메뉴 건너뛰기




Volumn 52, Issue 5, 2007, Pages 896-916

A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models

Author keywords

Multi layer perceptron; Neural network combination methods; Radial basis function; Rainfall runoff model; River flow simulation; Simple neural network

Indexed keywords

CATCHMENTS; COMPUTER SIMULATION; MULTILAYER NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; RAIN; RIVERS; RUNOFF;

EID: 34848868092     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.52.5.896     Document Type: Article
Times cited : (48)

References (48)
  • 1
    • 0028174425 scopus 로고
    • A simple non-linear rainfall-runoff model with a variable gain factor
    • Ahsan, M. & O'Connor, K. M. (1994) A simple non-linear rainfall-runoff model with a variable gain factor. J. Hydrol. 155, 151-183.
    • (1994) J. Hydrol , vol.155 , pp. 151-183
    • Ahsan, M.1    O'Connor, K.M.2
  • 2
    • 0027009437 scopus 로고
    • The future of distributed models: Model calibration and uncertainty prediction
    • Beven K. J. & Binley, A. (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol. Processes 6, 279-298.
    • (1992) Hydrol. Processes , vol.6 , pp. 279-298
    • Beven, K.J.1    Binley, A.2
  • 4
    • 23444462420 scopus 로고    scopus 로고
    • Functional networks in real-time flood forecasting - a novel application
    • Bruen, M. & Yang, J. (2005) Functional networks in real-time flood forecasting - a novel application. Adv. Water Resour. 28, 899-909.
    • (2005) Adv. Water Resour , vol.28 , pp. 899-909
    • Bruen, M.1    Yang, J.2
  • 5
    • 4143079295 scopus 로고    scopus 로고
    • An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation
    • Butts, M. B., Payne, J. T., Kristensen, M. & Madsen, H. (2004) An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J. Hydrol. 298, 242-266.
    • (2004) J. Hydrol , vol.298 , pp. 242-266
    • Butts, M.B.1    Payne, J.T.2    Kristensen, M.3    Madsen, H.4
  • 6
    • 14844292558 scopus 로고    scopus 로고
    • Improving daily reservoir inflow forecasts with model combination
    • Coulibaly, P., Hache, M., Fortin, V. & Bobée, B. (2005) Improving daily reservoir inflow forecasts with model combination. J. Hydrol. Engng ASCE 10(2), 91-99.
    • (2005) J. Hydrol. Engng ASCE , vol.10 , Issue.2 , pp. 91-99
    • Coulibaly, P.1    Hache, M.2    Fortin, V.3    Bobée, B.4
  • 7
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson, C. W. & Wilby, R. (1999) A comparison of artificial neural networks used for river flow forecasting. Hydrol. Earth. System Sci. 3(4), 529-540.
    • (1999) Hydrol. Earth. System Sci , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.2
  • 8
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. (2001) Hydrological modelling using artificial neural networks. Progr. Phys. Geogr. 25(1), 80-108.
    • (2001) Progr. Phys. Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 10
    • 84856597808 scopus 로고    scopus 로고
    • Soft combination of local models in a multi-objective framework
    • SRef-ID: 1812-2116/hessd/2007-4-91
    • Fenicia, F., Solomatine, D. P., Savenije, H. H. & Matgen, G. P. (2007) Soft combination of local models in a multi-objective framework. Hydrol. Earth System Sci. Discussions 4, 91-123. SRef-ID: 1812-2116/hessd/2007-4-91.
    • (2007) Hydrol. Earth System Sci. Discussions , vol.4 , pp. 91-123
    • Fenicia, F.1    Solomatine, D.P.2    Savenije, H.H.3    Matgen, G.P.4
  • 11
    • 0029657538 scopus 로고    scopus 로고
    • Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models
    • Franchini, M. (1996) Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrol. Sci. J. 41(1), 21-39.
    • (1996) Hydrol. Sci. J , vol.41 , Issue.1 , pp. 21-39
    • Franchini, M.1
  • 12
    • 0001083304 scopus 로고
    • A criterion of efficiency for rainfall-runoff modelling
    • Garrick, M., Cunnane, C. & Nash, J. E. (1978) A criterion of efficiency for rainfall-runoff modelling. J. Hydrol. 36, 375-381.
    • (1978) J. Hydrol , vol.36 , pp. 375-381
    • Garrick, M.1    Cunnane, C.2    Nash, J.E.3
  • 16
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K., Gupta, H. V. & Sorooshian, S. (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517-1530.
    • (1995) Water Resour. Res , vol.31 , Issue.10 , pp. 2517-1530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 17
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46(5), 729-745.
    • (2001) Hydrol. Sci. J , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 18
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S. Lam, K. C. & Ng, S. T. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 19
    • 0026613410 scopus 로고
    • River flow forecasting. Part 5. Applications of a conceptual model
    • Kachroo, R. K. (1992) River flow forecasting. Part 5. Applications of a conceptual model. J. Hydrol. 133, 141-178.
    • (1992) J. Hydrol , vol.133 , pp. 141-178
    • Kachroo, R.K.1
  • 21
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin, M. E., Taylan, D. & Terzi, Ö (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrol. Sci. J. 51(4), 588-598.
    • (2006) Hydrol. Sci. J , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 23
    • 33750125872 scopus 로고    scopus 로고
    • Combining rainfall-runoff model outputs for improving ensemble streamflow prediction
    • Kim, Y.-Oh, Jeong, D. & Ko, I. H. (2006) Combining rainfall-runoff model outputs for improving ensemble streamflow prediction. J. Hydrol. Engng ASCE 11(6), 578-588.
    • (2006) J. Hydrol. Engng ASCE , vol.11 , Issue.6 , pp. 578-588
    • Kim, Y.-O.1    Jeong, D.2    Ko, I.H.3
  • 25
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R. & Dandy, G. C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Modell. Software 15, 101-124.
    • (2000) Environ. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • Mason, J. C., Price, R. K. & Tem'Me, A. (1996) A neural network model of rainfall-runoff using radial basis functions. J. Hydraul. Res. 34, 537-548.
    • (1996) J. Hydraul. Res , vol.34 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Tem'Me, A.3
  • 28
    • 0022241420 scopus 로고
    • The probability-distributed principle and runoff production at point and basin scales
    • Moore, R. J. (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J. 30(2), 273-297.
    • (1985) Hydrol. Sci. J , vol.30 , Issue.2 , pp. 273-297
    • Moore, R.J.1
  • 29
    • 0020873423 scopus 로고
    • A hybrid model for flow forecasting on large catchments
    • Nash, J. E. & Barsi, B. I. (1983) A hybrid model for flow forecasting on large catchments. J. Hydrol. 65, 125-137.
    • (1983) J. Hydrol , vol.65 , pp. 125-137
    • Nash, J.E.1    Barsi, B.I.2
  • 30
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1. A discussion of principles
    • Nash, J. E. & Sutcliffe, J. V. (1970) River flow forecasting through conceptual models. Part 1. A discussion of principles. J. Hydrol. 10, 282-290.
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 33748041654 scopus 로고    scopus 로고
    • Dynamic averaging of rainfall-runoff model simulations from complementary model parameterization
    • doi:10.1029/2005WR004636
    • Oudin, L., Andréassian, V., Mathevet, T., Perrin, C. & Michel, C. (2006) Dynamic averaging of rainfall-runoff model simulations from complementary model parameterization. Water Resour. Res. 42, W07410, doi:10.1029/2005WR004636.
    • (2006) Water Resour. Res , vol.42
    • Oudin, L.1    Andréassian, V.2    Mathevet, T.3    Perrin, C.4    Michel, C.5
  • 33
    • 0035961496 scopus 로고    scopus 로고
    • Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
    • Perrin, C., Michel, C. & Andréassian, V. (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol. 242(3/4), 275-301.
    • (2001) J. Hydrol , vol.242 , Issue.3-4 , pp. 275-301
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 35
    • 0035480406 scopus 로고    scopus 로고
    • See, L. & Abrahart, R. J. (2001) Multi-model data fusion for hydrological forecasting. Comput. Geosci. 27(8), 987-994.
    • See, L. & Abrahart, R. J. (2001) Multi-model data fusion for hydrological forecasting. Comput. Geosci. 27(8), 987-994.
  • 36
    • 0034254025 scopus 로고    scopus 로고
    • See, L. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
    • See, L. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
  • 37
    • 0033536914 scopus 로고    scopus 로고
    • Modification of the probability distributed interacting storage capacity model
    • Senbeta, D. A., Shamseldin, A. Y. & O'Connor, K. M. (1999) Modification of the probability distributed interacting storage capacity model. J. Hydrol. 224(3/4), 149-168.
    • (1999) J. Hydrol , vol.224 , Issue.3-4 , pp. 149-168
    • Senbeta, D.A.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 38
    • 84900848339 scopus 로고    scopus 로고
    • Hybrid neural network models
    • Chapter 4, ed. by R. J. Abrahart, P. E. Kneale & L. M. See, A.A. Balkema, Rotterdam, The Netherlands
    • Shamseldin, A. Y. (2004) Hybrid neural network models. Chapter 4 in: Neural Networks for Hydrological Modelling (ed. by R. J. Abrahart, P. E. Kneale & L. M. See). A.A. Balkema, Rotterdam, The Netherlands.
    • (2004) Neural Networks for Hydrological Modelling
    • Shamseldin, A.Y.1
  • 39
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin, A. Y. & O'Connor, K. M. (1999) A real-time combination method for the outputs of different rainfall-runoff models. Hydrol. Sci. J. 44(6), 895-912.
    • (1999) Hydrol. Sci. J , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 40
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecast combination
    • Shamseldin, A. Y., Ahmed, E. N. & O'Connor, K. M. (2002) Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecast combination. Hydrol. Earth. System Sci. 6(4), 671-684.
    • (2002) Hydrol. Earth. System Sci , vol.6 , Issue.4 , pp. 671-684
    • Shamseldin, A.Y.1    Ahmed, E.N.2    O'Connor, K.M.3
  • 41
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin, A. Y., O'Connor, K. M. & Liang, G. C. (1997) Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 197, 203-229.
    • (1997) J. Hydrol , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 42
    • 0030274099 scopus 로고    scopus 로고
    • Application of an empirical equation in the SMAR conceptual model
    • Tan, B. Q. & O'Connor, K. M. (1996) Application of an empirical equation in the SMAR conceptual model. J Hydrol. 185, 275-295.
    • (1996) J Hydrol , vol.185 , pp. 275-295
    • Tan, B.Q.1    O'Connor, K.M.2
  • 44
    • 0026266630 scopus 로고
    • The genetic algorithm and its application to calibrating conceptual rainfall-runoff models
    • Wang, Q. J. (1991) The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour. Res. 27(9), 2467-2471.
    • (1991) Water Resour. Res , vol.27 , Issue.9 , pp. 2467-2471
    • Wang, Q.J.1
  • 45
    • 34848899297 scopus 로고    scopus 로고
    • WMO (World Meteorological Organization) (1992) Simulated real-time intercomparison of hydrological models. Operational Hydrol. Report 38, WMO no. 779. WMO, Geneva, Switzerland.
    • WMO (World Meteorological Organization) (1992) Simulated real-time intercomparison of hydrological models. Operational Hydrol. Report 38, WMO no. 779. WMO, Geneva, Switzerland.
  • 46
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • Xiong, L., Shamseldin, A. Y. & O'Connor, K. M. (2001) A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system. J. Hydrol. 245, 196-217.
    • (2001) J. Hydrol , vol.245 , pp. 196-217
    • Xiong, L.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 47
    • 0030621249 scopus 로고    scopus 로고
    • Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments
    • Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M. & Jakeman, A. J. (1997) Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour. Res. 33, 153-166.
    • (1997) Water Resour. Res , vol.33 , pp. 153-166
    • Ye, W.1    Bates, B.C.2    Viney, N.R.3    Sivapalan, M.4    Jakeman, A.J.5
  • 48
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B. & Govindaraju, R. S. (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36(3), 753-762.
    • (2000) Water Resour. Res , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.