메뉴 건너뛰기




Volumn 307, Issue 1-4, 2005, Pages 164-174

Nonstationary hydrological time series forecasting using nonlinear dynamic methods

Author keywords

Hydrologic time series; Modeling; Multivariate adaptive regression splines; Nonstationarity; Recurrent neural networks

Indexed keywords

CLIMATOLOGY; COMPUTER SIMULATION; HYDROLOGY; LAKES; MATHEMATICAL MODELS; RECURRENT NEURAL NETWORKS; REGRESSION ANALYSIS; RIVERS; TIME SERIES ANALYSIS; WATER RESOURCES;

EID: 19744362941     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2004.10.008     Document Type: Article
Times cited : (207)

References (36)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II, hydrologic applications
    • American Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology
    • American Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology, II, hydrologic applications J. Hydrol. Eng. ASCE 5 2 2000 124 137
    • (2000) J. Hydrol. Eng. ASCE , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 1442291183 scopus 로고    scopus 로고
    • Wavelet analysis of the interannual variability in Southern Quebec streamflow
    • F. Anctil, and P. Coulibaly Wavelet analysis of the interannual variability in Southern Quebec streamflow J. Climate 1 2004 163 173
    • (2004) J. Climate , vol.1 , pp. 163-173
    • Anctil, F.1    Coulibaly, P.2
  • 3
    • 0001018192 scopus 로고
    • Statistical detection of changes in geophysical series
    • L. Duckstein E. Parent Kluwer Dordrecht, The Netherlands
    • J. Bernier Statistical detection of changes in geophysical series L. Duckstein E. Parent Engineering Risk in Natural Resources Management 1994 Kluwer Dordrecht, The Netherlands 159 176
    • (1994) Engineering Risk in Natural Resources Management , pp. 159-176
    • Bernier, J.1
  • 4
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • A. Blanco, M. Delgado, and M.C. Pegalajar A real-coded genetic algorithm for training recurrent neural networks Neural Netw. 14 2001 93 105
    • (2001) Neural Netw. , vol.14 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 5
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • G.J. Bowden, H.R. Maier, and G.C. Dandy Optimal division of data for neural network models in water resources applications Water Resour. Res. 38 2 2002 2 11
    • (2002) Water Resour. Res. , vol.38 , Issue.2 , pp. 2-11
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 7
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks: The state of the art
    • P. Coulibaly, F. Anctil, and B. Bobée Hydrological forecasting using artificial neural networks: The state of the art Can. J. Civ. Eng. 26 3 1999 293 304
    • (1999) Can. J. Civ. Eng. , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 8
    • 0034298548 scopus 로고    scopus 로고
    • A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff
    • P. Coulibaly, F. Anctil, P.F. Rasmussen, and B. Bobée A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff Hydrol. Process. 14 15 2000 2755 2777
    • (2000) Hydrol. Process. , vol.14 , Issue.15 , pp. 2755-2777
    • Coulibaly, P.1    Anctil, F.2    Rasmussen, P.F.3    Bobée, B.4
  • 9
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • P. Coulibaly, F. Anctil, and B. Bobée Daily reservoir inflow forecasting using artificial neural networks with stopped training approach J. Hydrol. 230 2000 244 257
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 10
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • P. Coulibaly, F. Anctil, R. Aravena, and B. Bobée Artificial neural network modeling of water table depth fluctuations Water Resour. Res. 37 4 2001 885 897
    • (2001) Water Resour. Res. , vol.37 , Issue.4 , pp. 885-897
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 11
    • 0025482241 scopus 로고
    • The wavelet transform time-frequency localization and signal analysis
    • I. Daubechies The wavelet transform time-frequency localization and signal analysis IEEE Trans. Inform. Theory 36 1990 961 1004
    • (1990) IEEE Trans. Inform. Theory , vol.36 , pp. 961-1004
    • Daubechies, I.1
  • 12
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cogn. Sci. 14 1990 179 211
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 0029656441 scopus 로고    scopus 로고
    • El-Niño and the natural variability in the flow of the Nile River
    • E.A.B. Eltahir El-Niño and the natural variability in the flow of the Nile River Water Resour. Res. 32 1 1996 131 137
    • (1996) Water Resour. Res. , vol.32 , Issue.1 , pp. 131-137
    • Eltahir, E.A.B.1
  • 15
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman Multivariate adaptive regression splines Ann. Stat. 19 1991 1 141
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 17
    • 0028543366 scopus 로고
    • Training feedforward networks with Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with Marquardt algorithm IEEE Trans. Neural Netw. 5 6 1994 989 993
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 19
    • 0029252331 scopus 로고
    • Nonlinear adaptive prediction of nonstationary signals
    • S. Haykin, and L. Li Nonlinear adaptive prediction of nonstationary signals IEEE Trans. Signal Process. 43 2 1995 526 535
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.2 , pp. 526-535
    • Haykin, S.1    Li, L.2
  • 20
    • 0033096835 scopus 로고    scopus 로고
    • Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks
    • M. Iatrou, T.W. Berger, and V.Z. Marmarelis Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks IEEE Trans. Neural Netw. 10 2 1999 327 339
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.2 , pp. 327-339
    • Iatrou, M.1    Berger, T.W.2    Marmarelis, V.Z.3
  • 21
    • 26444518267 scopus 로고    scopus 로고
    • A recurrent neural network for modeling dynamical systems
    • C.A.L. Jones, and D.J.C. MacKay A recurrent neural network for modeling dynamical systems Comput. Neural Syst. 9 1998 531 547
    • (1998) Comput. Neural Syst. , vol.9 , pp. 531-547
    • Jones, C.A.L.1    MacKay, D.J.C.2
  • 23
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses
    • D. Labat, R. Ababou, and A. Mangin Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses J. Hydrol. 238 2000 149 178
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 24
    • 0029541979 scopus 로고
    • The Great Salt Lake: A barometer of low-frequency climatic variability
    • U. Lall, and M. Mann The Great Salt Lake: a barometer of low-frequency climatic variability Water Resour. Res. 31 10 1995 2503 2515
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2503-2515
    • Lall, U.1    Mann, M.2
  • 25
    • 0029663601 scopus 로고    scopus 로고
    • Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting
    • U. Lall, T. Sangoyomi, and H.D.I. Abarbanel Nonlinear dynamics of the Great Salt Lake: Nonparametric short-term forecasting Water Resour. Res 32 4 1996 975 985
    • (1996) Water Resour. Res , vol.32 , Issue.4 , pp. 975-985
    • Lall, U.1    Sangoyomi, T.2    Abarbanel, H.D.I.3
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications Environ. Model. Software 15 2000 101 124
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 0028973951 scopus 로고
    • Decadal-to-centenial-scale climate variability: Insights into the rise and fall of the Great Salt Lake
    • E. Mann, U. Lall, and B. Saltzman Decadal-to-centenial-scale climate variability: insights into the rise and fall of the Great Salt Lake Geophys. Res. Lett. 22 8 1995 937 940
    • (1995) Geophys. Res. Lett. , vol.22 , Issue.8 , pp. 937-940
    • Mann, E.1    Lall, U.2    Saltzman, B.3
  • 28
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. Narendra, and K. Parthasarathy Identification and control of dynamical systems using neural networks IEEE Trans. Neural Netw. 1 1990 4 27
    • (1990) IEEE Trans. Neural Netw. , vol.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 29
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part I: A discussion of principles
    • J.E. Nash, and J.V. Sutcliffe River flow forecasting through conceptual models. Part I: a discussion of principles J. Hydrol. 10 1970 282 290
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 30
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • B.A. Pearlmutter Gradient calculations for dynamic recurrent neural networks: a survey IEEE Trans. Neural Netw. 6 5 1995 1212 1228
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 31
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • E.W. Saad, D.V. Prokhorov, and D.C. Wunsch Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks IEEE Trans. Neural Netw. 9 6 1998 1456 1470
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.6 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch, D.C.3
  • 33
    • 0032777345 scopus 로고    scopus 로고
    • On the Kalman filtering method in neural network training and pruning
    • J. Sum, C. Leung, G.H. Young, and W. Kan On the Kalman filtering method in neural network training and pruning IEEE Trans. Neural Netw. 10 1 1999 161 166
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.1 , pp. 161-166
    • Sum, J.1    Leung, C.2    Young, G.H.3    Kan, W.4
  • 34
  • 35
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R.J. Williams, and J. Peng An efficient gradient-based algorithm for on-line training of recurrent network trajectories Neural Comput. 2 1990 490 501
    • (1990) Neural Comput. , vol.2 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 36
    • 0002548939 scopus 로고    scopus 로고
    • Nonstationary time series analysis and forecasting
    • P.C. Young Nonstationary time series analysis and forecasting Progress Environ. Sci. 1 1999 3 48
    • (1999) Progress Environ. Sci. , vol.1 , pp. 3-48
    • Young, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.