메뉴 건너뛰기




Volumn 332, Issue 3-4, 2007, Pages 290-302

Forecasting of hydrologic time series with ridge regression in feature space

Author keywords

Chaotic technique; Evolutionary algorithm; Features approximation; Gaussian kernel; Support vector machine; Time series analysis

Indexed keywords

CHAOS THEORY; DATA MINING; EVOLUTIONARY ALGORITHMS; REGRESSION ANALYSIS; SEARCH ENGINES; TIME SERIES ANALYSIS; WEATHER FORECASTING;

EID: 33845702662     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2006.07.003     Document Type: Article
Times cited : (104)

References (27)
  • 1
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctil F., Michel C., Perrin C., and Andréassian V. A soil moisture index as an auxiliary ANN input for stream flow forecasting. Journal of Hydrology 286 (2004) 155-167
    • (2004) Journal of Hydrology , vol.286 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andréassian, V.4
  • 2
    • 33845719101 scopus 로고    scopus 로고
    • Babovic, V., Keijzer, M., & Bundzel, M. (2000). From global to local modelling: A case study in error correction of deterministic models. In: Proceedings of fourth international conference on hydroinformatics, Iowa City, USA: CD-ROM, IAHR.
  • 3
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli M. Nonlinear prediction of chaotic time series. Physica D 35 (1989) 335-356
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 4
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • Collobert R., and Bengio S. SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research 1 (2001) 143-160
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 7
    • 33748542651 scopus 로고    scopus 로고
    • Deriving effective and efficient data set with subtractive clustering method and genetic algorithm
    • Doan C.D., Liong S.Y., and Karunasingha D.S.K. Deriving effective and efficient data set with subtractive clustering method and genetic algorithm. Journal of Hydroinformatics 7 4 (2005) 219-233
    • (2005) Journal of Hydroinformatics , vol.7 , Issue.4 , pp. 219-233
    • Doan, C.D.1    Liong, S.Y.2    Karunasingha, D.S.K.3
  • 8
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan Q., Sorooshian S., and Gupta V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resource Research 28 4 (1992) 1015-1031
    • (1992) Water Resource Research , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 9
    • 44049117992 scopus 로고
    • An analytical approach to practical state space reconstruction
    • Gibson J.F., Farmer J.D., Casdagli M., and Eubank S. An analytical approach to practical state space reconstruction. Physica D 57 (1992) 1-30
    • (1992) Physica D , vol.57 , pp. 1-30
    • Gibson, J.F.1    Farmer, J.D.2    Casdagli, M.3    Eubank, S.4
  • 10
    • 0012993529 scopus 로고    scopus 로고
    • Orthogonal series density estimation and the kernel eigenvalue problem
    • Girolami M. Orthogonal series density estimation and the kernel eigenvalue problem. Neural Computation 14 (2002) 669-688
    • (2002) Neural Computation , vol.14 , pp. 669-688
    • Girolami, M.1
  • 11
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B., Burges C., and Smola A. (Eds), MIT Press
    • Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., Burges C., and Smola A. (Eds). Advances in kernel methods - Support vector learning (1999), MIT Press 169-183
    • (1999) Advances in kernel methods - Support vector learning , pp. 169-183
    • Joachims, T.1
  • 14
    • 33845699559 scopus 로고    scopus 로고
    • Liong, S. Y., Phoon, K. K., Pasha, M. F. K, & Doan, C. D. (2002). A robust and efficient scheme in search for optimal prediction parameters set in chaotic time series. First Asia Pacific DHI Software Conference, Bangkok, (http://www.mike11.com/bangkok2002/proceedings/papers%20bangkok/ba%20059/059.htm).
  • 17
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B., Jayawardena A.W., and Fernando T.M.K.G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 265 (2002) 225-245
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 20
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E., Brath A., and Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239 (2000) 132-147
    • (2000) Journal of Hydrology , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 21
    • 0040864988 scopus 로고
    • Principle of risk minimization for learning theory
    • Morgan Kaufman, San Meteo, CA pp. 831-838
    • Vapnik V.N. Principle of risk minimization for learning theory. Advances in neural information processing system vol. 4 (1992), Morgan Kaufman, San Meteo, CA pp. 831-838
    • (1992) Advances in neural information processing system , vol.4
    • Vapnik, V.N.1
  • 22
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Mozer M., Jordan M., and Petsche T. (Eds), MIT Press, Cambridge, MA
    • Vapnik V., Golowich S., and Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M., Jordan M., and Petsche T. (Eds). Advances in neural information processing systems vol. 9 (1997), MIT Press, Cambridge, MA 281-287
    • (1997) Advances in neural information processing systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 25
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real time hydrologic forecasting
    • Yu X.Y., Liong S.Y., and Babovic V. EC-SVM approach for real time hydrologic forecasting. Journal of Hydroinformatics 6 3 (2004) 209-223
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.Y.1    Liong, S.Y.2    Babovic, V.3
  • 26
    • 84919427123 scopus 로고    scopus 로고
    • Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks
    • Zaldívar J.M., Gutiérrez E., Galván I.M., Strozzi F., and Tomasin A. Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks. Journal of Hydroinformatics 2 (2000) 61-84
    • (2000) Journal of Hydroinformatics , vol.2 , pp. 61-84
    • Zaldívar, J.M.1    Gutiérrez, E.2    Galván, I.M.3    Strozzi, F.4    Tomasin, A.5
  • 27
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., and Simonovic S.P. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214 (1999) 32-48
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.