메뉴 건너뛰기




Volumn 42, Issue 2, 2006, Pages 473-486

Application of Grey model and artificial neural networks to flood forecasting

Author keywords

Artificial neural networks (ANN); Flooding; Grey model; Runoff; Watersheds

Indexed keywords

COMPUTER SIMULATION; HYDROLOGY; MATHEMATICAL MODELS; NEURAL NETWORKS; REAL TIME SYSTEMS; WEATHER FORECASTING;

EID: 33845237150     PISSN: 1093474X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1752-1688.2006.tb03851.x     Document Type: Article
Times cited : (26)

References (42)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE (American Society of Civil Engineers), ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE (American Society of Civil Engineers), 2000. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Journal of Hydrologic Engineering 5(2):124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 0027790154 scopus 로고
    • Adaptive calibration of a conceptual model for flash flood forecasting
    • Brath, A. and R. Rosso, 1993. Adaptive Calibration of a Conceptual Model for Flash Flood Forecasting. Water Resour. Res. 29(8): 2561-2572.
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2561-2572
    • Brath, A.1    Rosso, R.2
  • 3
    • 0032961025 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo, M., P. Andreussi, and A. Soldati, 1999b. River Flood Forecasting With a Neural Network Model. Water Resour. Res. 35(4):1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 4
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-flow periods using neural networks
    • Campolo, M., A. Soldati, and P. Andreussi, 1999a. Forecasting River Flow Rate During Low-Flow Periods Using Neural Networks. Water Resour. Res. 35(11):3547-3552.
    • (1999) Water Resour. Res. , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 5
    • 0030243170 scopus 로고    scopus 로고
    • The simplex-simulated annealing approach to continuous nonlinear optimization
    • Cardoso, M.F., R.L. Salcedo, and S.F. Azevedo, 1996. The Simplex-Simulated Annealing Approach to Continuous Nonlinear Optimization. Computers and Chemical Engineering 20(9): 1065-1080.
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.9 , pp. 1065-1080
    • Cardoso, M.F.1    Salcedo, R.L.2    Azevedo, S.F.3
  • 6
    • 0000350223 scopus 로고    scopus 로고
    • Rainfall-runoff modelling by neural network approach
    • University of Kyoto, Kyoto, Japan
    • Cheng, X. and M. Noguchi, 1996. Rainfall-Runoff Modelling by Neural Network Approach. In: Proc. Int. Conf. Water Resour. Environ. Res., Vol. II. University of Kyoto, Kyoto, Japan, pp. 143-150.
    • (1996) Proc. Int. Conf. Water Resour. Environ. Res. , vol.2 , pp. 143-150
    • Cheng, X.1    Noguchi, M.2
  • 7
    • 0001829246 scopus 로고
    • Introduction to Grey system theory
    • Deng, J.L., 1989. Introduction to Grey System Theory. Journal of Grey System 1(1):1-24.
    • (1989) Journal of Grey System , vol.1 , Issue.1 , pp. 1-24
    • Deng, J.L.1
  • 8
    • 0036179359 scopus 로고    scopus 로고
    • A neural network model to predict the wastewater inflow incorporating rainfall events
    • El-Din A.G. and D.W. Smith, 2002. A Neural Network Model to Predict the Wastewater Inflow Incorporating Rainfall Events. Water Research 36:1115-1126.
    • (2002) Water Research , vol.36 , pp. 1115-1126
    • El-Din, A.G.1    Smith, D.W.2
  • 10
    • 0036524263 scopus 로고    scopus 로고
    • Separating septicemic and normal chicken livers by visible/near-infrared spectroscopy and back-propagation neural networks
    • Hsieh, C., Y.R. Chen, B.P. Dey, and D.E. Chan, 2002. Separating Septicemic and Normal Chicken Livers by Visible/Near-Infrared Spectroscopy and Back-Propagation Neural Networks. American Society of Agricultural Engineers 45(2):459-469.
    • (2002) American Society of Agricultural Engineers , vol.45 , Issue.2 , pp. 459-469
    • Hsieh, C.1    Chen, Y.R.2    Dey, B.P.3    Chan, D.E.4
  • 11
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.H., H.V. Gupta, and S. Sorooshian, 1995. Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resour. Res. 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.H.1    Gupta, H.V.2    Sorooshian, S.3
  • 12
    • 0034641121 scopus 로고    scopus 로고
    • River flow using artificial neural networks: Generalization beyond the calibration range
    • Imrie, C.E., S. Durucan, and A. Korre, 2000. River Flow Using Artificial Neural Networks: Generalization Beyond the Calibration Range. Journal of Hydrology 233:138-153.
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 13
    • 33845263760 scopus 로고    scopus 로고
    • Forecasting long-term streamflow from a small watershed using artificial neural network
    • in Korean
    • Kang, M.S. and S.W. Park. 2001, Forecasting Long-Term Streamflow From a Small Watershed Using Artificial Neural Network. J. of Korea Society of Agricultural Engineers (KSAE) 43(2):69-77 (in Korean).
    • (2001) J. of Korea Society of Agricultural Engineers (KSAE) , vol.43 , Issue.2 , pp. 69-77
    • Kang, M.S.1    Park, S.W.2
  • 16
    • 33845250982 scopus 로고    scopus 로고
    • Flash flood forecasting using remotely sensed information and neural networks. Part I: Model development
    • Kim, G.S. and J.S. Lee, 2002a. Flash Flood Forecasting Using Remotely Sensed Information and Neural Networks. Part I: Model Development. Water Eng. Res. 3(2):113-122.
    • (2002) Water Eng. Res. , vol.3 , Issue.2 , pp. 113-122
    • Kim, G.S.1    Lee, J.S.2
  • 17
    • 33845261260 scopus 로고    scopus 로고
    • Flash flood forecasting using remotely sensed information and neural networks. Part II: Model application
    • Kim, G.S. and J.S. Lee, 2002b. Flash Flood Forecasting Using Remotely Sensed Information and Neural Networks. Part II: Model Application. Water Eng. Res. 3(2):123-134.
    • (2002) Water Eng. Res. , vol.3 , Issue.2 , pp. 123-134
    • Kim, G.S.1    Lee, J.S.2
  • 18
    • 33845264675 scopus 로고    scopus 로고
    • KMOCT (Korea Ministry of Construction and Transportation). IPD-2000-10, Korea Ministry of Construction and Transportation, Deajon, Korea
    • KMOCT (Korea Ministry of Construction and Transportation), 2000. Long-Term Comprehensive Water Resources Plan (Water Vision 2020). IPD-2000-10, Korea Ministry of Construction and Transportation, Deajon, Korea.
    • (2000) Long-Term Comprehensive Water Resources Plan (Water Vision 2020)
  • 19
    • 33845255640 scopus 로고    scopus 로고
    • KRC (Korea Rural Community and Agriculture Corporation). Korea Rural Community and Agriculture Corporation, Korea
    • KRC (Korea Rural Community and Agriculture Corporation), 2002. Development of the Flood Forecasting and Control User Interface System. Korea Rural Community and Agriculture Corporation, Korea.
    • (2002) Development of the Flood Forecasting and Control User Interface System
  • 21
    • 1542646171 scopus 로고    scopus 로고
    • A comparison of nonlinear flood forecasting methods
    • Laio, F., A. Porporato, R. Revelli, and L. Ridolfi, 2003. A Comparison of Nonlinear Flood Forecasting Methods. Water Resour. Res. 39(5):2-1-2-4.
    • (2003) Water Resour. Res. , vol.39 , Issue.5 , pp. 21-24
    • Laio, F.1    Porporato, A.2    Revelli, R.3    Ridolfi, L.4
  • 22
    • 0002091779 scopus 로고
    • Hydrologic forecasting
    • D.A. Maidment (Editor). McGraw-Hill Inc, New York, New York, Chapter 26
    • Lettenmaier, D.P. and E.F. Wood. 1993. Hydrologic Forecasting. In: Handbook of Hydrology, D.A. Maidment (Editor). McGraw-Hill Inc, New York, New York, Chapter 26.
    • (1993) Handbook of Hydrology
    • Lettenmaier, D.P.1    Wood, E.F.2
  • 23
    • 0033692068 scopus 로고    scopus 로고
    • River stage forecasting in Banglandesh: Neural network approach
    • Liong, S.Y., W.H. Lim, and G.N. Paudyal, 2000. River Stage Forecasting in Banglandesh: Neural Network Approach. Journal of Computing in Civil Eng. 14(1):1-8.
    • (2000) Journal of Computing in Civil Eng. , vol.14 , Issue.1 , pp. 1-8
    • Liong, S.Y.1    Lim, W.H.2    Paudyal, G.N.3
  • 24
    • 3543000562 scopus 로고
    • An improved simulated annealing downhill simplex hybrid global inverse algorithm
    • Liu, P., J. Chen, and S. H. Hartzell, 1995. An Improved Simulated Annealing Downhill Simplex Hybrid Global Inverse Algorithm. Acta Geophys. Sin. 38:199-205.
    • (1995) Acta Geophys. Sin. , vol.38 , pp. 199-205
    • Liu, P.1    Chen, J.2    Hartzell, S.H.3
  • 25
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R. and G.C. Dandy, 1996. The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters. Water Resour. Res. 32(4):1013-1022.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 28
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-A discussion of principles
    • Nash, J.E. and J.V. Sutcliffe, 1970. River Flow Forecasting Through Conceptual Models Part I-A Discussion of Principles. Journal of Hydrology 10:282-290.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 29
    • 0031702773 scopus 로고    scopus 로고
    • A hybrid global optimization method for inverse estimation of hydraulic parameters: Annealing-simplex method
    • Pan L. and L. Wu, 1998. A Hybrid Global Optimization Method for Inverse Estimation of Hydraulic Parameters: Annealing-Simplex Method. Water Resources Res. 34(9):2261-2269.
    • (1998) Water Resources Res. , vol.34 , Issue.9 , pp. 2261-2269
    • Pan, L.1    Wu, L.2
  • 30
    • 33845265987 scopus 로고    scopus 로고
    • Neural networks for filtering and forecasting of daily and monthly streamflows in hydrologic modeling
    • V.P. Singh, I. Won Seo, and J.H. Sonu (Editors). Water Resources Publications, Highlands Ranch, Colorado
    • Phien, H.N. and S. Sureerattanan, 1999. Neural Networks for Filtering and Forecasting of Daily and Monthly Streamflows, in Hydrologic Modeling. In: Proc. Int. Conf. On Water, Engineering, Ecology, Socio-Economies and Health Engineering, V.P. Singh, I. Won Seo, and J.H. Sonu (Editors). Water Resources Publications, Highlands Ranch, Colorado, pp.203-218.
    • (1999) Proc. Int. Conf. on Water, Engineering, Ecology, Socio-Economies and Health Engineering , pp. 203-218
    • Phien, H.N.1    Sureerattanan, S.2
  • 33
    • 0027464578 scopus 로고
    • Neural network based screening for groundwater reclamation under uncertainty
    • Rangjithan, S., J.W. Eheart, and J.H. Garrett, 1993. Neural Network Based Screening for Groundwater Reclamation Under Uncertainty. Water Resour. Res. 29(3):563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Rangjithan, S.1    Eheart, J.W.2    Garrett, J.H.3
  • 34
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar, N. and B.S. Thandaveswara, 1999. A Non-Linear Rainfall-Runoff Model Using an Artificial Neural Network. Journal of Hydrology 216:32-55.
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 35
    • 0035726852 scopus 로고    scopus 로고
    • Application of a watershed model to evaluate management effects on point and nonpoint source pollution
    • Santhi, C., J.G. Arnold, J.R. Williams, L.M. Hauck, and W.A. Dugas, 2001. Application of a Watershed Model to Evaluate Management Effects on Point and Nonpoint Source Pollution. Trans. of ASAE 44(6):1559-1570.
    • (2001) Trans. of ASAE , vol.44 , Issue.6 , pp. 1559-1570
    • Santhi, C.1    Arnold, J.G.2    Williams, J.R.3    Hauck, L.M.4    Dugas, W.A.5
  • 36
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin, A.Y., 1997. Application of a Neural Network Technique to Rainfall-Runoff Modeling. Journal of Hydrology 199:272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 37
    • 0342444262 scopus 로고    scopus 로고
    • Flood inflow forecasting on multi-purpose reservoir by neural network
    • Shin, S.B., M.S. Kim, and K.C. Shim, 1999. Flood Inflow Forecasting on Multi-Purpose Reservoir by Neural Network. Journal of Korea Water Resour. Assoc. 31(1):47-57.
    • (1999) Journal of Korea Water Resour. Assoc. , vol.31 , Issue.1 , pp. 47-57
    • Shin, S.B.1    Kim, M.S.2    Shim, K.C.3
  • 38
    • 0021034448 scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness
    • Sorooshian, S. and V.K. Gupta, 1983. Automatic Calibration of Conceptual Rainfall-Runoff Models: The Question of Parameter Observability and Uniqueness. Water Resources Research 19(1):260-268.
    • (1983) Water Resources Research , vol.19 , Issue.1 , pp. 260-268
    • Sorooshian, S.1    Gupta, V.K.2
  • 39
    • 0034306804 scopus 로고    scopus 로고
    • Application of Gray and Fuzzy methods for rainfall forecasting
    • Yu, P.S., C.J. Chen, and S.J. Chen, 2000. Application of Gray and Fuzzy Methods for Rainfall Forecasting. Journal of Hydrologic Eng. 5(4):339-345.
    • (2000) Journal of Hydrologic Eng. , vol.5 , Issue.4 , pp. 339-345
    • Yu, P.S.1    Chen, C.J.2    Chen, S.J.3
  • 41
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C.M., D.H. Burn, and S.P. Simonovic, 1999. Short Term Streamflow Forecasting Using Artificial Neural Networks. Journal of Hydrology 214:32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 42
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B. and R.S. Govindaraju, 2000. Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks. Water Resour. Res. 36(3):753-762.
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.