메뉴 건너뛰기




Volumn 10, Issue 1, 2005, Pages 85-88

Evaluation of neural network streamflow forecasting on 47 watersheds

Author keywords

Neural networks; Performance evaluation; Rainfall runoff relationship; Streamflow forecasting; Watersheds

Indexed keywords

ERROR ANALYSIS; EVAPOTRANSPIRATION; FORECASTING; STREAM FLOW; VECTORS; WATERSHEDS;

EID: 11944267778     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(asce)1084-0699(2005)10:1(85)     Document Type: Article
Times cited : (82)

References (24)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • "Artificial neural networks in hydrology. I: Preliminary concepts"
    • American Society of Civil Engineering (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology
    • American Society of Civil Engineering (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). "Artificial neural networks in hydrology. I: Preliminary concepts." J. Hydrologic Eng., 5(2), 115-123.
    • (2000) J. Hydrologic Eng. , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • "Artificial neural networks in hydrology. II: Hydrologic applications"
    • American Society of Civil Engineering (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology
    • American Society of Civil Engineering (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). "Artificial neural networks in hydrology. II: Hydrologic applications." J. Hydrologic Eng., 5(2), 124-137.
    • (2000) J. Hydrologic Eng. , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 1142294041 scopus 로고    scopus 로고
    • "A soil moisture index as an auxiliary ANN input for stream flow forecasting"
    • Anctil, F., Michel, C., Perrin, C., and Andréassian, V., (2004a). "A soil moisture index as an auxiliary ANN input for stream flow forecasting." J. Hydrol., 286, 155-167.
    • (2004) J. Hydrol. , vol.286 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andréassian, V.4
  • 4
    • 1442291113 scopus 로고    scopus 로고
    • "Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models"
    • Anctil, F., Perrin, C., and Andréassian, V., (2004b). " Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models." Environ. Model. Software, 19, 357-368.
    • (2004) Environ. Model. Software , vol.19 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andréassian, V.3
  • 5
    • 0033097707 scopus 로고    scopus 로고
    • "A comparison between neural-network forecasting techniques - Case study: River flow forecasting"
    • Atiya, A. F., El-Shoura, S. M., Shaheen, S. I., and El-Sherif, M. S. (1999). "A comparison between neural-network forecasting techniques--Case study: River flow forecasting." IEEE Trans. Neural Netw., 10(2), 402-409.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 6
    • 0036715707 scopus 로고    scopus 로고
    • "Performance of neural networks in daily streamflow forecasting"
    • Birikundavyi, S., Labib, R., Trung, H. T., and Rouselle, J. (2002). "Performance of neural networks in daily streamflow forecasting." J. Hydrologic Eng., 7(5), 392-398.
    • (2002) J. Hydrologic Eng. , vol.7 , Issue.5 , pp. 392-398
    • Birikundavyi, S.1    Labib, R.2    Trung, H.T.3    Rouselle, J.4
  • 7
    • 0032961025 scopus 로고    scopus 로고
    • "River flood forecasting with a neural network model"
    • Campolo, M., Andreussi, P., and Soldati, A. (1999). "River flood forecasting with a neural network model." Water Resour Res., 35, 1191-1197.
    • (1999) Water Resour Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 8
    • 0032829433 scopus 로고    scopus 로고
    • "Prévision hydrologique par réseaux de neurones artificiels: état de l'art"
    • Coulibaly, P., Anctil, F., and Bobée, B. (1999). "Prévision hydrologique par réseaux de neurones artificiels: état de l'art." Can. J. Civ. Eng., 26(3), 293-304.
    • (1999) Can. J. Civ. Eng. , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 9
    • 0035450182 scopus 로고    scopus 로고
    • "Multivariate reservoir inflow forecasting using temporal neural networks"
    • Coulibaly, P., Anctil, F., and Bobée, B. (2001). " Multivariate reservoir inflow forecasting using temporal neural networks." J. Hydrologic Eng., 6(5), 367-376.
    • (2001) J. Hydrologic Eng. , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • "Hydrological modelling using artificial neural networks"
    • Dawson, C. W., and Wilby, R. (2001). "Hydrological modelling using artificial neural networks." Progress Physical Geogr., 25(1), 80-108.
    • (2001) Progress Physical Geogr. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.2
  • 11
    • 0026838551 scopus 로고
    • "Multiplicative seasonal ARIMA models for Lake Erie and Lake Ontario water levels"
    • Irvine, K. N., and Eberhardt, A. J. (1992). "Multiplicative seasonal ARIMA models for Lake Erie and Lake Ontario water levels." Water Resour. Bull., 28(2), 385-396.
    • (1992) Water Resour. Bull. , vol.28 , Issue.2 , pp. 385-396
    • Irvine, K.N.1    Eberhardt, A.J.2
  • 12
    • 0033100606 scopus 로고    scopus 로고
    • "A method to determine the required number of neural-network training repetitions"
    • Iyer, M. S., and Rhinehart, R. R. (1999). "A method to determine the required number of neural-network training repetitions." IEEE Trans. Neural Netw., 10(2), 427-432.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.2 , pp. 427-432
    • Iyer, M.S.1    Rhinehart, R.R.2
  • 13
    • 0019227948 scopus 로고
    • "Real-time forecasting with a conceptual hydrologic model: 2. Applications and results"
    • Kitadinis, P. K., and Bras, R. L. (1980). "Real-time forecasting with a conceptual hydrologic model: 2. Applications and results." Water Resour. Res., 16, 1034-1044.
    • (1980) Water Resour. Res. , vol.16 , pp. 1034-1044
    • Kitadinis, P.K.1    Bras, R.L.2
  • 14
    • 0034252982 scopus 로고    scopus 로고
    • "Real-time daily flow forecasting using black-box models, diffusion processes, and neural networks"
    • Lauzon, N., Rousselle, J., Birikundavyi, S., and Trung, H. T. (2000). "Real-time daily flow forecasting using black-box models, diffusion processes, and neural networks." Can. J. Civ. Eng., 27, 671-682.
    • (2000) Can. J. Civ. Eng. , vol.27 , pp. 671-682
    • Lauzon, N.1    Rousselle, J.2    Birikundavyi, S.3    Trung, H.T.4
  • 15
    • 0001025418 scopus 로고
    • "Bayesian interpolation"
    • MacKay, D. J. C. (1992). "Bayesian interpolation." Neural Comput. 4, 415-447.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 16
    • 0036146454 scopus 로고    scopus 로고
    • "The problem of bias in training data in regression problems in medical decision support"
    • Mac Namee, B., Cunningham, P., Byrne, S., and Corrigan, O. I. (2002). "The problem of bias in training data in regression problems in medical decision support." Artif. Intell. Med., 24, 51-70.
    • (2002) Artif. Intell. Med. , vol.24 , pp. 51-70
    • Mac Namee, B.1    Cunningham, P.2    Byrne, S.3    Corrigan, O.I.4
  • 17
    • 0033957764 scopus 로고    scopus 로고
    • "Neural networks for prediction and forecasting of water resources variables: Review of modelling issues and applications"
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for prediction and forecasting of water resources variables: Review of modelling issues and applications." Environ. Model. Software, 15, 101-124.
    • (2000) Environ. Model. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 18
    • 0030159380 scopus 로고    scopus 로고
    • "Artificial neural networks as rainfall-runoff models"
    • Minns, A. W., and Hall, M. J. (1996). "Artificial neural networks as rainfall-runoff models." Hydrol. Sci. J., 41, 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 19
    • 0035961496 scopus 로고    scopus 로고
    • "Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments"
    • Perrin, C., Michel, C., and Andréassian, V. (2001). "Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments." J. Hydrol. 242, 275-301.
    • (2001) J. Hydrol. , vol.242 , pp. 275-301
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 20
    • 0001857840 scopus 로고    scopus 로고
    • "Streamflow forecasting based on artificial neural networks"
    • R. S. Govindaraju and A. Ramachandra Rao, eds., Chap. 2, Kluwer, Dordrecht, The Netherlands
    • Salas, J. D., Markus, M., and Tokar, A. S. (2000). "Streamflow forecasting based on artificial neural networks." Artificial neural networks in hydrology, R. S. Govindaraju and A. Ramachandra Rao, eds., Chap. 2, Kluwer, Dordrecht, The Netherlands.
    • (2000) Artificial Neural Networks in Hydrology
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 21
    • 0033078453 scopus 로고    scopus 로고
    • "Neural-network-based d-step-ahead predictors for nonlinear systems with time delay"
    • Tan, Y., and van Cauwenberghe, A. (1999). "Neural-network-based d-step-ahead predictors for nonlinear systems with time delay." Eng. Applic. Artif. Intell., 12(1), 21-25.
    • (1999) Eng. Applic. Artif. Intell. , vol.12 , Issue.1 , pp. 21-25
    • Tan, Y.1    van Cauwenberghe, A.2
  • 22
    • 0034298851 scopus 로고    scopus 로고
    • "Application of tank, NAM, ARMA, and neural network models to flood forecasting"
    • Tingsanchali, T., and Gautam, M. R. (2000). "Application of tank, NAM, ARMA, and neural network models to flood forecasting." Hydrolog. Process., 14, 2473-2487.
    • (2000) Hydrolog. Process. , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 23
    • 0033167344 scopus 로고    scopus 로고
    • "Rainfall-runoff modeling using artificial neural networks"
    • Tokar, A. S., and Johnson, P. A. (1999). "Rainfall-runoff modeling using artificial neural networks." J. Hydrologic Eng., 4(3), 232-239.
    • (1999) J. Hydrologic Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 24
    • 0033019602 scopus 로고    scopus 로고
    • "Short term streamflow forecasting using artificial neural networks"
    • Zealand, C. M., Burn, D. H., and Simonovic, S. P. (1999). "Short term streamflow forecasting using artificial neural networks." J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.