Hydrol. 10, 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 0029341842 scopus 로고
    • Sensitivity analysis of single hidden-layer neural networks with threshold functions
    • Oh, S. H. & Lee, Y. (1995) Sensitivity analysis of single hidden-layer neural networks with threshold functions. IEEE Trans. Neural Networks 6(4), 1005-1008.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.4 , pp. 1005-1008
    • Oh, S.H.1    Lee, Y.2
  • 33
    • 0026711368 scopus 로고
    • Improving the convergence of back propagation problem
    • Ooyen, A. V. & Nichhuis, B. (1992) Improving the convergence of back propagation problem. Neural Networks 5, 465-471.
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Ooyen, A.V.1    Nichhuis, B.2
  • 34
    • 0033145304 scopus 로고    scopus 로고
    • Multilayer neural networks and function reconstruction by using a prior knowledge
    • Pedroza, L. C. & Pedreira, C. E. (1999) Multilayer neural networks and function reconstruction by using a prior knowledge. Int. J. Neural Systems 9(3), 251-256.
    • (1999) Int. J. Neural Systems , vol.9 , Issue.3 , pp. 251-256
    • Pedroza, L.C.1    Pedreira, C.E.2
  • 35
    • 0029413038 scopus 로고
    • Multivariate modeling of water resources time series using artificial neural networks
    • Raman, H. & Sunilkumar, N. (1995) Multivariate modeling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40(2), 145-163.
    • (1995) Hydrol. Sci. J. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 36
    • 0010481518 scopus 로고    scopus 로고
    • Building cost functions minimizing to some summary statistics
    • Saerens, M. (2000) Building cost functions minimizing to some summary statistics. IEEE Trans. Neural Networks 11(6), 1263-1271.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.6 , pp. 1263-1271
    • Saerens, M.1
  • 37
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, N. & Thandaveswara, B. S. (1999) A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 38
    • 0008294826 scopus 로고
    • Antecedent retention index predicts soil moisture
    • Saxton, K. E. & Lentz, A. T. (1967) Antecedent retention index predicts soil moisture. J. Hydraul. Div. ASCE 93(4), 223-241.
    • (1967) J. Hydraul. Div. ASCE , vol.93 , Issue.4 , pp. 223-241
    • Saxton, K.E.1    Lentz, A.T.2
  • 39
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin, A. Y. (1997) Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199, 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 40
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin, A. Y., O'Connor, K. M. & Liang, G. C. (1997) Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 197, 203-229.
    • (1997) J. Hydrol. , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 41
    • 0037565156 scopus 로고    scopus 로고
    • Modeltrees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P., Khada, N. & Dulal, K. N. (2003) Modeltrees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48(3), 399-411.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Khada, N.2    Dulal, K.N.3
  • 42
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Engng. 4(3), 232-239.
    • (1999) J. Hydrol. Engng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 43
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 44
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural network
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term streamflow forecasting using artificial neural network. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 45
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B. & Govindaraju, R. S. (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36(3), 753-763.
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-763
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.