메뉴 건너뛰기




Volumn 31, Issue 1, 2005, Pages 95-100

ANN-based sediment yield models for Vamsadhara river basin (India)

Author keywords

Back propagation artificial neural network; Generalised modelling; Sediment yield modelling

Indexed keywords

ERROR ANALYSIS; ITERATIVE METHODS; LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; RIVERS; TRANSFER FUNCTIONS;

EID: 14744288721     PISSN: 03784738     EISSN: None     Source Type: Journal    
DOI: 10.4314/wsa.v31i1.5125     Document Type: Article
Times cited : (80)

References (32)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • AKAIKE H (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control. AC-19 716-723.
    • (1974) IEEE Trans. Autom. Control. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. ASCE 5 (2) 124-137.
    • (2000) J. Hydrol. Eng. ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II: Hydrologic application
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks in hydrology, II: Hydrologic application. J. Hydrol. Eng. ASCE 5 (2) 115-123.
    • (2000) J. Hydrol. Eng. ASCE , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0036715707 scopus 로고    scopus 로고
    • Performance of neural networks in daily stream flow forecasting
    • BIRIKUNDAVYI S, LABIB R, TRUN T and ROUSSELLE J (2002) Performance of neural networks in daily stream flow forecasting. J. Hydrol. Eng. 7 (5) 392-398.
    • (2002) J. Hydrol. Eng. , vol.7 , Issue.5 , pp. 392-398
    • Birikundavyi, S.1    Labib, R.2    Trun, T.3    Rousselle, J.4
  • 5
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • CIGIZOGLU HK (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48 (3) 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 6
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • CIGIZOGLU HK (2004) Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Advances Water Res. 27 185-195.
    • (2004) Advances Water Res. , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 7
    • 0033045187 scopus 로고    scopus 로고
    • Neural network models for river flow forecasting
    • DANH NT, PHIEN HN and GUPTA AD (1999) Neural network models for river flow forecasting. Water SA 25 (1) 33-39.
    • (1999) Water SA , vol.25 , Issue.1 , pp. 33-39
    • Danh, N.T.1    Phien, H.N.2    Gupta, A.D.3
  • 8
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • DAWSON CW and WILBY R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydro. Sci. J. 43 (1) 47-66.
    • (1998) Hydro. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 9
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • ELSHORBAGY A, SIMONOVIC SP and PANU US (2000) Performance evaluation of artificial neural networks for runoff prediction. J. Hydrol. Eng. 5 (4) 424-427.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 10
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • FRENCH MN, KRAJESWSKI WF and CUYKENDALL RR (1992) Rainfall forecasting in space and time using a neural network. J. Hydrol. 137 1-31.
    • (1992) J. Hydrol. , vol.137 , pp. 1-31
    • French, M.N.1    Krajeswski, W.F.2    Cuykendall, R.R.3
  • 13
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • HSU, KUO-LIN, GUPTA HV and SOROOSH SOROOSHIAN (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res. 31 (10) 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu1    Kuo-Lin2    Gupta, H.V.3    Sorooshian, S.4
  • 14
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial reural networks: Generalization beyond the calibration range
    • IMRIE CE, DURUCAN S and KORRE A (2000) River flow prediction using artificial reural networks: generalization beyond the calibration range. J. Hydrol. 233 138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 15
    • 0033827239 scopus 로고    scopus 로고
    • Comparison of ANNs and empirical approaches for predicting watershed runoff
    • JAGADEESH A, ZHANG B and GOVINDARAJU RS (2000) Comparison of ANNs and empirical approaches for predicting watershed runoff. J. Water Resour. Plann. Manag. 126 (3) 156-166.
    • (2000) J. Water Resour. Plann. Manag. , vol.126 , Issue.3 , pp. 156-166
    • Jagadeesh, A.1    Zhang, B.2    Govindaraju, R.S.3
  • 17
    • 0025447562 scopus 로고
    • A simple procedure for pruning back propagation trained neural networks
    • KARNIN ED (1990) A simple procedure for pruning back propagation trained neural networks. Inst. Elect. Electron. Eng. Trans. Neural Networks 1 (20) 239-242.
    • (1990) Inst. Elect. Electron. Eng. Trans. Neural Networks , vol.1 , Issue.20 , pp. 239-242
    • Karnin, E.D.1
  • 18
    • 0003265255 scopus 로고    scopus 로고
    • Advantage of unit hydrograph derivation by neural networks
    • Babovie V and Larsen CL (eds.) Copenhagen, Denmark. 2 783-789 AA Balkema, Rotterdam, Netherlands
    • rd Int. Conf. on Hydroinformatics. Copenhagen, Denmark. 2 783-789 AA Balkema, Rotterdam, Netherlands.
    • (1998) rd Int. Conf. on Hydroinformatics
    • Lange, N.1
  • 19
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfall-runoff transformations
    • LORRAI M and SECHI GM (1995) Neural nets for modelling rainfall-runoff transformations. Water Resour. Manage 9 299-313.
    • (1995) Water Resour. Manage , vol.9 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 20
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • MINNS AW and HALL MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41 (3) 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 21
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • NAGY HM, WATANABE KAND and HIRANO M (2002) Prediction of sediment load concentration in rivers using artificial neural network model. J. Hydraul. Eng. 128 (6) 588-595.
    • (2002) J. Hydraul. Eng. , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 22
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • NASH JE and SUTELIFFE JV (1970) River flow forecasting through conceptual models. J. Hydrol. 10 282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Suteliffe, J.V.2
  • 23
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modeling
    • RAJURKAR MP, KOTHYARI UC and CHAUBE UC (2002) Artificial neural networks for daily rainfall-runoff modeling. Hydrol. Sci. J. 47 (6) 865-877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 24
    • 0018015137 scopus 로고
    • Modelling by short data description
    • RISSANEN J (1978) Modelling by short data description. Automation 14 465-471.
    • (1978) Automation , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 25
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • SHIVAKUMAR B, JAYAWARDENA AW and FERNANDO TMKG (2002) River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. J. Hydrol. 256 225-245.
    • (2002) J. Hydrol. , vol.256 , pp. 225-245
    • Shivakumar, B.1    Jayawardena, A.W.2    Fernando, T.3
  • 26
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • TAYFUR, GOKMEM (2002) Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47 (6) 879-892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur1    Gokmem2
  • 27
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • THIRUMALAIAH T and MAKARAND C DEO (2000) Hydrological forecasting using neural networks. J. Hydrol. Eng. 5 (2) 180-189.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, T.1    Deo, M.C.2
  • 28
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modelling using artificial neural networks and conceptual models
    • TOKAR AS and MARKUS M (2000) Precipitation-runoff modelling using artificial neural networks and conceptual models. J. Hydrol. Eng. 5 (2) 256-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 256-1161
    • Tokar, A.S.1    Markus, M.2
  • 29
    • 14744289298 scopus 로고
    • Artificial neural networks: Concepts and control application. Los Alamitos, California
    • VEMURI V RAO (1992) Artificial neural networks: Concepts and control application. Los Alamitos, California. IEEE Computer Society Press. 509 pp.
    • (1992) IEEE Computer Society Press
    • Rao, V.V.1
  • 30
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • WILBY RL, ABRAHART RJ and DAWSON CW (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48 (2) 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 31
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • XIONG L, KIERAN M and O'CONNOR (2002) Comparison of four updating models for real-time river flow forecasting. Hydrol. Sci. J. 47 (4) 621-639.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.4 , pp. 621-639
    • Xiong, L.1    Kieran, M.2    O'Connor3
  • 32
    • 0037200134 scopus 로고    scopus 로고
    • Short term inflow forecasting using an artificial neural network model
    • XU ZX and LI JY (2002) Short term inflow forecasting using an artificial neural network model. Hydrol. Proc. 16 2423-2439.
    • (2002) Hydrol. Proc. , vol.16 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.