메뉴 건너뛰기




Volumn 48, Issue 2, 2003, Pages 197-209

A fuzzy neural network model for deriving the river stage-discharge relationship

Author keywords

Artificial neural network model; Brahmaputra River basin; Fuzzy neural network model; India; Modularized neural network model; Stage discharge relationship

Indexed keywords

CURVE FITTING; FUZZY SETS; HYDROLOGY; NEURAL NETWORKS; RIVERS;

EID: 0037388488     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.48.2.197.44697     Document Type: Article
Times cited : (59)

References (19)
  • 2
    • 0035281053 scopus 로고    scopus 로고
    • Multi-reservoir modeling with dynamic programming and neural networks
    • Chandramouli, V. & Raman, H. (2001) Multi-reservoir modeling with dynamic programming and neural networks. J. Water Resour. Plan. Manage. ASCE 127(2), 89-98.
    • (2001) J. Water Resour. Plan. Manage. ASCE , vol.127 , Issue.2 , pp. 89-98
    • Chandramouli, V.1    Raman, H.2
  • 3
    • 0033721191 scopus 로고    scopus 로고
    • Multistage fuzzy neural network modeling
    • Chung, F. L. & Duan, J. C. (2000) Multistage fuzzy neural network modeling. IEEE Trans. Fuzzy Systems 8(2), 125-142.
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.2 , pp. 125-142
    • Chung, F.L.1    Duan, J.C.2
  • 4
    • 0004065899 scopus 로고
    • Academic Press Professional.Boston, Massachusetts, USA
    • Cox, E. (1994) The Fuzzy Systems Handbook. Academic Press Professional.Boston, Massachusetts, USA.
    • (1994) The Fuzzy Systems Handbook
    • Cox, E.1
  • 5
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • Elshorbagy, A., Simonovic S. P. & Panu, U. S. (2000) Performance evaluation of artificial neural networks for runoff prediction. J. Hydrol. Engng ASCE 5(4), 424-427.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 6
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range dependent neural network
    • Hu, T. S., Lam, K. C. & Ng. S. T. (2001) River flow time series prediction with a range dependent neural network. Hydrol. Sci. J. 46(5), 729-745.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 7
    • 17044442585 scopus 로고    scopus 로고
    • Development of a fuzzy logic-based rainfall-runoff model
    • Hundecha, Y., Bardossy, A. & Theisen, H. W. (2001) Development of a fuzzy logic-based rainfall-runoff model. Hydrol. Sci. J. 46(3), 363-376.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.3 , pp. 363-376
    • Hundecha, Y.1    Bardossy, A.2    Theisen, H.W.3
  • 8
    • 0034306715 scopus 로고    scopus 로고
    • Setting up stage-discharge relations using ANN
    • Jain, S. K. & Chalisgaonkar, D. (2000) Setting up stage-discharge relations using ANN. J. Hydrol.Engng ASCE 5(4), 428-433.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.4 , pp. 428-433
    • Jain, S.K.1    Chalisgaonkar, D.2
  • 11
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 399-418.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-418
    • Minns, A.W.1    Hall, M.J.2
  • 12
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • Mitra, S. & Hayashi, Y. (2000) Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans. Neural Networks 11(3), 748-768.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 14
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar, M. P., Kothyari, U. C. & Chaube, U. C. (2002) Artificial neural networks for daily rainfall-runoff modelling. Hydrol. Sci. J. 47(6), 865-877.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 15
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See, L. & Openshaw, S. (1999) Applying soft computing approaches to river level forecasting, Hydrol. Sci. J. 44(5), 763-778.
    • (1999) Hydrol. Sci. J. , vol.44 , Issue.5 , pp. 763-778
    • See, L.1    Openshaw, S.2
  • 16
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See, L. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
    • (2000) Hydrol. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 17
    • 0031180223 scopus 로고    scopus 로고
    • Hysteresis sensitivity neural network for modeling rating curves
    • Tawfik, M., Ibrahim, A. & Fahmy, H. (1997) Hysteresis sensitivity neural network for modeling rating curves. J. Computers in Civ. Engng ASCE 11(3), 206-211.
    • (1997) J. Computers in Civ. Engng ASCE , vol.11 , Issue.3 , pp. 206-211
    • Tawfik, M.1    Ibrahim, A.2    Fahmy, H.3
  • 18
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • Xiong, L. & O'Connor, K. M. (2002) Comparison of four updating models for real-time river flow forecasting, Hydrol. Sci. J. 47(4), 621-639.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.4 , pp. 621-639
    • Xiong, L.1    O'Connor, K.M.2
  • 19
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B. & Govindaraju, R. S. (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36(3), 753-762.
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.