-
1
-
-
0025895183
-
Toward a science of metabolic engineering
-
Bailey, J.E., Toward a science of metabolic engineering. Science 252 (1991), 1668–1675.
-
(1991)
Science
, vol.252
, pp. 1668-1675
-
-
Bailey, J.E.1
-
2
-
-
84996587591
-
Systems metabolic engineering of Escherichia coli
-
Choi, K.R., et al. Systems metabolic engineering of Escherichia coli. EcoSal Plus 7 (2016), 1–56.
-
(2016)
EcoSal Plus
, vol.7
, pp. 1-56
-
-
Choi, K.R.1
-
3
-
-
85052701919
-
Metabolic engineering of microorganisms for the production of natural compounds
-
Park, S.Y., et al. Metabolic engineering of microorganisms for the production of natural compounds. Adv. Biosyst., 2, 2018, 1700190.
-
(2018)
Adv. Biosyst.
, vol.2
-
-
Park, S.Y.1
-
4
-
-
85046649083
-
Escherichia coli as a host for metabolic engineering
-
Pontrelli, S., et al. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50 (2018), 16–46.
-
(2018)
Metab. Eng.
, vol.50
, pp. 16-46
-
-
Pontrelli, S.1
-
5
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
Lee, S.Y., Kim, H.U., Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33 (2015), 1061–1072.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
6
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong, K.K., Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69 (2012), 2671–2690.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
7
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
-
Park, J.H., et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 7797–7802.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
-
8
-
-
36849002434
-
Systems metabolic engineering of Escherichia coli for L-threonine production
-
Lee, K.H., et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol., 3, 2007, 149.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 149
-
-
Lee, K.H.1
-
9
-
-
84983317316
-
Prospects of microbial cell factories developed through systems metabolic engineering
-
Gustavsson, M., Lee, S.Y., Prospects of microbial cell factories developed through systems metabolic engineering. Microb. Biotechnol. 9 (2016), 610–617.
-
(2016)
Microb. Biotechnol.
, vol.9
, pp. 610-617
-
-
Gustavsson, M.1
Lee, S.Y.2
-
10
-
-
85021688655
-
Recent advances in systems metabolic engineering tools and strategies
-
Chae, T.U., et al. Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 47 (2017), 67–82.
-
(2017)
Curr. Opin. Biotechnol.
, vol.47
, pp. 67-82
-
-
Chae, T.U.1
-
11
-
-
79960414910
-
Systems metabolic engineering for chemicals and materials
-
Lee, J.W., et al. Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29 (2011), 370–378.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 370-378
-
-
Lee, J.W.1
-
12
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee, J.W., et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8 (2012), 536–546.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 536-546
-
-
Lee, J.W.1
-
13
-
-
85020547969
-
Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks
-
d'Espaux, L., et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab. Eng. 42 (2017), 115–125.
-
(2017)
Metab. Eng.
, vol.42
, pp. 115-125
-
-
d'Espaux, L.1
-
14
-
-
85012926098
-
Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose
-
Wang, J., et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab. Eng. 40 (2017), 148–156.
-
(2017)
Metab. Eng.
, vol.40
, pp. 148-156
-
-
Wang, J.1
-
15
-
-
84922591980
-
Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
-
Chen, Z., et al. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol. J. 10 (2015), 284–289.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 284-289
-
-
Chen, Z.1
-
16
-
-
84942162949
-
Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum
-
Kim, S., et al. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat. Commun., 6, 2015, 8410.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8410
-
-
Kim, S.1
-
17
-
-
84961922827
-
Fuelling the future: microbial engineering for the production of sustainable biofuels
-
Liao, J.C., et al. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14 (2016), 288–304.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 288-304
-
-
Liao, J.C.1
-
18
-
-
85012009458
-
Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
-
Qiao, K., et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35 (2017), 173–177.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 173-177
-
-
Qiao, K.1
-
19
-
-
84983740916
-
Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification
-
Choi, S., et al. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnol. Bioeng. 113 (2016), 2168–2177.
-
(2016)
Biotechnol. Bioeng.
, vol.113
, pp. 2168-2177
-
-
Choi, S.1
-
20
-
-
85054990965
-
A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum
-
Rohles, C.M., et al. A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum. Green Chem. 20 (2018), 4662–4674.
-
(2018)
Green Chem.
, vol.20
, pp. 4662-4674
-
-
Rohles, C.M.1
-
21
-
-
84963516758
-
One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli
-
Choi, S.Y., et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34 (2016), 435–440.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 435-440
-
-
Choi, S.Y.1
-
22
-
-
84907362164
-
Metabolic engineering of Corynebacterium glutamicum for L-arginine production
-
Park, S.H., et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun., 5, 2014, 4618.
-
(2014)
Nat. Commun.
, vol.5
-
-
Park, S.H.1
-
23
-
-
85022320379
-
Bacterial cellulose as an example product for sustainable production and consumption
-
Jang, W.D., et al. Bacterial cellulose as an example product for sustainable production and consumption. Microb. Biotechnol. 10 (2017), 1181–1185.
-
(2017)
Microb. Biotechnol.
, vol.10
, pp. 1181-1185
-
-
Jang, W.D.1
-
24
-
-
84959519771
-
Genetically encoded sensors enable real-time observation of metabolite production
-
Rogers, J.K., Church, G.M., Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 2388–2393.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 2388-2393
-
-
Rogers, J.K.1
Church, G.M.2
-
25
-
-
85068487709
-
-
CJ CheilJedang Corp. Compositions and methods of producing methionine, US8551742B2.
-
Brazeau, B. et al. CJ CheilJedang Corp. Compositions and methods of producing methionine, US8551742B2.
-
-
-
Brazeau, B.1
-
26
-
-
79952106791
-
From zero to hero – design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
-
Becker, J., et al. From zero to hero – design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13 (2011), 159–168.
-
(2011)
Metab. Eng.
, vol.13
, pp. 159-168
-
-
Becker, J.1
-
27
-
-
84920748206
-
Design of homo-organic acid producing strains using multi-objective optimization
-
Kim, T.Y., et al. Design of homo-organic acid producing strains using multi-objective optimization. Metab. Eng. 28 (2015), 63–73.
-
(2015)
Metab. Eng.
, vol.28
, pp. 63-73
-
-
Kim, T.Y.1
-
28
-
-
84941346066
-
Complete biosynthesis of opioids in yeast
-
Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
-
(2015)
Science
, vol.349
, pp. 1095-1100
-
-
Galanie, S.1
-
29
-
-
84876784070
-
High-level semi-synthetic production of the potent antimalarial artemisinin
-
Paddon, C.J., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
-
(2013)
Nature
, vol.496
, pp. 528-532
-
-
Paddon, C.J.1
-
30
-
-
84926646130
-
Distributing a metabolic pathway among a microbial consortium enhances production of natural products
-
Zhou, K., et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33 (2015), 377–383.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 377-383
-
-
Zhou, K.1
-
31
-
-
85048962896
-
Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli
-
Shomar, H., et al. Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat. Chem. Biol. 14 (2018), 794–800.
-
(2018)
Nat. Chem. Biol.
, vol.14
, pp. 794-800
-
-
Shomar, H.1
-
32
-
-
85053065721
-
Metabolic engineering of Escherichia coli for secretory production of free haem
-
Zhao, X.R., et al. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1 (2018), 720–728.
-
(2018)
Nat. Catal.
, vol.1
, pp. 720-728
-
-
Zhao, X.R.1
-
33
-
-
85051394496
-
Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity
-
Park, S.Y., et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 49 (2018), 105–115.
-
(2018)
Metab. Eng.
, vol.49
, pp. 105-115
-
-
Park, S.Y.1
-
34
-
-
84922575910
-
Production of squalene by squalene synthases and their truncated mutants in Escherichia coli
-
Katabami, A., et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J. Biosci. Bioeng. 119 (2015), 165–171.
-
(2015)
J. Biosci. Bioeng.
, vol.119
, pp. 165-171
-
-
Katabami, A.1
-
35
-
-
84899802037
-
Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris
-
Wriessnegger, T., et al. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab. Eng. 24 (2014), 18–29.
-
(2014)
Metab. Eng.
, vol.24
, pp. 18-29
-
-
Wriessnegger, T.1
-
36
-
-
84917739915
-
Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
-
Li, S., et al. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab. Eng. 28 (2015), 1–7.
-
(2015)
Metab. Eng.
, vol.28
, pp. 1-7
-
-
Li, S.1
-
37
-
-
84971215753
-
Metabolic engineering of the Actinomycete amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin
-
Fleige, C., et al. Metabolic engineering of the Actinomycete amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 82 (2016), 3410–3419.
-
(2016)
Appl. Environ. Microbiol.
, vol.82
, pp. 3410-3419
-
-
Fleige, C.1
-
38
-
-
85068489218
-
-
Korea Advanced Institute of Science and Technology. Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with tRNA of the specific amino acid, EP2330186B1.
-
Lee, S.Y. et al. Korea Advanced Institute of Science and Technology. Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with tRNA of the specific amino acid, EP2330186B1.
-
-
-
Lee, S.Y.1
-
39
-
-
85030668169
-
Massively parallel de novo protein design for targeted therapeutics
-
Chevalier, A., et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550 (2017), 74–79.
-
(2017)
Nature
, vol.550
, pp. 74-79
-
-
Chevalier, A.1
-
40
-
-
84899051891
-
Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
-
Paddon, C.J., Keasling, J.D., Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12 (2014), 355–367.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 355-367
-
-
Paddon, C.J.1
Keasling, J.D.2
-
41
-
-
84927131694
-
Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis
-
Yano, J.M., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2015), 264–276.
-
(2015)
Cell
, vol.161
, pp. 264-276
-
-
Yano, J.M.1
-
42
-
-
85017396256
-
Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models
-
Hwang, I.Y., et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun., 8, 2017, 15028.
-
(2017)
Nat. Commun.
, vol.8
-
-
Hwang, I.Y.1
-
43
-
-
85024392079
-
Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation
-
Riglar, D.T., et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35 (2017), 653–658.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 653-658
-
-
Riglar, D.T.1
-
44
-
-
85053084082
-
Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria
-
Isabella, V.M., et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36 (2018), 857–864.
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 857-864
-
-
Isabella, V.M.1
-
45
-
-
84982836605
-
Synchronized cycles of bacterial lysis for in vivo delivery
-
Din, M.O., et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536 (2016), 81–85.
-
(2016)
Nature
, vol.536
, pp. 81-85
-
-
Din, M.O.1
-
46
-
-
85047442548
-
An ingestible bacterial-electronic system to monitor gastrointestinal health
-
Mimee, M., et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360 (2018), 915–918.
-
(2018)
Science
, vol.360
, pp. 915-918
-
-
Mimee, M.1
-
47
-
-
84896119130
-
Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
-
Choi, K.Y., et al. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23 (2014), 53–61.
-
(2014)
Metab. Eng.
, vol.23
, pp. 53-61
-
-
Choi, K.Y.1
-
48
-
-
85041215448
-
Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation
-
Joo, S., et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun., 9, 2018, 382.
-
(2018)
Nat. Commun.
, vol.9
-
-
Joo, S.1
-
49
-
-
84945291848
-
Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms
-
Yang, Y., et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ. Sci. Technol. 49 (2015), 12087–12093.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 12087-12093
-
-
Yang, Y.1
-
50
-
-
85049677229
-
Degradation of plastics and plastic-degrading bacteria in cold marine habitats
-
Urbanek, A.K., et al. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol., 2018, 10.1007/s00253-018-9195-y.
-
(2018)
Appl. Microbiol. Biotechnol.
-
-
Urbanek, A.K.1
-
51
-
-
84901036143
-
Diverse alkane hydroxylase genes in microorganisms and environments
-
Nie, Y., et al. Diverse alkane hydroxylase genes in microorganisms and environments. Sci. Rep., 4, 2014, 4968.
-
(2014)
Sci. Rep.
, vol.4
-
-
Nie, Y.1
-
52
-
-
85020018556
-
Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli
-
Luo, Z.W., Lee, S.Y., Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun., 8, 2017, 15689.
-
(2017)
Nat. Commun.
, vol.8
-
-
Luo, Z.W.1
Lee, S.Y.2
-
53
-
-
84966269203
-
Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions
-
Cheong, S., et al. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34 (2016), 556–561.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 556-561
-
-
Cheong, S.1
-
54
-
-
85037612207
-
Renewable acrylonitrile production
-
Karp, E.M., et al. Renewable acrylonitrile production. Science 358 (2017), 1307–1310.
-
(2017)
Science
, vol.358
, pp. 1307-1310
-
-
Karp, E.M.1
-
55
-
-
85050677066
-
Production of ethylene glycol from xylose by metabolically engineered Escherichia coli
-
Chae, T.U., et al. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli. AIChE J. 64 (2018), 4193–4200.
-
(2018)
AIChE J.
, vol.64
, pp. 4193-4200
-
-
Chae, T.U.1
-
56
-
-
84899801675
-
Comparative engineering of Escherichia coli for cellobiose utilization: hydrolysis versus phosphorolysis
-
Shin, H.D., et al. Comparative engineering of Escherichia coli for cellobiose utilization: hydrolysis versus phosphorolysis. Metab. Eng. 24 (2014), 9–17.
-
(2014)
Metab. Eng.
, vol.24
, pp. 9-17
-
-
Shin, H.D.1
-
57
-
-
85009247636
-
Industrial biomanufacturing: the future of chemical production
-
Clomburg, J.M., et al. Industrial biomanufacturing: the future of chemical production. Science, 355, 2017.
-
(2017)
Science
, vol.355
-
-
Clomburg, J.M.1
-
58
-
-
84926364931
-
Metabolic engineering in methanotrophic bacteria
-
Kalyuzhnaya, M.G., et al. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29 (2015), 142–152.
-
(2015)
Metab. Eng.
, vol.29
, pp. 142-152
-
-
Kalyuzhnaya, M.G.1
-
59
-
-
85054089047
-
2 to two-carbon compounds
-
2 to two-carbon compounds. Nat. Commun., 9, 2018, 3992.
-
(2018)
Nat. Commun.
, vol.9
, pp. 3992
-
-
Yu, H.1
Liao, J.C.2
-
60
-
-
85054406427
-
2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways
-
2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), E9271–E9279.
-
(2018)
Proc. Natl. Acad. Sci. U. S. A.
, vol.115
, pp. E9271-E9279
-
-
Bang, J.1
Lee, S.Y.2
-
61
-
-
84964247550
-
A carbon sink pathway increases carbon productivity in cyanobacteria
-
Oliver, J.W.K., Atsumi, S., A carbon sink pathway increases carbon productivity in cyanobacteria. Metab. Eng. 29 (2015), 106–112.
-
(2015)
Metab. Eng.
, vol.29
, pp. 106-112
-
-
Oliver, J.W.K.1
Atsumi, S.2
-
62
-
-
84886948663
-
Microbial production of short-chain alkanes
-
Choi, Y.J., Lee, S.Y., Microbial production of short-chain alkanes. Nature 502 (2013), 571–574.
-
(2013)
Nature
, vol.502
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
63
-
-
85052310327
-
Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability
-
Qi, F., et al. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability. J. Ind. Microbiol. Biotechnol. 45 (2018), 993–1002.
-
(2018)
J. Ind. Microbiol. Biotechnol.
, vol.45
, pp. 993-1002
-
-
Qi, F.1
-
64
-
-
85047015170
-
Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes
-
Hoffmann, S.L., et al. Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab. Eng. 47 (2018), 475–487.
-
(2018)
Metab. Eng.
, vol.47
, pp. 475-487
-
-
Hoffmann, S.L.1
-
65
-
-
84995487023
-
Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens
-
Lee, J.W., et al. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metab. Eng. 38 (2016), 409–417.
-
(2016)
Metab. Eng.
, vol.38
, pp. 409-417
-
-
Lee, J.W.1
-
66
-
-
84930675560
-
Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production
-
Kurosawa, K., et al. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Metab. Eng. 30 (2015), 89–95.
-
(2015)
Metab. Eng.
, vol.30
, pp. 89-95
-
-
Kurosawa, K.1
-
67
-
-
85033364117
-
Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica
-
Sagnak, R., et al. Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J. Biotechnol. 265 (2018), 40–45.
-
(2018)
J. Biotechnol.
, vol.265
, pp. 40-45
-
-
Sagnak, R.1
-
68
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Tong, Y., et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4 (2015), 1020–1029.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
-
69
-
-
85021307199
-
CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum
-
Cho, J.S., et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 42 (2017), 157–167.
-
(2017)
Metab. Eng.
, vol.42
, pp. 157-167
-
-
Cho, J.S.1
-
70
-
-
85050667866
-
Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis
-
Yu, J., et al. Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnol. Bioeng. 115 (2018), 2383–2388.
-
(2018)
Biotechnol. Bioeng.
, vol.115
, pp. 2383-2388
-
-
Yu, J.1
-
71
-
-
84992162165
-
Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs
-
Cho, C., Lee, S.Y., Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Biotechnol. Bioeng. 114 (2017), 374–383.
-
(2017)
Biotechnol. Bioeng.
, vol.114
, pp. 374-383
-
-
Cho, C.1
Lee, S.Y.2
-
72
-
-
84896881649
-
The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
-
Zhang, X., et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 23 (2014), 34–41.
-
(2014)
Metab. Eng.
, vol.23
, pp. 34-41
-
-
Zhang, X.1
-
73
-
-
84952672746
-
Surface display of glycosylated tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis
-
Kalyanasundram, J., et al. Surface display of glycosylated tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol., 15, 2015, 113.
-
(2015)
BMC Biotechnol.
, vol.15
, pp. 113
-
-
Kalyanasundram, J.1
-
74
-
-
84891843349
-
Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid
-
Graf, N., Altenbuchner, J., Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl. Microbiol. Biotechnol. 98 (2014), 137–149.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 137-149
-
-
Graf, N.1
Altenbuchner, J.2
-
75
-
-
85012845307
-
Engineering an obligate photoautotrophic Cyanobacterium to utilize glycerol for growth and chemical production
-
Kanno, M., Atsumi, S., Engineering an obligate photoautotrophic Cyanobacterium to utilize glycerol for growth and chemical production. ACS Synth. Biol. 6 (2017), 69–75.
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 69-75
-
-
Kanno, M.1
Atsumi, S.2
-
76
-
-
84949803390
-
Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals
-
Zeldes, B.M., et al. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front. Microbiol., 6, 2015, 1209.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 1209
-
-
Zeldes, B.M.1
-
77
-
-
84896121349
-
Development of Halomonas TD01 as a host for open production of chemicals
-
Fu, X.Z., et al. Development of Halomonas TD01 as a host for open production of chemicals. Metab. Eng. 23 (2014), 78–91.
-
(2014)
Metab. Eng.
, vol.23
, pp. 78-91
-
-
Fu, X.Z.1
-
78
-
-
84908071473
-
Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase
-
Kim, Y.K., et al. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth. Biol. 3 (2014), 773–779.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 773-779
-
-
Kim, Y.K.1
-
79
-
-
85046435159
-
Enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9
-
Wang, W., et al. Enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9. ACS Synth. Biol. 7 (2018), 1259–1268.
-
(2018)
ACS Synth. Biol.
, vol.7
, pp. 1259-1268
-
-
Wang, W.1
-
80
-
-
85053627577
-
Mass spider silk production through targeted gene replacement in Bombyx mori
-
Xu, J., et al. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 8757–8762.
-
(2018)
Proc. Natl. Acad. Sci. U. S. A.
, vol.115
, pp. 8757-8762
-
-
Xu, J.1
-
81
-
-
84901458007
-
Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate
-
Gutensohn, M., et al. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metab. Eng. 24 (2014), 107–116.
-
(2014)
Metab. Eng.
, vol.24
, pp. 107-116
-
-
Gutensohn, M.1
-
82
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim, H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7 (2011), 445–452.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 445-452
-
-
Yim, H.1
-
83
-
-
84910130469
-
Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering
-
Feher, T., et al. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol. J. 9 (2014), 1446–1457.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 1446-1457
-
-
Feher, T.1
-
84
-
-
84993958585
-
ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies
-
Hadadi, N., et al. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 5 (2016), 1155–1166.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 1155-1166
-
-
Hadadi, N.1
-
85
-
-
85059655505
-
RetroRules: a database of reaction rules for engineering biology
-
Duigou, T., et al. RetroRules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47 (2018), D1229–D1235.
-
(2018)
Nucleic Acids Res.
, vol.47
, pp. D1229-D1235
-
-
Duigou, T.1
-
86
-
-
85043307792
-
Pathway design using de novo steps through uncharted biochemical spaces
-
Kumar, A., et al. Pathway design using de novo steps through uncharted biochemical spaces. Nat. Commun., 9, 2018, 184.
-
(2018)
Nat. Commun.
, vol.9
-
-
Kumar, A.1
-
87
-
-
84997080010
-
Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life
-
Kan, S.B., et al. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life. Science 354 (2016), 1048–1051.
-
(2016)
Science
, vol.354
, pp. 1048-1051
-
-
Kan, S.B.1
-
88
-
-
84925426233
-
Computational protein design enables a novel one-carbon assimilation pathway
-
Siegel, J.B., et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 3704–3709.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, pp. 3704-3709
-
-
Siegel, J.B.1
-
89
-
-
84954460087
-
Engineering a polyketide synthase for in vitro production of adipic acid
-
Hagen, A., et al. Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth. Biol. 5 (2016), 21–27.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 21-27
-
-
Hagen, A.1
-
90
-
-
85055910851
-
Short-chain ketone production by engineered polyketide synthases in Streptomyces albus
-
Yuzawa, S., et al. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat. Commun., 9, 2018, 4569.
-
(2018)
Nat. Commun.
, vol.9
-
-
Yuzawa, S.1
-
91
-
-
85045003056
-
Enzymatic construction of highly strained carbocycles
-
Chen, K., et al. Enzymatic construction of highly strained carbocycles. Science 360 (2018), 71–75.
-
(2018)
Science
, vol.360
, pp. 71-75
-
-
Chen, K.1
-
92
-
-
85040338163
-
Genetically programmed chiral organoborane synthesis
-
Kan, S.B.J., et al. Genetically programmed chiral organoborane synthesis. Nature 552 (2017), 132–136.
-
(2017)
Nature
, vol.552
, pp. 132-136
-
-
Kan, S.B.J.1
-
93
-
-
85020822860
-
antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification
-
Blin, K., et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45 (2017), W36–W41.
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. W36-W41
-
-
Blin, K.1
-
94
-
-
85023161576
-
PRISM 3: expanded prediction of natural product chemical structures from microbial genomes
-
Skinnider, M.A., et al. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45 (2017), W49–W54.
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. W49-W54
-
-
Skinnider, M.A.1
-
95
-
-
84895075407
-
Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways
-
Albright, J.C., et al. Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 41 (2014), 451–459.
-
(2014)
J. Ind. Microbiol. Biotechnol.
, vol.41
, pp. 451-459
-
-
Albright, J.C.1
-
96
-
-
85044660186
-
Planning chemical syntheses with deep neural networks and symbolic AI
-
Segler, M.H.S., et al. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 (2018), 604–610.
-
(2018)
Nature
, vol.555
, pp. 604-610
-
-
Segler, M.H.S.1
-
97
-
-
84937122924
-
BASIC: a new biopart assembly standard for idempotent cloning provides accurate, single-tier DNA assembly for synthetic biology
-
Storch, M., et al. BASIC: a new biopart assembly standard for idempotent cloning provides accurate, single-tier DNA assembly for synthetic biology. ACS Synth. Biol. 4 (2015), 781–787.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 781-787
-
-
Storch, M.1
-
98
-
-
84891760559
-
One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy
-
Casini, A., et al. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res., 42, 2014, e7.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e7
-
-
Casini, A.1
-
99
-
-
85056289315
-
Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly
-
Potapov, V., et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synth. Biol. 7 (2018), 2665–2674.
-
(2018)
ACS Synth. Biol.
, vol.7
, pp. 2665-2674
-
-
Potapov, V.1
-
100
-
-
84896836282
-
Rapid and reliable DNA assembly via ligase cycling reaction
-
de Kok, S., et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 3 (2014), 97–106.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 97-106
-
-
de Kok, S.1
-
101
-
-
84896142083
-
One step DNA assembly for combinatorial metabolic engineering
-
Coussement, P., et al. One step DNA assembly for combinatorial metabolic engineering. Metab. Eng. 23 (2014), 70–77.
-
(2014)
Metab. Eng.
, vol.23
, pp. 70-77
-
-
Coussement, P.1
-
102
-
-
84928165512
-
Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform
-
Ross, A.C., et al. Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform. ACS Synth. Biol. 4 (2015), 414–420.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 414-420
-
-
Ross, A.C.1
-
103
-
-
84902308825
-
A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering
-
Lund, A.M., et al. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering. PLoS One, 9, 2014, e96693.
-
(2014)
PLoS One
, vol.9
-
-
Lund, A.M.1
-
104
-
-
85009090143
-
Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology
-
Hughes, R.A., Ellington, A.D., Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol., 9, 2017, a023812.
-
(2017)
Cold Spring Harb. Perspect. Biol.
, vol.9
-
-
Hughes, R.A.1
Ellington, A.D.2
-
105
-
-
84921517479
-
Functional optimization of gene clusters by combinatorial design and assembly
-
Smanski, M.J., et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol. 32 (2014), 1241–1249.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1241-1249
-
-
Smanski, M.J.1
-
106
-
-
84878577881
-
Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA
-
Petersen, K.V., et al. Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl. Environ. Microbiol. 79 (2013), 3563–3569.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 3563-3569
-
-
Petersen, K.V.1
-
107
-
-
85047192699
-
Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX
-
Domrose, A., et al. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX. Synth. Syst. Biotechnol. 2 (2017), 310–319.
-
(2017)
Synth. Syst. Biotechnol.
, vol.2
, pp. 310-319
-
-
Domrose, A.1
-
108
-
-
85047263606
-
Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida
-
Choi, K.R., et al. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab. Eng. 47 (2018), 463–474.
-
(2018)
Metab. Eng.
, vol.47
, pp. 463-474
-
-
Choi, K.R.1
-
109
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
110
-
-
84994391729
-
CRISPR technologies for bacterial systems: current achievements and future directions
-
Choi, K.R., Lee, S.Y., CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34 (2016), 1180–1209.
-
(2016)
Biotechnol. Adv.
, vol.34
, pp. 1180-1209
-
-
Choi, K.R.1
Lee, S.Y.2
-
111
-
-
84957553896
-
Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
-
Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 7, 2016, 10390.
-
(2016)
Nat. Commun.
, vol.7
-
-
Nakagawa, A.1
-
112
-
-
85031323768
-
Heterologous erythromycin production across strain and plasmid construction
-
Fang, L., et al. Heterologous erythromycin production across strain and plasmid construction. Biotechnol. Prog. 34 (2018), 271–276.
-
(2018)
Biotechnol. Prog.
, vol.34
, pp. 271-276
-
-
Fang, L.1
-
113
-
-
84959318102
-
Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables
-
Tan, Z., et al. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab. Eng. 35 (2016), 105–113.
-
(2016)
Metab. Eng.
, vol.35
, pp. 105-113
-
-
Tan, Z.1
-
114
-
-
84903202819
-
Improving the tolerance of Escherichia coli to medium-chain fatty acid production
-
Sherkhanov, S., et al. Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab. Eng. 25 (2014), 1–7.
-
(2014)
Metab. Eng.
, vol.25
, pp. 1-7
-
-
Sherkhanov, S.1
-
115
-
-
84896129574
-
Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol
-
Fisher, M.A., et al. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol. 3 (2014), 30–40.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 30-40
-
-
Fisher, M.A.1
-
116
-
-
84920903437
-
Improving microbial biogasoline production in Escherichia coli using tolerance engineering
-
Foo, J.L., et al. Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio, 5, 2014, e01932.
-
(2014)
mBio
, vol.5
-
-
Foo, J.L.1
-
117
-
-
84939268936
-
Tolerance engineering in bacteria for the production of advanced biofuels and chemicals
-
Mukhopadhyay, A., Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 23 (2015), 498–508.
-
(2015)
Trends Microbiol.
, vol.23
, pp. 498-508
-
-
Mukhopadhyay, A.1
-
118
-
-
84907483760
-
Biofuels. Altered sterol composition renders yeast thermotolerant
-
Caspeta, L., et al. Biofuels. Altered sterol composition renders yeast thermotolerant. Science 346 (2014), 75–78.
-
(2014)
Science
, vol.346
, pp. 75-78
-
-
Caspeta, L.1
-
119
-
-
84927514444
-
Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity
-
Royce, L.A., et al. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29 (2015), 180–188.
-
(2015)
Metab. Eng.
, vol.29
, pp. 180-188
-
-
Royce, L.A.1
-
120
-
-
85049738534
-
Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER
-
Wong, B.G., et al. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36 (2018), 614–623.
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 614-623
-
-
Wong, B.G.1
-
121
-
-
85019835431
-
Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization
-
Radek, A., et al. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour. Technol. 245 (2017), 1377–1385.
-
(2017)
Bioresour. Technol.
, vol.245
, pp. 1377-1385
-
-
Radek, A.1
-
122
-
-
84928727000
-
Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping
-
Unthan, S., et al. Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping. Microb. Cell Fact., 14, 2015, 32.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 32
-
-
Unthan, S.1
-
123
-
-
85034224340
-
Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution
-
Mohamed, E.T., et al. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microb. Cell Fact., 16, 2017, 204.
-
(2017)
Microb. Cell Fact.
, vol.16
, pp. 204
-
-
Mohamed, E.T.1
-
124
-
-
79955534060
-
A system for the continuous directed evolution of biomolecules
-
Esvelt, K.M., et al. A system for the continuous directed evolution of biomolecules. Nature 472 (2011), 499–503.
-
(2011)
Nature
, vol.472
, pp. 499-503
-
-
Esvelt, K.M.1
-
125
-
-
84890920555
-
Yeast oligo-mediated genome engineering (YOGE)
-
DiCarlo, J.E., et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2 (2013), 741–749.
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 741-749
-
-
DiCarlo, J.E.1
-
126
-
-
84992075174
-
In vivo continuous evolution of genes and pathways in yeast
-
Crook, N., et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun., 7, 2016, 13051.
-
(2016)
Nat. Commun.
, vol.7
-
-
Crook, N.1
-
127
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang, H.H., et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460 (2009), 894–898.
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
-
128
-
-
84876750152
-
Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19
-
Jang, Y.S., et al. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol. Bioeng. 110 (2013), 1646–1653.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 1646-1653
-
-
Jang, Y.S.1
-
129
-
-
85024405969
-
Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator
-
Ajjawi, I., et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35 (2017), 647–652.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 647-652
-
-
Ajjawi, I.1
-
130
-
-
85012892865
-
Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum
-
Chung, S.C., et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab. Eng. 40 (2017), 157–164.
-
(2017)
Metab. Eng.
, vol.40
, pp. 157-164
-
-
Chung, S.C.1
-
131
-
-
84953737483
-
The quantitative and condition-dependent Escherichia coli proteome
-
Schmidt, A., et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34 (2016), 104–110.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 104-110
-
-
Schmidt, A.1
-
132
-
-
84947583295
-
Overflow metabolism in Escherichia coli results from efficient proteome allocation
-
Basan, M., et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528 (2015), 99–104.
-
(2015)
Nature
, vol.528
, pp. 99-104
-
-
Basan, M.1
-
133
-
-
85047258589
-
Protein acylation affects the artificial biosynthetic pathway for pinosylvin production in engineered E. coli
-
Xu, J.Y., et al. Protein acylation affects the artificial biosynthetic pathway for pinosylvin production in engineered E. coli. ACS Chem. Biol. 13 (2018), 1200–1208.
-
(2018)
ACS Chem. Biol.
, vol.13
, pp. 1200-1208
-
-
Xu, J.Y.1
-
134
-
-
85017430967
-
Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli
-
Ohtake, T., et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab. Eng. 41 (2017), 135–143.
-
(2017)
Metab. Eng.
, vol.41
, pp. 135-143
-
-
Ohtake, T.1
-
135
-
-
85031825399
-
13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens
-
13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab. Eng. 44 (2017), 198–212.
-
(2017)
Metab. Eng.
, vol.44
, pp. 198-212
-
-
Lange, A.1
-
136
-
-
85046410120
-
13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR
-
13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR. Metab. Eng. 47 (2018), 357–373.
-
(2018)
Metab. Eng.
, vol.47
, pp. 357-373
-
-
Schwechheimer, S.K.1
-
137
-
-
85031310018
-
iML1515, a knowledgebase that computes Escherichia coli traits
-
Monk, J.M., et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35 (2017), 904–908.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 904-908
-
-
Monk, J.M.1
-
138
-
-
85011094697
-
Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
-
Magnusdottir, S., et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35 (2017), 81–89.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 81-89
-
-
Magnusdottir, S.1
-
139
-
-
77952265112
-
In silico identification of gene amplification targets for improvement of lycopene production
-
Choi, H.S., et al. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 76 (2010), 3097–3105.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 3097-3105
-
-
Choi, H.S.1
-
140
-
-
84865075156
-
Flux variability scanning based on enforced objective flux for identifying gene amplification targets
-
Park, J.M., et al. Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol., 6, 2012, 106.
-
(2012)
BMC Syst. Biol.
, vol.6
, pp. 106
-
-
Park, J.M.1
-
141
-
-
84990177186
-
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
-
Kim, M., et al. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat. Commun., 7, 2016, 13090.
-
(2016)
Nat. Commun.
, vol.7
-
-
Kim, M.1
-
142
-
-
84991740197
-
Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes
-
238–251.e212
-
Monk, J.M., et al. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst., 3, 2016 238–251.e212.
-
(2016)
Cell Syst.
, vol.3
-
-
Monk, J.M.1
-
143
-
-
85050988747
-
COBRAme: a computational framework for genome-scale models of metabolism and gene expression
-
Lloyd, C.J., et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol., 14, 2018, e1006302.
-
(2018)
PLoS Comput. Biol.
, vol.14
-
-
Lloyd, C.J.1
-
144
-
-
85028309923
-
Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
-
Sanchez, B.J., et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13, 2017, 935.
-
(2017)
Mol. Syst. Biol.
, vol.13
, pp. 935
-
-
Sanchez, B.J.1
-
145
-
-
85018729051
-
Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440
-
Elmore, J.R., et al. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab. Eng. Commun. 5 (2017), 1–8.
-
(2017)
Metab. Eng. Commun.
, vol.5
, pp. 1-8
-
-
Elmore, J.R.1
-
146
-
-
85048207943
-
Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number
-
Kang, C.W., et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab. Eng. 48 (2018), 121–128.
-
(2018)
Metab. Eng.
, vol.48
, pp. 121-128
-
-
Kang, C.W.1
-
147
-
-
85045101963
-
Engineered promoters enable constant gene expression at any copy number in bacteria
-
Segall-Shapiro, T.H., et al. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol. 36 (2018), 352–358.
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 352-358
-
-
Segall-Shapiro, T.H.1
-
148
-
-
84873596341
-
Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
-
Na, D., et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31 (2013), 170–174.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 170-174
-
-
Na, D.1
-
149
-
-
84900873278
-
Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering
-
Crook, N.C., et al. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth. Biol. 3 (2014), 307–313.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 307-313
-
-
Crook, N.C.1
-
150
-
-
84873288058
-
Integrative eQTL-based analyses reveal the biology of breast cancer risk loci
-
Li, Q., et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152 (2013), 633–641.
-
(2013)
Cell
, vol.152
, pp. 633-641
-
-
Li, Q.1
-
151
-
-
85015798130
-
Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli
-
Wu, J., et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 44 (2017), 1083–1095.
-
(2017)
J. Ind. Microbiol. Biotechnol.
, vol.44
, pp. 1083-1095
-
-
Wu, J.1
-
152
-
-
85053507552
-
Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production
-
Tao, S., et al. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Microb. Cell Fact., 17, 2018, 147.
-
(2018)
Microb. Cell Fact.
, vol.17
, pp. 147
-
-
Tao, S.1
-
153
-
-
84925462732
-
Creating small transcription activating RNAs
-
Chappell, J., et al. Creating small transcription activating RNAs. Nat. Chem. Biol. 11 (2015), 214–220.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 214-220
-
-
Chappell, J.1
-
154
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert, L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
-
155
-
-
84988569121
-
Editing DNA methylation in the mammalian genome
-
233–247.e217
-
Liu, X.S., et al. Editing DNA methylation in the mammalian genome. Cell, 167, 2016 233–247.e217.
-
(2016)
Cell
, vol.167
-
-
Liu, X.S.1
-
156
-
-
85044647449
-
Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes
-
Tapsin, S., et al. Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. Nat. Commun., 9, 2018, 1289.
-
(2018)
Nat. Commun.
, vol.9
-
-
Tapsin, S.1
-
157
-
-
85054360865
-
Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria
-
Yang, D., et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 9835–9844.
-
(2018)
Proc. Natl. Acad. Sci. U. S. A.
, vol.115
, pp. 9835-9844
-
-
Yang, D.1
-
158
-
-
84901202594
-
Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis
-
Liu, Y., et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab. Eng. 24 (2014), 61–69.
-
(2014)
Metab. Eng.
, vol.24
, pp. 61-69
-
-
Liu, Y.1
-
159
-
-
85006421915
-
Synthetic lipid-containing scaffolds enhance production by colocalizing enzymes
-
Myhrvold, C., et al. Synthetic lipid-containing scaffolds enhance production by colocalizing enzymes. ACS Synth. Biol. 5 (2016), 1396–1403.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 1396-1403
-
-
Myhrvold, C.1
-
160
-
-
84919643583
-
Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli
-
Lewicka, A.J., et al. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli. ACS Synth. Biol. 3 (2014), 976–978.
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 976-978
-
-
Lewicka, A.J.1
-
161
-
-
85045197699
-
Bacterial microcompartments
-
Kerfeld, C.A., et al. Bacterial microcompartments. Nat. Rev. Microbiol. 16 (2018), 277–290.
-
(2018)
Nat. Rev. Microbiol.
, vol.16
, pp. 277-290
-
-
Kerfeld, C.A.1
-
162
-
-
84982801326
-
Metabolic engineering of microbial competitive advantage for industrial fermentation processes
-
Shaw, A.J., et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353 (2016), 583–586.
-
(2016)
Science
, vol.353
, pp. 583-586
-
-
Shaw, A.J.1
-
163
-
-
84982802698
-
Benefits of selective feeding
-
Lennen, R.M., Benefits of selective feeding. Science 353 (2016), 542–543.
-
(2016)
Science
, vol.353
, pp. 542-543
-
-
Lennen, R.M.1
-
164
-
-
84955192252
-
‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment
-
Chan, C.T., et al. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12 (2016), 82–86.
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 82-86
-
-
Chan, C.T.1
-
165
-
-
85034452883
-
Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production
-
Mans, R., et al. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr. Opin. Biotechnol. 50 (2018), 47–56.
-
(2018)
Curr. Opin. Biotechnol.
, vol.50
, pp. 47-56
-
-
Mans, R.1
-
166
-
-
85045069110
-
Evolutionary engineering of industrial microorganisms-strategies and applications
-
Zhu, Z., et al. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 102 (2018), 4615–4627.
-
(2018)
Appl. Microbiol. Biotechnol.
, vol.102
, pp. 4615-4627
-
-
Zhu, Z.1
-
167
-
-
85048761909
-
Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system
-
McCloskey, D., et al. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system. Metab. Eng. 48 (2018), 233–242.
-
(2018)
Metab. Eng.
, vol.48
, pp. 233-242
-
-
McCloskey, D.1
-
168
-
-
84991745987
-
Improved production of propionic acid using genome shuffling
-
Luna-Flores, C.H., et al. Improved production of propionic acid using genome shuffling. Biotechnol. J., 12, 2017, 1600120.
-
(2017)
Biotechnol. J.
, vol.12
-
-
Luna-Flores, C.H.1
-
169
-
-
0037034007
-
Genome shuffling leads to rapid phenotypic improvement in bacteria
-
Zhang, Y.X., et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415 (2002), 644–646.
-
(2002)
Nature
, vol.415
, pp. 644-646
-
-
Zhang, Y.X.1
-
170
-
-
33845442201
-
Engineering yeast transcription machinery for improved ethanol tolerance and production
-
Alper, H., et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314 (2006), 1565–1568.
-
(2006)
Science
, vol.314
, pp. 1565-1568
-
-
Alper, H.1
-
171
-
-
84953791504
-
Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis
-
Tan, F., et al. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb. Cell Fact., 15, 2016, 4.
-
(2016)
Microb. Cell Fact.
, vol.15
, pp. 4
-
-
Tan, F.1
-
172
-
-
84949796862
-
Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids
-
Amiram, M., et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33 (2015), 1272–1279.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1272-1279
-
-
Amiram, M.1
-
173
-
-
85018521893
-
Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry
-
Chao, R., et al. Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry. ACS Synth. Biol. 6 (2017), 678–685.
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 678-685
-
-
Chao, R.1
-
174
-
-
84891385829
-
Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing
-
Sun, N., Zhao, H., Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110 (2013), 1811–1821.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 1811-1821
-
-
Sun, N.1
Zhao, H.2
-
175
-
-
85011034228
-
Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering
-
Garst, A.D., et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35 (2017), 48–55.
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 48-55
-
-
Garst, A.D.1
-
176
-
-
84945388093
-
Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum
-
Mahr, R., et al. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab. Eng. 32 (2015), 184–194.
-
(2015)
Metab. Eng.
, vol.32
, pp. 184-194
-
-
Mahr, R.1
-
177
-
-
85008192136
-
Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution
-
Mundhada, H., et al. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metab. Eng. 39 (2017), 141–150.
-
(2017)
Metab. Eng.
, vol.39
, pp. 141-150
-
-
Mundhada, H.1
-
178
-
-
0032517277
-
Synthesis of vanillin from glucose
-
Li, K., Frost, J.W., Synthesis of vanillin from glucose. J. Am. Chem. Soc. 120 (1998), 10545–10546.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 10545-10546
-
-
Li, K.1
Frost, J.W.2
-
179
-
-
65549118633
-
De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae)
-
Hansen, E.H., et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75 (2009), 2765–2774.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 2765-2774
-
-
Hansen, E.H.1
-
180
-
-
78049460641
-
Improved vanillin production in baker's yeast through in silico design
-
Brochado, A.R., et al. Improved vanillin production in baker's yeast through in silico design. Microb. Cell Fact., 9, 2010, 84.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 84
-
-
Brochado, A.R.1
-
181
-
-
84959422900
-
Synthetic biology's first malaria drug meets market resistance
-
Peplow, M., Synthetic biology's first malaria drug meets market resistance. Nature 530 (2016), 389–390.
-
(2016)
Nature
, vol.530
, pp. 389-390
-
-
Peplow, M.1
-
182
-
-
85021412868
-
Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies
-
Horinouchi, T., et al. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J. Biotechnol. 255 (2017), 47–56.
-
(2017)
J. Biotechnol.
, vol.255
, pp. 47-56
-
-
Horinouchi, T.1
-
183
-
-
85041211158
-
Efficient 3-hydroxybutyrate production by quiescent Escherichia coli microbial cell factories is facilitated by indole-induced proteomic and metabolomic changes
-
Thomson, N.M., et al. Efficient 3-hydroxybutyrate production by quiescent Escherichia coli microbial cell factories is facilitated by indole-induced proteomic and metabolomic changes. Biotechnol. J., 13, 2018, e1700571.
-
(2018)
Biotechnol. J.
, vol.13
-
-
Thomson, N.M.1
-
184
-
-
85014037010
-
A new genome-mining tool redefines the lasso peptide biosynthetic landscape
-
Tietz, J.I., et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13 (2017), 470–478.
-
(2017)
Nat. Chem. Biol.
, vol.13
, pp. 470-478
-
-
Tietz, J.I.1
-
185
-
-
85018599747
-
Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas
-
Islam, M.A., et al. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metab. Eng. 41 (2017), 173–181.
-
(2017)
Metab. Eng.
, vol.41
, pp. 173-181
-
-
Islam, M.A.1
-
186
-
-
85038207858
-
RetroPath2.0: a retrosynthesis workflow for metabolic engineers
-
Delepine, B., et al. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45 (2018), 158–170.
-
(2018)
Metab. Eng.
, vol.45
, pp. 158-170
-
-
Delepine, B.1
-
187
-
-
84930225331
-
Reconstructing genome-scale metabolic models with merlin
-
Dias, O., et al. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43 (2015), 3899–3910.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 3899-3910
-
-
Dias, O.1
-
188
-
-
85055635316
-
RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor
-
Wang, H., et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol., 14, 2018, e1006541.
-
(2018)
PLoS Comput. Biol.
, vol.14
-
-
Wang, H.1
-
189
-
-
85047568107
-
ssbio: a Python framework for structural systems biology
-
Mih, N., et al. ssbio: a Python framework for structural systems biology. Bioinformatics 34 (2018), 2155–2157.
-
(2018)
Bioinformatics
, vol.34
, pp. 2155-2157
-
-
Mih, N.1
-
190
-
-
85058737818
-
pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis
-
Salvy, P., et al. pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis. Bioinformatics, 2018, 10.1093/bioinformatics/bty499.
-
(2018)
Bioinformatics
-
-
Salvy, P.1
-
191
-
-
85045832505
-
Cameo: a python library for computer aided metabolic engineering and optimization of cell factories
-
Cardoso, J.G.R., et al. Cameo: a python library for computer aided metabolic engineering and optimization of cell factories. ACS Synth. Biol. 7 (2018), 1163–1166.
-
(2018)
ACS Synth. Biol.
, vol.7
, pp. 1163-1166
-
-
Cardoso, J.G.R.1
-
192
-
-
85068488300
-
-
Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. arXiv.org arXiv:1710.04038v2 [q-bio.QM].
-
Heirendt, L. et al. (2018) Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. arXiv.org arXiv:1710.04038v2 [q-bio.QM].
-
(2018)
-
-
Heirendt, L.1
-
193
-
-
84893405383
-
Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
-
Chen, Z., et al. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 80 (2014), 1388–1393.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 1388-1393
-
-
Chen, Z.1
-
194
-
-
85055596999
-
Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow
-
Brunk, E., et al. Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 11096–11101.
-
(2018)
Proc. Natl. Acad. Sci. U. S. A.
, vol.115
, pp. 11096-11101
-
-
Brunk, E.1
-
195
-
-
84861963767
-
Genome-scale promoter engineering by coselection MAGE
-
Wang, H.H., et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9 (2012), 591–593.
-
(2012)
Nat. Methods
, vol.9
, pp. 591-593
-
-
Wang, H.H.1
-
196
-
-
85040862509
-
Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm
-
Lee, M.J., et al. Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nat. Chem. Biol. 14 (2018), 142–147.
-
(2018)
Nat. Chem. Biol.
, vol.14
, pp. 142-147
-
-
Lee, M.J.1
-
197
-
-
84963568291
-
Genetic circuit design automation
-
Nielsen, A.A.K., et al. Genetic circuit design automation. Science, 352, 2016, aac7341.
-
(2016)
Science
, vol.352
-
-
Nielsen, A.A.K.1
-
198
-
-
85054013550
-
Programmable protein circuits in living cells
-
Gao, X.J., et al. Programmable protein circuits in living cells. Science 361 (2018), 1252–1258.
-
(2018)
Science
, vol.361
, pp. 1252-1258
-
-
Gao, X.J.1
|