메뉴 건너뛰기




Volumn 52, Issue 1, 2007, Pages 99-113

Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique

Author keywords

Dam inflow; Neuro fuzzy system; Subtractive clustering; Weather forecasting information

Indexed keywords

ADAPTIVE SYSTEMS; DAMS; FUZZY SETS; INFERENCE ENGINES; LEARNING ALGORITHMS; WEATHER FORECASTING; WEATHER INFORMATION SERVICES;

EID: 33846847847     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.52.1.99     Document Type: Article
Times cited : (66)

References (28)
  • 1
    • 33846802766 scopus 로고    scopus 로고
    • Nonlinear prediction of time series data using neuro-fuzzy model with subtractive clustering algorithm
    • In: (Taipei, Taiwan)
    • Arafat, Y., Ahmed, M. R. & Arefin, M. S. (2004) Nonlinear prediction of time series data using neuro-fuzzy model with subtractive clustering algorithm. In: Int. Workshop Bus. Info. (Taipei, Taiwan).
    • (2004) Int. Workshop Bus. Info.
    • Arafat, Y.1    Ahmed, M.R.2    Arefin, M.S.3
  • 2
    • 0000437839 scopus 로고    scopus 로고
    • Prediction of extreme precipitation using a neural network: Application to summer flood occurrence in Moravia
    • Bodri, L. & Cermak, V. (2000) Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv. Engng Software 31, 312-321.
    • (2000) Adv. Engng Software , vol.31 , pp. 312-321
    • Bodri, L.1    Cermak, V.2
  • 3
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 4
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F. J. & Chen, Y. C. (2001) A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245, 153-164.
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 5
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation
    • Chang, L. C. & Chang, F. J. (2001) Intelligent control for modeling of real-time reservoir operation. Hydrol. Processes 15, 1621-1634.
    • (2001) Hydrol. Processes , vol.15 , pp. 1621-1634
    • Chang, L.C.1    Chang, F.J.2
  • 6
    • 17844370548 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation, Part II: Artificial neural network with operating rule curves
    • Chang, Y. T, Chang, L. C. & Chang, F. J. (2005) Intelligent control for modeling of real-time reservoir operation, Part II: artificial neural network with operating rule curves. Hydrol. Processes 19, 1431-1444.
    • (2005) Hydrol. Processes , vol.19 , pp. 1431-1444
    • Chang, Y.T.1    Chang, L.C.2    Chang, F.J.3
  • 7
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using adaptive neuro-fuzzy systems
    • Gautam, D. K. & Holz, K. P. (2001) Rainfall-runoff modeling using adaptive neuro-fuzzy systems. J. Hydroinformatics 3, 3-10.
    • (2001) J. Hydroinformatics , vol.3 , pp. 3-10
    • Gautam, D.K.1    Holz, K.P.2
  • 8
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modeling
    • Giustolisi, O. & Laucelli, D. (2005) Improving generalization of artificial neural networks in rainfall-runoff modeling. Hydrol. Sci. J. 50(3), 439-457.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 9
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by a multi-objective strategy: Groundwater level predictions
    • Giustolisi, O & Simeone, V. (2006) Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrol. Sci. J. 51(3), 502-523.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 10
    • 0036579528 scopus 로고    scopus 로고
    • Reservoir operation using the neural network and fuzzy systems for dam control and operation support
    • Hasebe, M. & Nagayama, Y. (2002) Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Adv. Engng Software 33, 245-260.
    • (2002) Adv. Engng Software , vol.33 , pp. 245-260
    • Hasebe, M.1    Nagayama, Y.2
  • 11
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., Lam, K. C. & Thomas Ng, S. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Thomas Ng, S.3
  • 13
    • 0027601884 scopus 로고
    • ANFIS: Adaptive network-based fuzzy inference system
    • Jang, J. S. R. (1993) ANFIS: adaptive network-based fuzzy inference system. IEEE Trans. Sys., Man and Cybernetics 23(3), 665-685.
    • (1993) IEEE Trans. Sys., Man and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 14
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang, J. S. R. & Sun, C. T. (1995) Neuro-fuzzy modeling and control. Proc. IEEE 83, 378-406.
    • (1995) Proc. IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 15
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin, M. E., Taylan, D. & Terzi, Ö. (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrol. Sci. J. 51(4), 588-598.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, Ö.3
  • 16
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim, G. S. & Barros, A. P. (2001) Quantitative flood forecasting using multisensor data and neural networks. J. Hydrol. 246, 45-62.
    • (2001) J. Hydrol. , vol.246 , pp. 45-62
    • Kim, G.S.1    Barros, A.P.2
  • 17
    • 33846787356 scopus 로고    scopus 로고
    • KNCOLD (2006) http://www.kncold.or.kr/english/dam/dam10.html
    • (2006)
  • 18
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk, K. C., Ball, J. E. & Sharma, A. (2001) An application of artificial neural networks for rainfall forecasting. Math. Comput. Modeling 33, 683-693.
    • (2001) Math. Comput. Modeling , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 19
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291, 52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 20
    • 0033843355 scopus 로고    scopus 로고
    • Practical application of fuzzy logic and neural networks to fractured reservoir characterization
    • Ouenes A. (2000) Practical application of fuzzy logic and neural networks to fractured reservoir characterization. Comput. Geosci. 26, 953-962.
    • (2000) Comput. Geosci. , vol.26 , pp. 953-962
    • Ouenes, A.1
  • 21
    • 0035889604 scopus 로고    scopus 로고
    • Fuzzy conceptual rainfall-runoff models
    • Özelkan, E. C. & Duckstein, L. (2004) Fuzzy conceptual rainfall-runoff models. J. Hydrol. 253, 41-68.
    • (2004) J. Hydrol. , vol.253 , pp. 41-68
    • Özelkan, E.C.1    Duckstein, L.2
  • 22
    • 0347027638 scopus 로고    scopus 로고
    • Applying subtractive clustering for neuro-fuzzy modeling of a bleaching plant
    • In: (Karlsruhe, Germany)
    • Paiva, R. P., Dourado, A. & Duarte, B. (1999) Applying subtractive clustering for neuro-fuzzy modeling of a bleaching plant. In: Fifth European Control Conf. (Karlsruhe, Germany).
    • (1999) Fifth European Control Conf.
    • Paiva, R.P.1    Dourado, A.2    Duarte, B.3
  • 24
    • 13244288058 scopus 로고    scopus 로고
    • Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers?
    • Rowiński, P. M., Piotrowski, A. & Napiórkowski, J. J. (2005) Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers? Hydrol. Sci. J. 50(1), 175-187.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.1 , pp. 175-187
    • Rowiński, P.M.1    Piotrowski, A.2    Napiórkowski, J.J.3
  • 25
    • 10244241751 scopus 로고    scopus 로고
    • ANFIS_unfolded_in_time for multivariate time series forecasting
    • Şişman-Yilmaz, N. A., Alpaslan, F. N. & Jain L. (2004) ANFIS_unfolded_in_time for multivariate time series forecasting. Neurocomputing 61, 139-168.
    • (2004) Neurocomputing , vol.61 , pp. 139-168
    • Şişman-Yilmaz, N.A.1    Alpaslan, F.N.2    Jain, L.3
  • 26
    • 32544458461 scopus 로고    scopus 로고
    • Modelling the infiltration process with a multi-layer perceptron artificial neural network
    • Sy, N. L. (2006) Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrol. Sci. J. 51(1), 3-20.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.1 , pp. 3-20
    • Sy, N.L.1
  • 27
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi, T. & Sugeno, M. (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man. and Cybernetics 15(1), 116-132.
    • (1985) IEEE Trans. Syst. Man. and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 28
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.