메뉴 건너뛰기




Volumn 22, Issue 2, 2005, Pages 71-81

Generalized regression neural network in monthly flow forecasting

Author keywords

Forecasting; Generalized regression neural network; Local minima; Monthly flow; Synthetic flow series

Indexed keywords

ALGORITHMS; BACKPROPAGATION; COMPUTER SIMULATION; DATA ACQUISITION; FEEDFORWARD NEURAL NETWORKS; FORECASTING; REGRESSION ANALYSIS;

EID: 27944503514     PISSN: 10286608     EISSN: 10290249     Source Type: Journal    
DOI: 10.1080/10286600500126256     Document Type: Article
Times cited : (113)

References (32)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I
    • ASCE Task Committee, Artificial neural networks in hydrology I. J. Hydrol. Eng., ASCE., 2000a, 5(2), 115-123.
    • (2000) J. Hydrol. Eng., ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in Hydrology II
    • ASCE Task Committee, Artificial neural networks in Hydrology II. J. Hydrol. Eng., ASCE., 2000b, 5(2), 124-132.
    • (2000) J. Hydrol. Eng., ASCE , vol.5 , Issue.2 , pp. 124-132
  • 4
    • 0036715707 scopus 로고    scopus 로고
    • Performance of neural networks in daily streamflow forecasting
    • Brikundavyi, S., Labib, R., Trung, H.T. and Rousselle, J., Performance of neural networks in daily streamflow forecasting. J. Hydrol. Eng., ASCE, 2002, 7(5), 392-398.
    • (2002) J. Hydrol. Eng., ASCE , vol.7 , Issue.5 , pp. 392-398
    • Brikundavyi, S.1    Labib, R.2    Trung, H.T.3    Rousselle, J.4
  • 5
    • 0033765101 scopus 로고    scopus 로고
    • A method based on taking the average of probabilities to compute the flow duration curve
    • Cigizoglu, H.K., A method based on taking the average of probabilities to compute the flow duration curve. Nord. Hydrol., 2000, 31, 188-207.
    • (2000) Nord. Hydrol. , vol.31 , pp. 188-207
    • Cigizoglu, H.K.1
  • 6
    • 0038116947 scopus 로고    scopus 로고
    • Intermitting river flow forecasting by artificial neural networks
    • Delft, The Netherlands, 23-28 June, 2002, edited by S.M. Hassanizadeh, R.J. Schotting, W.G. Gray and G.F. Pinder, Elsevier Publication: Amsterdam, The Netherlands
    • Cigizoglu, H.K., Intermitting river flow forecasting by artificial neural networks. In 14th International Conference on Computational Methods in Water Resources Delft, The Netherlands, 23-28 June, 2002, edited by S.M. Hassanizadeh, R.J. Schotting, W.G. Gray and G.F. Pinder, pp. 1653-1660, 2002 (Elsevier Publication: Amsterdam, The Netherlands).
    • (2002) 14th International Conference on Computational Methods in Water Resources , pp. 1653-1660
    • Cigizoglu, H.K.1
  • 7
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • Cigizoglu, H.K., Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics, 2003a, 14(4), 417-427.
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 8
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu, H.K., Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol. Sci. J., 2003b, 48(3), 349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 9
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • Cigizoglu, H.K., Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv. Water Resour., 2004, 27, 185-195.
    • (2004) Adv. Water Resour. , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 10
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu, H.K., Application of generalized regression neural networks to intermittent flow forecasting and estimation. J. Hydrol. Eng., ASCE, 2005, 10(4).
    • (2005) J. Hydrol. Eng., ASCE , vol.10 , Issue.4
    • Cigizoglu, H.K.1
  • 12
    • 0032122397 scopus 로고    scopus 로고
    • Application of the gamma autoregressive model in the analysis of the dry periods
    • Cigizoglu, H.K. and Bayazit, M., Application of the gamma autoregressive model in the analysis of the dry periods. J. Hydrol. Eng., ASCE, 1998, 3, 218-221.
    • (1998) J. Hydrol. Eng., ASCE , vol.3 , pp. 218-221
    • Cigizoglu, H.K.1    Bayazit, M.2
  • 13
    • 0034028998 scopus 로고    scopus 로고
    • A generalized seasonal model for flow duration curve
    • Cigizoglu, H.K. and Bayazit, M., A generalized seasonal model for flow duration curve. Hydrol. Process., 2000, 14, 1053-1067.
    • (2000) Hydrol. Process. , vol.14 , pp. 1053-1067
    • Cigizoglu, H.K.1    Bayazit, M.2
  • 14
    • 12544253180 scopus 로고    scopus 로고
    • Flow Prediction by three back propagation techniques Using k-fold partitioning of neural network training data
    • Cigizoglu, H.K. and Kisi, O., Flow Prediction by three back propagation techniques Using k-fold partitioning of neural network training data, Nord. Hydrol., 2005, 36(1), 1-16.
    • (2005) Nord. Hydrol. , vol.36 , Issue.1 , pp. 1-16
    • Cigizoglu, H.K.1    Kisi, O.2
  • 15
    • 0036566047 scopus 로고    scopus 로고
    • Bivariate stochastic modelling of ephemeral streamflow
    • Cigizoglu, H.K., Metcalfe, A. and Adamson, P.T., Bivariate stochastic modelling of ephemeral streamflow. Hydrol. Process., 2002, 16(7), 1451-1465.
    • (2002) Hydrol. Process. , vol.16 , Issue.7 , pp. 1451-1465
    • Cigizoglu, H.K.1    Metcalfe, A.2    Adamson, P.T.3
  • 17
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing streamflow data using principles of chaos theory
    • Elshorbagy, A., Simonovic, S.P. and Panu, U.S., Estimation of missing streamflow data using principles of chaos theory. J. Hydrol., 2002, 255, 123-133.
    • (2002) J. Hydrol. , vol.255 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 18
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando, D.A.K. and Jayawardena, A.W., Runoff forecasting using RBF networks with OLS algorithm. J. Hydrol. Eng., ASCE, 1998, 3(3), 203-209.
    • (1998) J. Hydrol. Eng., ASCE , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.K.1    Jayawardena, A.W.2
  • 20
    • 0028543366 scopus 로고
    • Training feedforward techniques with the Marquardt algorithm
    • Hagan, M.T. and Menhaj, M.B., Training feedforward techniques with the Marquardt algorithm. IEEE Trans. Neural Networks, 1994, 5(6), 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 22
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu, K., Gupta, H.V. and Sorooshian, S., Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res., 1995, 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 23
    • 0035977694 scopus 로고    scopus 로고
    • Groups and neural networks based streamflow data infilling procedures
    • Khalil, M., Panu, U.S. and Lennox, W.C., Groups and neural networks based streamflow data infilling procedures. J. Hydrol., 2001, 241, 153-176.
    • (2001) J. Hydrol. , vol.241 , pp. 153-176
    • Khalil, M.1    Panu, U.S.2    Lennox, W.C.3
  • 24
    • 0001648202 scopus 로고
    • Computer-oriented Wilson Hilferty transformation that preserves the first three moments and the lower bound of the Pearson type 3 distribution
    • Kirby, W., Computer-oriented Wilson Hilferty transformation that preserves the first three moments and the lower bound of the Pearson type 3 distribution. Water Resour. Res., 1972, 8, 1251-1254.
    • (1972) Water Resour. Res. , vol.8 , pp. 1251-1254
    • Kirby, W.1
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H.R. and Dandy, G.C., Neural network for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Software, 2000, 15, 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns, A.W. and Hall, M.J., Artificial neural networks as rainfall runoff models, Hydrol. Sci. J., 1996, 41(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 27
    • 0027464578 scopus 로고
    • Neural network-based screening for groundwater reclamation under uncertainity
    • Ranjithan, S., Eheart, J.W. and Garrett, J.H., Neural network-based screening for groundwater reclamation under uncertainity. Water Resour. Res., 1993, 29(3), 563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Garrett, J.H.3
  • 28
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D.F., A general regression neural network. IEEE Trans. Neural Networks, 1991, 2(6), 568-576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 29
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K.P., Gosain, A.K. and Ramasastri, K.S., A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrol. Process., 2002, 16, 1325-1330.
    • (2002) Hydrol. Process. , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 30
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah, K. and Deo, M.C., River stage forecasting using artificial neural networks. J. Hydrol. Eng., ASCE, 1998, 3(1), 26-32.
    • (1998) J. Hydrol. Eng., ASCE , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 31
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks
    • Thirumalaiah, K. and Deo, M.C., Hydrological forecasting using artificial neural networks. J. Hydrol. Eng., ASCE, 2000, 5(2), 180-189.
    • (2000) J. Hydrol. Eng., ASCE , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 32
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks
    • Tokar, A.S. and Johnson, P.A., Rainfall-runoff modelling using artificial neural networks. J. Hydrol. Eng., ASCE, 1999, 4(3), 232-239.
    • (1999) J. Hydrol. Eng., ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.