메뉴 건너뛰기




Volumn 246, Issue 1-4, 2001, Pages 45-62

Quantitative flood forecasting using multisensor data and neural networks

Author keywords

Convective weather systems; Neural networks; Quantitative flood forecasting; Weather classifier

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; RAIN; SENSOR DATA FUSION; STORMS; STREAM FLOW;

EID: 0035370678     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-1694(01)00353-5     Document Type: Article
Times cited : (129)

References (26)
  • 1
    • 0008870594 scopus 로고
    • Use of WSR-88D and surface rain gauge network data in issuing flash flood warnings and main stem flood forecasts over Osage County
    • Oklahoma, June 5, 1991, US Department of Commerce, Springfield, Virginia
    • Amburn, S.A., Fortin, S., 1993. Use of WSR-88D and surface rain gauge network data in issuing flash flood warnings and main stem flood forecasts over Osage County, Oklahoma, June 5, 1991, in NOAA Technical Memorandum NWS ER-87, Post-print Volume, Third National Heavy Precipitation Workshop, US Department of Commerce, Springfield, Virginia, pp. 321-330.
    • (1993) In NOAA Technical Memorandum NWS ER-87, Post-print Volume, Third National Heavy Precipitation Workshop , pp. 321-330
    • Amburn, S.A.1    Fortin, S.2
  • 2
    • 0028603789 scopus 로고
    • Cloud classification of a AVHRR imagery in maritime regions using a probabilistic neural network
    • Bankert R.L. Cloud classification of a AVHRR imagery in maritime regions using a probabilistic neural network. J. Appl. Meteorol. 33:1994;909-918.
    • (1994) J. Appl. Meteorol. , vol.33 , pp. 909-918
    • Bankert, R.L.1
  • 3
    • 0029542451 scopus 로고
    • Fuzzy rule-based classification of atmospheric circulation patterns
    • Bardossy A., Duckstein L., Bogardi I. Fuzzy rule-based classification of atmospheric circulation patterns. Int. J. Climatol. 1:(15):1995;1087-1097.
    • (1995) Int. J. Climatol. , vol.1 , Issue.15 , pp. 1087-1097
    • Bardossy, A.1    Duckstein, L.2    Bogardi, I.3
  • 5
    • 0032453245 scopus 로고    scopus 로고
    • Orographic effects during a severe wintertime rainstorm in the Appalachian mountains
    • Barros A.P., Kuligowski R.J. Orographic effects during a severe wintertime rainstorm in the Appalachian mountains. Mon. Weath. Rev. 126:1998;2468-2772.
    • (1998) Mon. Weath. Rev. , vol.126 , pp. 2468-2772
    • Barros, A.P.1    Kuligowski, R.J.2
  • 6
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., Soldati A. River flood forecasting with a neural network model. Water Resour. Res. 35:(4):1999;1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 7
    • 0030464123 scopus 로고    scopus 로고
    • Automated identification and climatologies of various classes of convection in the Atlantic Ocean
    • Evans J.L., Shemo R.E. Automated identification and climatologies of various classes of convection in the Atlantic Ocean. J. Appl. Meteorol. 35:1996;638-652.
    • (1996) J. Appl. Meteorol. , vol.35 , pp. 638-652
    • Evans, J.L.1    Shemo, R.E.2
  • 8
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • Fletcher D.S., Goss E. Forecasting with neural networks: an application using bankruptcy data. Inform. Mgmt. 24:1993;159-167.
    • (1993) Inform. Mgmt. , vol.24 , pp. 159-167
    • Fletcher, D.S.1    Goss, E.2
  • 9
    • 0033372061 scopus 로고    scopus 로고
    • The classification of hydrologically homogeneous regions
    • Hall M.J., Minns A.W. The classification of hydrologically homogeneous regions. Hydrol. Sci. J. Sci. Hydrol. 44:(5):1999;693-704.
    • (1999) Hydrol. Sci. J. Sci. Hydrol. , vol.44 , Issue.5 , pp. 693-704
    • Hall, M.J.1    Minns, A.W.2
  • 10
    • 0032710602 scopus 로고    scopus 로고
    • Precipitation forecasting using a neural network
    • Hall T., Brooks H.E., Doswell C.A. III. Precipitation forecasting using a neural network. Weath. Forecast. 14:1999;338-345.
    • (1999) Weath. Forecast. , vol.14 , pp. 338-345
    • Hall, T.1    Brooks, H.E.2    Doswell C.A. III3
  • 11
    • 0001302603 scopus 로고
    • ∞ optimal training algorithms and their relation to backpropagation
    • ∞ optimal training algorithms and their relation to backpropagation. Adv. Neural Inform. Process. Syst. 7:1995;191-199.
    • (1995) Adv. Neural Inform. Process. Syst. , vol.7 , pp. 191-199
    • Hassibi, B.1    Kailath, T.2
  • 13
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed information using artifical neural networks
    • Hsu K.L., Gao X., Sorooshian S., Gupta H.V. Precipitation estimation from remotely sensed information using artifical neural networks. J. Appl. Meteorol. 36:1997;1176-1190.
    • (1997) J. Appl. Meteorol. , vol.36 , pp. 1176-1190
    • Hsu, K.L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 14
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generation beyond the calibration range
    • Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural networks: generation beyond the calibration range. J. Hydrol. 233:2000;138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 15
    • 0027426662 scopus 로고
    • Real-time rainfall prediction at small space-time scales using a two-dimensional stochastic advection-diffusion model
    • Jinno K., Kawamura A., Berndtsson R., Larson M., Niemczynowicz J. Real-time rainfall prediction at small space-time scales using a two-dimensional stochastic advection-diffusion model. Water Resour. Res. 29:(5):1992;1489-1504.
    • (1992) Water Resour. Res. , vol.29 , Issue.5 , pp. 1489-1504
    • Jinno, K.1    Kawamura, A.2    Berndtsson, R.3    Larson, M.4    Niemczynowicz, J.5
  • 16
    • 84985839535 scopus 로고
    • A sunspot maximum prediction using neural network
    • Koons H.C., Gorney D.J. A sunspot maximum prediction using neural network. Eos Trans. AGU. 71:(18):1990;677.
    • (1990) Eos Trans. AGU , vol.71 , Issue.18 , pp. 677
    • Koons, H.C.1    Gorney, D.J.2
  • 17
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weath. Rev. 126:1998;470-482.
    • (1998) Mon. Weath. Rev. , vol.126 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 18
    • 0032434569 scopus 로고    scopus 로고
    • Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks
    • Kuligowski R.J., Barros A.P. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weath. Forecast. 13:(4):1998;1194-1204.
    • (1998) Weath. Forecast. , vol.13 , Issue.4 , pp. 1194-1204
    • Kuligowski, R.J.1    Barros, A.P.2
  • 19
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R., Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32:(4):1996;1013-1022.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 20
    • 0001712213 scopus 로고    scopus 로고
    • A neural network for tornado prediction based on Doppler radar-derived attributes
    • Marzban C., Gregory J.S. A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteorol. 35:1996;617-626.
    • (1996) J. Appl. Meteorol. , vol.35 , pp. 617-626
    • Marzban, C.1    Gregory, J.S.2
  • 21
    • 0028176324 scopus 로고
    • Comparison of simple versus complex distributed runoff model on a midsized semiarid watershed
    • Michaud J., Sorooshian S. Comparison of simple versus complex distributed runoff model on a midsized semiarid watershed. Water Resour. Res. 30:(3):1994;593-605.
    • (1994) Water Resour. Res. , vol.30 , Issue.3 , pp. 593-605
    • Michaud, J.1    Sorooshian, S.2
  • 22
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., Hall M.J. Artificial neural networks as rainfall-runoff models. J. Hydrol. Sci. 41:1996;399-417.
    • (1996) J. Hydrol. Sci. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 23
    • 0004723425 scopus 로고
    • International satellite cloud climatology project description of reduced radiance data, WMO TD-58
    • Council of Scientific Unions
    • Rossow, W.B., Kinsella, E., Wolf, A., Garder, L., 1987. International satellite cloud climatology project description of reduced radiance data, WMO TD-58. World Meteorol. Org./Int. Council of Scientific Unions.
    • (1987) World Meteorol. Org./Int.
    • Rossow, W.B.1    Kinsella, E.2    Wolf, A.3    Garder, L.4
  • 24
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199:1997;272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.