메뉴 건너뛰기




Volumn 37, Issue 8, 2019, Pages 817-837

Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering

Author keywords

biorefinery; evolutionary engineering; industrial biotechnology; synthetic biology; systems biology; systems metabolic engineering

Indexed keywords

COST ENGINEERING; METABOLISM; PLANNING; SYNTHETIC BIOLOGY;

EID: 85061013548     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2019.01.003     Document Type: Review
Times cited : (379)

References (198)
  • 1
    • 0025895183 scopus 로고
    • Toward a science of metabolic engineering
    • Bailey, J.E., Toward a science of metabolic engineering. Science 252 (1991), 1668–1675.
    • (1991) Science , vol.252 , pp. 1668-1675
    • Bailey, J.E.1
  • 2
    • 84996587591 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli
    • Choi, K.R., et al. Systems metabolic engineering of Escherichia coli. EcoSal Plus 7 (2016), 1–56.
    • (2016) EcoSal Plus , vol.7 , pp. 1-56
    • Choi, K.R.1
  • 3
    • 85052701919 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for the production of natural compounds
    • Park, S.Y., et al. Metabolic engineering of microorganisms for the production of natural compounds. Adv. Biosyst., 2, 2018, 1700190.
    • (2018) Adv. Biosyst. , vol.2
    • Park, S.Y.1
  • 4
    • 85046649083 scopus 로고    scopus 로고
    • Escherichia coli as a host for metabolic engineering
    • Pontrelli, S., et al. Escherichia coli as a host for metabolic engineering. Metab. Eng. 50 (2018), 16–46.
    • (2018) Metab. Eng. , vol.50 , pp. 16-46
    • Pontrelli, S.1
  • 5
    • 84943604629 scopus 로고    scopus 로고
    • Systems strategies for developing industrial microbial strains
    • Lee, S.Y., Kim, H.U., Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33 (2015), 1061–1072.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1061-1072
    • Lee, S.Y.1    Kim, H.U.2
  • 6
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong, K.K., Nielsen, J., Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69 (2012), 2671–2690.
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 7
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
    • Park, J.H., et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 7797–7802.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 7797-7802
    • Park, J.H.1
  • 8
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for L-threonine production
    • Lee, K.H., et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol., 3, 2007, 149.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 149
    • Lee, K.H.1
  • 9
    • 84983317316 scopus 로고    scopus 로고
    • Prospects of microbial cell factories developed through systems metabolic engineering
    • Gustavsson, M., Lee, S.Y., Prospects of microbial cell factories developed through systems metabolic engineering. Microb. Biotechnol. 9 (2016), 610–617.
    • (2016) Microb. Biotechnol. , vol.9 , pp. 610-617
    • Gustavsson, M.1    Lee, S.Y.2
  • 10
    • 85021688655 scopus 로고    scopus 로고
    • Recent advances in systems metabolic engineering tools and strategies
    • Chae, T.U., et al. Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 47 (2017), 67–82.
    • (2017) Curr. Opin. Biotechnol. , vol.47 , pp. 67-82
    • Chae, T.U.1
  • 11
    • 79960414910 scopus 로고    scopus 로고
    • Systems metabolic engineering for chemicals and materials
    • Lee, J.W., et al. Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29 (2011), 370–378.
    • (2011) Trends Biotechnol. , vol.29 , pp. 370-378
    • Lee, J.W.1
  • 12
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Lee, J.W., et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8 (2012), 536–546.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 536-546
    • Lee, J.W.1
  • 13
    • 85020547969 scopus 로고    scopus 로고
    • Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks
    • d'Espaux, L., et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab. Eng. 42 (2017), 115–125.
    • (2017) Metab. Eng. , vol.42 , pp. 115-125
    • d'Espaux, L.1
  • 14
    • 85012926098 scopus 로고    scopus 로고
    • Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose
    • Wang, J., et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab. Eng. 40 (2017), 148–156.
    • (2017) Metab. Eng. , vol.40 , pp. 148-156
    • Wang, J.1
  • 15
    • 84922591980 scopus 로고    scopus 로고
    • Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
    • Chen, Z., et al. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol. J. 10 (2015), 284–289.
    • (2015) Biotechnol. J. , vol.10 , pp. 284-289
    • Chen, Z.1
  • 16
    • 84942162949 scopus 로고    scopus 로고
    • Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum
    • Kim, S., et al. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat. Commun., 6, 2015, 8410.
    • (2015) Nat. Commun. , vol.6 , pp. 8410
    • Kim, S.1
  • 17
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: microbial engineering for the production of sustainable biofuels
    • Liao, J.C., et al. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14 (2016), 288–304.
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 288-304
    • Liao, J.C.1
  • 18
    • 85012009458 scopus 로고    scopus 로고
    • Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
    • Qiao, K., et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35 (2017), 173–177.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 173-177
    • Qiao, K.1
  • 19
    • 84983740916 scopus 로고    scopus 로고
    • Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification
    • Choi, S., et al. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnol. Bioeng. 113 (2016), 2168–2177.
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 2168-2177
    • Choi, S.1
  • 20
    • 85054990965 scopus 로고    scopus 로고
    • A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum
    • Rohles, C.M., et al. A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum. Green Chem. 20 (2018), 4662–4674.
    • (2018) Green Chem. , vol.20 , pp. 4662-4674
    • Rohles, C.M.1
  • 21
    • 84963516758 scopus 로고    scopus 로고
    • One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli
    • Choi, S.Y., et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34 (2016), 435–440.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 435-440
    • Choi, S.Y.1
  • 22
    • 84907362164 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for L-arginine production
    • Park, S.H., et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun., 5, 2014, 4618.
    • (2014) Nat. Commun. , vol.5
    • Park, S.H.1
  • 23
    • 85022320379 scopus 로고    scopus 로고
    • Bacterial cellulose as an example product for sustainable production and consumption
    • Jang, W.D., et al. Bacterial cellulose as an example product for sustainable production and consumption. Microb. Biotechnol. 10 (2017), 1181–1185.
    • (2017) Microb. Biotechnol. , vol.10 , pp. 1181-1185
    • Jang, W.D.1
  • 24
    • 84959519771 scopus 로고    scopus 로고
    • Genetically encoded sensors enable real-time observation of metabolite production
    • Rogers, J.K., Church, G.M., Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 2388–2393.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 2388-2393
    • Rogers, J.K.1    Church, G.M.2
  • 25
    • 85068487709 scopus 로고    scopus 로고
    • CJ CheilJedang Corp. Compositions and methods of producing methionine, US8551742B2.
    • Brazeau, B. et al. CJ CheilJedang Corp. Compositions and methods of producing methionine, US8551742B2.
    • Brazeau, B.1
  • 26
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero – design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
    • Becker, J., et al. From zero to hero – design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13 (2011), 159–168.
    • (2011) Metab. Eng. , vol.13 , pp. 159-168
    • Becker, J.1
  • 27
    • 84920748206 scopus 로고    scopus 로고
    • Design of homo-organic acid producing strains using multi-objective optimization
    • Kim, T.Y., et al. Design of homo-organic acid producing strains using multi-objective optimization. Metab. Eng. 28 (2015), 63–73.
    • (2015) Metab. Eng. , vol.28 , pp. 63-73
    • Kim, T.Y.1
  • 28
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1
  • 29
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon, C.J., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1
  • 30
    • 84926646130 scopus 로고    scopus 로고
    • Distributing a metabolic pathway among a microbial consortium enhances production of natural products
    • Zhou, K., et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33 (2015), 377–383.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 377-383
    • Zhou, K.1
  • 31
    • 85048962896 scopus 로고    scopus 로고
    • Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli
    • Shomar, H., et al. Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat. Chem. Biol. 14 (2018), 794–800.
    • (2018) Nat. Chem. Biol. , vol.14 , pp. 794-800
    • Shomar, H.1
  • 32
    • 85053065721 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for secretory production of free haem
    • Zhao, X.R., et al. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1 (2018), 720–728.
    • (2018) Nat. Catal. , vol.1 , pp. 720-728
    • Zhao, X.R.1
  • 33
    • 85051394496 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity
    • Park, S.Y., et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 49 (2018), 105–115.
    • (2018) Metab. Eng. , vol.49 , pp. 105-115
    • Park, S.Y.1
  • 34
    • 84922575910 scopus 로고    scopus 로고
    • Production of squalene by squalene synthases and their truncated mutants in Escherichia coli
    • Katabami, A., et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J. Biosci. Bioeng. 119 (2015), 165–171.
    • (2015) J. Biosci. Bioeng. , vol.119 , pp. 165-171
    • Katabami, A.1
  • 35
    • 84899802037 scopus 로고    scopus 로고
    • Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris
    • Wriessnegger, T., et al. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab. Eng. 24 (2014), 18–29.
    • (2014) Metab. Eng. , vol.24 , pp. 18-29
    • Wriessnegger, T.1
  • 36
    • 84917739915 scopus 로고    scopus 로고
    • Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
    • Li, S., et al. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab. Eng. 28 (2015), 1–7.
    • (2015) Metab. Eng. , vol.28 , pp. 1-7
    • Li, S.1
  • 37
    • 84971215753 scopus 로고    scopus 로고
    • Metabolic engineering of the Actinomycete amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin
    • Fleige, C., et al. Metabolic engineering of the Actinomycete amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 82 (2016), 3410–3419.
    • (2016) Appl. Environ. Microbiol. , vol.82 , pp. 3410-3419
    • Fleige, C.1
  • 38
    • 85068489218 scopus 로고    scopus 로고
    • Korea Advanced Institute of Science and Technology. Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with tRNA of the specific amino acid, EP2330186B1.
    • Lee, S.Y. et al. Korea Advanced Institute of Science and Technology. Method for synthesizing protein containing high content of specific amino acid through simultaneous expression with tRNA of the specific amino acid, EP2330186B1.
    • Lee, S.Y.1
  • 39
    • 85030668169 scopus 로고    scopus 로고
    • Massively parallel de novo protein design for targeted therapeutics
    • Chevalier, A., et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550 (2017), 74–79.
    • (2017) Nature , vol.550 , pp. 74-79
    • Chevalier, A.1
  • 40
    • 84899051891 scopus 로고    scopus 로고
    • Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
    • Paddon, C.J., Keasling, J.D., Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12 (2014), 355–367.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 355-367
    • Paddon, C.J.1    Keasling, J.D.2
  • 41
    • 84927131694 scopus 로고    scopus 로고
    • Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis
    • Yano, J.M., et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2015), 264–276.
    • (2015) Cell , vol.161 , pp. 264-276
    • Yano, J.M.1
  • 42
    • 85017396256 scopus 로고    scopus 로고
    • Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models
    • Hwang, I.Y., et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun., 8, 2017, 15028.
    • (2017) Nat. Commun. , vol.8
    • Hwang, I.Y.1
  • 43
    • 85024392079 scopus 로고    scopus 로고
    • Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation
    • Riglar, D.T., et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35 (2017), 653–658.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 653-658
    • Riglar, D.T.1
  • 44
    • 85053084082 scopus 로고    scopus 로고
    • Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria
    • Isabella, V.M., et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36 (2018), 857–864.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 857-864
    • Isabella, V.M.1
  • 45
    • 84982836605 scopus 로고    scopus 로고
    • Synchronized cycles of bacterial lysis for in vivo delivery
    • Din, M.O., et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536 (2016), 81–85.
    • (2016) Nature , vol.536 , pp. 81-85
    • Din, M.O.1
  • 46
    • 85047442548 scopus 로고    scopus 로고
    • An ingestible bacterial-electronic system to monitor gastrointestinal health
    • Mimee, M., et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360 (2018), 915–918.
    • (2018) Science , vol.360 , pp. 915-918
    • Mimee, M.1
  • 47
    • 84896119130 scopus 로고    scopus 로고
    • Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
    • Choi, K.Y., et al. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23 (2014), 53–61.
    • (2014) Metab. Eng. , vol.23 , pp. 53-61
    • Choi, K.Y.1
  • 48
    • 85041215448 scopus 로고    scopus 로고
    • Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation
    • Joo, S., et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun., 9, 2018, 382.
    • (2018) Nat. Commun. , vol.9
    • Joo, S.1
  • 49
    • 84945291848 scopus 로고    scopus 로고
    • Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms
    • Yang, Y., et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ. Sci. Technol. 49 (2015), 12087–12093.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 12087-12093
    • Yang, Y.1
  • 50
    • 85049677229 scopus 로고    scopus 로고
    • Degradation of plastics and plastic-degrading bacteria in cold marine habitats
    • Urbanek, A.K., et al. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol., 2018, 10.1007/s00253-018-9195-y.
    • (2018) Appl. Microbiol. Biotechnol.
    • Urbanek, A.K.1
  • 51
    • 84901036143 scopus 로고    scopus 로고
    • Diverse alkane hydroxylase genes in microorganisms and environments
    • Nie, Y., et al. Diverse alkane hydroxylase genes in microorganisms and environments. Sci. Rep., 4, 2014, 4968.
    • (2014) Sci. Rep. , vol.4
    • Nie, Y.1
  • 52
    • 85020018556 scopus 로고    scopus 로고
    • Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli
    • Luo, Z.W., Lee, S.Y., Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun., 8, 2017, 15689.
    • (2017) Nat. Commun. , vol.8
    • Luo, Z.W.1    Lee, S.Y.2
  • 53
    • 84966269203 scopus 로고    scopus 로고
    • Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions
    • Cheong, S., et al. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34 (2016), 556–561.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 556-561
    • Cheong, S.1
  • 54
    • 85037612207 scopus 로고    scopus 로고
    • Renewable acrylonitrile production
    • Karp, E.M., et al. Renewable acrylonitrile production. Science 358 (2017), 1307–1310.
    • (2017) Science , vol.358 , pp. 1307-1310
    • Karp, E.M.1
  • 55
    • 85050677066 scopus 로고    scopus 로고
    • Production of ethylene glycol from xylose by metabolically engineered Escherichia coli
    • Chae, T.U., et al. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli. AIChE J. 64 (2018), 4193–4200.
    • (2018) AIChE J. , vol.64 , pp. 4193-4200
    • Chae, T.U.1
  • 56
    • 84899801675 scopus 로고    scopus 로고
    • Comparative engineering of Escherichia coli for cellobiose utilization: hydrolysis versus phosphorolysis
    • Shin, H.D., et al. Comparative engineering of Escherichia coli for cellobiose utilization: hydrolysis versus phosphorolysis. Metab. Eng. 24 (2014), 9–17.
    • (2014) Metab. Eng. , vol.24 , pp. 9-17
    • Shin, H.D.1
  • 57
    • 85009247636 scopus 로고    scopus 로고
    • Industrial biomanufacturing: the future of chemical production
    • Clomburg, J.M., et al. Industrial biomanufacturing: the future of chemical production. Science, 355, 2017.
    • (2017) Science , vol.355
    • Clomburg, J.M.1
  • 58
    • 84926364931 scopus 로고    scopus 로고
    • Metabolic engineering in methanotrophic bacteria
    • Kalyuzhnaya, M.G., et al. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29 (2015), 142–152.
    • (2015) Metab. Eng. , vol.29 , pp. 142-152
    • Kalyuzhnaya, M.G.1
  • 59
    • 85054089047 scopus 로고    scopus 로고
    • 2 to two-carbon compounds
    • 2 to two-carbon compounds. Nat. Commun., 9, 2018, 3992.
    • (2018) Nat. Commun. , vol.9 , pp. 3992
    • Yu, H.1    Liao, J.C.2
  • 60
    • 85054406427 scopus 로고    scopus 로고
    • 2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways
    • 2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), E9271–E9279.
    • (2018) Proc. Natl. Acad. Sci. U. S. A. , vol.115 , pp. E9271-E9279
    • Bang, J.1    Lee, S.Y.2
  • 61
    • 84964247550 scopus 로고    scopus 로고
    • A carbon sink pathway increases carbon productivity in cyanobacteria
    • Oliver, J.W.K., Atsumi, S., A carbon sink pathway increases carbon productivity in cyanobacteria. Metab. Eng. 29 (2015), 106–112.
    • (2015) Metab. Eng. , vol.29 , pp. 106-112
    • Oliver, J.W.K.1    Atsumi, S.2
  • 62
    • 84886948663 scopus 로고    scopus 로고
    • Microbial production of short-chain alkanes
    • Choi, Y.J., Lee, S.Y., Microbial production of short-chain alkanes. Nature 502 (2013), 571–574.
    • (2013) Nature , vol.502 , pp. 571-574
    • Choi, Y.J.1    Lee, S.Y.2
  • 63
    • 85052310327 scopus 로고    scopus 로고
    • Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability
    • Qi, F., et al. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability. J. Ind. Microbiol. Biotechnol. 45 (2018), 993–1002.
    • (2018) J. Ind. Microbiol. Biotechnol. , vol.45 , pp. 993-1002
    • Qi, F.1
  • 64
    • 85047015170 scopus 로고    scopus 로고
    • Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes
    • Hoffmann, S.L., et al. Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab. Eng. 47 (2018), 475–487.
    • (2018) Metab. Eng. , vol.47 , pp. 475-487
    • Hoffmann, S.L.1
  • 65
    • 84995487023 scopus 로고    scopus 로고
    • Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens
    • Lee, J.W., et al. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metab. Eng. 38 (2016), 409–417.
    • (2016) Metab. Eng. , vol.38 , pp. 409-417
    • Lee, J.W.1
  • 66
    • 84930675560 scopus 로고    scopus 로고
    • Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production
    • Kurosawa, K., et al. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Metab. Eng. 30 (2015), 89–95.
    • (2015) Metab. Eng. , vol.30 , pp. 89-95
    • Kurosawa, K.1
  • 67
    • 85033364117 scopus 로고    scopus 로고
    • Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica
    • Sagnak, R., et al. Modulation of the glycerol phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. J. Biotechnol. 265 (2018), 40–45.
    • (2018) J. Biotechnol. , vol.265 , pp. 40-45
    • Sagnak, R.1
  • 68
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomycetal genomes
    • Tong, Y., et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4 (2015), 1020–1029.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1020-1029
    • Tong, Y.1
  • 69
    • 85021307199 scopus 로고    scopus 로고
    • CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum
    • Cho, J.S., et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 42 (2017), 157–167.
    • (2017) Metab. Eng. , vol.42 , pp. 157-167
    • Cho, J.S.1
  • 70
    • 85050667866 scopus 로고    scopus 로고
    • Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis
    • Yu, J., et al. Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnol. Bioeng. 115 (2018), 2383–2388.
    • (2018) Biotechnol. Bioeng. , vol.115 , pp. 2383-2388
    • Yu, J.1
  • 71
    • 84992162165 scopus 로고    scopus 로고
    • Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs
    • Cho, C., Lee, S.Y., Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Biotechnol. Bioeng. 114 (2017), 374–383.
    • (2017) Biotechnol. Bioeng. , vol.114 , pp. 374-383
    • Cho, C.1    Lee, S.Y.2
  • 72
    • 84896881649 scopus 로고    scopus 로고
    • The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
    • Zhang, X., et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 23 (2014), 34–41.
    • (2014) Metab. Eng. , vol.23 , pp. 34-41
    • Zhang, X.1
  • 73
    • 84952672746 scopus 로고    scopus 로고
    • Surface display of glycosylated tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis
    • Kalyanasundram, J., et al. Surface display of glycosylated tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol., 15, 2015, 113.
    • (2015) BMC Biotechnol. , vol.15 , pp. 113
    • Kalyanasundram, J.1
  • 74
    • 84891843349 scopus 로고    scopus 로고
    • Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid
    • Graf, N., Altenbuchner, J., Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl. Microbiol. Biotechnol. 98 (2014), 137–149.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 137-149
    • Graf, N.1    Altenbuchner, J.2
  • 75
    • 85012845307 scopus 로고    scopus 로고
    • Engineering an obligate photoautotrophic Cyanobacterium to utilize glycerol for growth and chemical production
    • Kanno, M., Atsumi, S., Engineering an obligate photoautotrophic Cyanobacterium to utilize glycerol for growth and chemical production. ACS Synth. Biol. 6 (2017), 69–75.
    • (2017) ACS Synth. Biol. , vol.6 , pp. 69-75
    • Kanno, M.1    Atsumi, S.2
  • 76
    • 84949803390 scopus 로고    scopus 로고
    • Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals
    • Zeldes, B.M., et al. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front. Microbiol., 6, 2015, 1209.
    • (2015) Front. Microbiol. , vol.6 , pp. 1209
    • Zeldes, B.M.1
  • 77
    • 84896121349 scopus 로고    scopus 로고
    • Development of Halomonas TD01 as a host for open production of chemicals
    • Fu, X.Z., et al. Development of Halomonas TD01 as a host for open production of chemicals. Metab. Eng. 23 (2014), 78–91.
    • (2014) Metab. Eng. , vol.23 , pp. 78-91
    • Fu, X.Z.1
  • 78
    • 84908071473 scopus 로고    scopus 로고
    • Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase
    • Kim, Y.K., et al. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth. Biol. 3 (2014), 773–779.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 773-779
    • Kim, Y.K.1
  • 79
    • 85046435159 scopus 로고    scopus 로고
    • Enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9
    • Wang, W., et al. Enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9. ACS Synth. Biol. 7 (2018), 1259–1268.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 1259-1268
    • Wang, W.1
  • 80
    • 85053627577 scopus 로고    scopus 로고
    • Mass spider silk production through targeted gene replacement in Bombyx mori
    • Xu, J., et al. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 8757–8762.
    • (2018) Proc. Natl. Acad. Sci. U. S. A. , vol.115 , pp. 8757-8762
    • Xu, J.1
  • 81
    • 84901458007 scopus 로고    scopus 로고
    • Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate
    • Gutensohn, M., et al. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metab. Eng. 24 (2014), 107–116.
    • (2014) Metab. Eng. , vol.24 , pp. 107-116
    • Gutensohn, M.1
  • 82
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim, H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7 (2011), 445–452.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 445-452
    • Yim, H.1
  • 83
    • 84910130469 scopus 로고    scopus 로고
    • Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering
    • Feher, T., et al. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol. J. 9 (2014), 1446–1457.
    • (2014) Biotechnol. J. , vol.9 , pp. 1446-1457
    • Feher, T.1
  • 84
    • 84993958585 scopus 로고    scopus 로고
    • ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies
    • Hadadi, N., et al. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 5 (2016), 1155–1166.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 1155-1166
    • Hadadi, N.1
  • 85
    • 85059655505 scopus 로고    scopus 로고
    • RetroRules: a database of reaction rules for engineering biology
    • Duigou, T., et al. RetroRules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47 (2018), D1229–D1235.
    • (2018) Nucleic Acids Res. , vol.47 , pp. D1229-D1235
    • Duigou, T.1
  • 86
    • 85043307792 scopus 로고    scopus 로고
    • Pathway design using de novo steps through uncharted biochemical spaces
    • Kumar, A., et al. Pathway design using de novo steps through uncharted biochemical spaces. Nat. Commun., 9, 2018, 184.
    • (2018) Nat. Commun. , vol.9
    • Kumar, A.1
  • 87
    • 84997080010 scopus 로고    scopus 로고
    • Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life
    • Kan, S.B., et al. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life. Science 354 (2016), 1048–1051.
    • (2016) Science , vol.354 , pp. 1048-1051
    • Kan, S.B.1
  • 88
    • 84925426233 scopus 로고    scopus 로고
    • Computational protein design enables a novel one-carbon assimilation pathway
    • Siegel, J.B., et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 3704–3709.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 3704-3709
    • Siegel, J.B.1
  • 89
    • 84954460087 scopus 로고    scopus 로고
    • Engineering a polyketide synthase for in vitro production of adipic acid
    • Hagen, A., et al. Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth. Biol. 5 (2016), 21–27.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 21-27
    • Hagen, A.1
  • 90
    • 85055910851 scopus 로고    scopus 로고
    • Short-chain ketone production by engineered polyketide synthases in Streptomyces albus
    • Yuzawa, S., et al. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat. Commun., 9, 2018, 4569.
    • (2018) Nat. Commun. , vol.9
    • Yuzawa, S.1
  • 91
    • 85045003056 scopus 로고    scopus 로고
    • Enzymatic construction of highly strained carbocycles
    • Chen, K., et al. Enzymatic construction of highly strained carbocycles. Science 360 (2018), 71–75.
    • (2018) Science , vol.360 , pp. 71-75
    • Chen, K.1
  • 92
    • 85040338163 scopus 로고    scopus 로고
    • Genetically programmed chiral organoborane synthesis
    • Kan, S.B.J., et al. Genetically programmed chiral organoborane synthesis. Nature 552 (2017), 132–136.
    • (2017) Nature , vol.552 , pp. 132-136
    • Kan, S.B.J.1
  • 93
    • 85020822860 scopus 로고    scopus 로고
    • antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification
    • Blin, K., et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45 (2017), W36–W41.
    • (2017) Nucleic Acids Res. , vol.45 , pp. W36-W41
    • Blin, K.1
  • 94
    • 85023161576 scopus 로고    scopus 로고
    • PRISM 3: expanded prediction of natural product chemical structures from microbial genomes
    • Skinnider, M.A., et al. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45 (2017), W49–W54.
    • (2017) Nucleic Acids Res. , vol.45 , pp. W49-W54
    • Skinnider, M.A.1
  • 95
    • 84895075407 scopus 로고    scopus 로고
    • Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways
    • Albright, J.C., et al. Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 41 (2014), 451–459.
    • (2014) J. Ind. Microbiol. Biotechnol. , vol.41 , pp. 451-459
    • Albright, J.C.1
  • 96
    • 85044660186 scopus 로고    scopus 로고
    • Planning chemical syntheses with deep neural networks and symbolic AI
    • Segler, M.H.S., et al. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 (2018), 604–610.
    • (2018) Nature , vol.555 , pp. 604-610
    • Segler, M.H.S.1
  • 97
    • 84937122924 scopus 로고    scopus 로고
    • BASIC: a new biopart assembly standard for idempotent cloning provides accurate, single-tier DNA assembly for synthetic biology
    • Storch, M., et al. BASIC: a new biopart assembly standard for idempotent cloning provides accurate, single-tier DNA assembly for synthetic biology. ACS Synth. Biol. 4 (2015), 781–787.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 781-787
    • Storch, M.1
  • 98
    • 84891760559 scopus 로고    scopus 로고
    • One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy
    • Casini, A., et al. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res., 42, 2014, e7.
    • (2014) Nucleic Acids Res. , vol.42 , pp. e7
    • Casini, A.1
  • 99
    • 85056289315 scopus 로고    scopus 로고
    • Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly
    • Potapov, V., et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synth. Biol. 7 (2018), 2665–2674.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 2665-2674
    • Potapov, V.1
  • 100
    • 84896836282 scopus 로고    scopus 로고
    • Rapid and reliable DNA assembly via ligase cycling reaction
    • de Kok, S., et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 3 (2014), 97–106.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 97-106
    • de Kok, S.1
  • 101
    • 84896142083 scopus 로고    scopus 로고
    • One step DNA assembly for combinatorial metabolic engineering
    • Coussement, P., et al. One step DNA assembly for combinatorial metabolic engineering. Metab. Eng. 23 (2014), 70–77.
    • (2014) Metab. Eng. , vol.23 , pp. 70-77
    • Coussement, P.1
  • 102
    • 84928165512 scopus 로고    scopus 로고
    • Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform
    • Ross, A.C., et al. Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform. ACS Synth. Biol. 4 (2015), 414–420.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 414-420
    • Ross, A.C.1
  • 103
    • 84902308825 scopus 로고    scopus 로고
    • A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering
    • Lund, A.M., et al. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering. PLoS One, 9, 2014, e96693.
    • (2014) PLoS One , vol.9
    • Lund, A.M.1
  • 104
    • 85009090143 scopus 로고    scopus 로고
    • Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology
    • Hughes, R.A., Ellington, A.D., Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol., 9, 2017, a023812.
    • (2017) Cold Spring Harb. Perspect. Biol. , vol.9
    • Hughes, R.A.1    Ellington, A.D.2
  • 105
    • 84921517479 scopus 로고    scopus 로고
    • Functional optimization of gene clusters by combinatorial design and assembly
    • Smanski, M.J., et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol. 32 (2014), 1241–1249.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1241-1249
    • Smanski, M.J.1
  • 106
    • 84878577881 scopus 로고    scopus 로고
    • Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA
    • Petersen, K.V., et al. Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Appl. Environ. Microbiol. 79 (2013), 3563–3569.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 3563-3569
    • Petersen, K.V.1
  • 107
    • 85047192699 scopus 로고    scopus 로고
    • Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX
    • Domrose, A., et al. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX. Synth. Syst. Biotechnol. 2 (2017), 310–319.
    • (2017) Synth. Syst. Biotechnol. , vol.2 , pp. 310-319
    • Domrose, A.1
  • 108
    • 85047263606 scopus 로고    scopus 로고
    • Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida
    • Choi, K.R., et al. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab. Eng. 47 (2018), 463–474.
    • (2018) Metab. Eng. , vol.47 , pp. 463-474
    • Choi, K.R.1
  • 109
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 110
    • 84994391729 scopus 로고    scopus 로고
    • CRISPR technologies for bacterial systems: current achievements and future directions
    • Choi, K.R., Lee, S.Y., CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34 (2016), 1180–1209.
    • (2016) Biotechnol. Adv. , vol.34 , pp. 1180-1209
    • Choi, K.R.1    Lee, S.Y.2
  • 111
    • 84957553896 scopus 로고    scopus 로고
    • Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
    • Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 7, 2016, 10390.
    • (2016) Nat. Commun. , vol.7
    • Nakagawa, A.1
  • 112
    • 85031323768 scopus 로고    scopus 로고
    • Heterologous erythromycin production across strain and plasmid construction
    • Fang, L., et al. Heterologous erythromycin production across strain and plasmid construction. Biotechnol. Prog. 34 (2018), 271–276.
    • (2018) Biotechnol. Prog. , vol.34 , pp. 271-276
    • Fang, L.1
  • 113
    • 84959318102 scopus 로고    scopus 로고
    • Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables
    • Tan, Z., et al. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab. Eng. 35 (2016), 105–113.
    • (2016) Metab. Eng. , vol.35 , pp. 105-113
    • Tan, Z.1
  • 114
    • 84903202819 scopus 로고    scopus 로고
    • Improving the tolerance of Escherichia coli to medium-chain fatty acid production
    • Sherkhanov, S., et al. Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab. Eng. 25 (2014), 1–7.
    • (2014) Metab. Eng. , vol.25 , pp. 1-7
    • Sherkhanov, S.1
  • 115
    • 84896129574 scopus 로고    scopus 로고
    • Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol
    • Fisher, M.A., et al. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol. 3 (2014), 30–40.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 30-40
    • Fisher, M.A.1
  • 116
    • 84920903437 scopus 로고    scopus 로고
    • Improving microbial biogasoline production in Escherichia coli using tolerance engineering
    • Foo, J.L., et al. Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio, 5, 2014, e01932.
    • (2014) mBio , vol.5
    • Foo, J.L.1
  • 117
    • 84939268936 scopus 로고    scopus 로고
    • Tolerance engineering in bacteria for the production of advanced biofuels and chemicals
    • Mukhopadhyay, A., Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 23 (2015), 498–508.
    • (2015) Trends Microbiol. , vol.23 , pp. 498-508
    • Mukhopadhyay, A.1
  • 118
    • 84907483760 scopus 로고    scopus 로고
    • Biofuels. Altered sterol composition renders yeast thermotolerant
    • Caspeta, L., et al. Biofuels. Altered sterol composition renders yeast thermotolerant. Science 346 (2014), 75–78.
    • (2014) Science , vol.346 , pp. 75-78
    • Caspeta, L.1
  • 119
    • 84927514444 scopus 로고    scopus 로고
    • Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity
    • Royce, L.A., et al. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29 (2015), 180–188.
    • (2015) Metab. Eng. , vol.29 , pp. 180-188
    • Royce, L.A.1
  • 120
    • 85049738534 scopus 로고    scopus 로고
    • Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER
    • Wong, B.G., et al. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36 (2018), 614–623.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 614-623
    • Wong, B.G.1
  • 121
    • 85019835431 scopus 로고    scopus 로고
    • Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization
    • Radek, A., et al. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour. Technol. 245 (2017), 1377–1385.
    • (2017) Bioresour. Technol. , vol.245 , pp. 1377-1385
    • Radek, A.1
  • 122
    • 84928727000 scopus 로고    scopus 로고
    • Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping
    • Unthan, S., et al. Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping. Microb. Cell Fact., 14, 2015, 32.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 32
    • Unthan, S.1
  • 123
    • 85034224340 scopus 로고    scopus 로고
    • Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution
    • Mohamed, E.T., et al. Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microb. Cell Fact., 16, 2017, 204.
    • (2017) Microb. Cell Fact. , vol.16 , pp. 204
    • Mohamed, E.T.1
  • 124
    • 79955534060 scopus 로고    scopus 로고
    • A system for the continuous directed evolution of biomolecules
    • Esvelt, K.M., et al. A system for the continuous directed evolution of biomolecules. Nature 472 (2011), 499–503.
    • (2011) Nature , vol.472 , pp. 499-503
    • Esvelt, K.M.1
  • 125
    • 84890920555 scopus 로고    scopus 로고
    • Yeast oligo-mediated genome engineering (YOGE)
    • DiCarlo, J.E., et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2 (2013), 741–749.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 741-749
    • DiCarlo, J.E.1
  • 126
    • 84992075174 scopus 로고    scopus 로고
    • In vivo continuous evolution of genes and pathways in yeast
    • Crook, N., et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun., 7, 2016, 13051.
    • (2016) Nat. Commun. , vol.7
    • Crook, N.1
  • 127
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • Wang, H.H., et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460 (2009), 894–898.
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1
  • 128
    • 84876750152 scopus 로고    scopus 로고
    • Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19
    • Jang, Y.S., et al. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol. Bioeng. 110 (2013), 1646–1653.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 1646-1653
    • Jang, Y.S.1
  • 129
    • 85024405969 scopus 로고    scopus 로고
    • Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator
    • Ajjawi, I., et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35 (2017), 647–652.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 647-652
    • Ajjawi, I.1
  • 130
    • 85012892865 scopus 로고    scopus 로고
    • Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum
    • Chung, S.C., et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab. Eng. 40 (2017), 157–164.
    • (2017) Metab. Eng. , vol.40 , pp. 157-164
    • Chung, S.C.1
  • 131
    • 84953737483 scopus 로고    scopus 로고
    • The quantitative and condition-dependent Escherichia coli proteome
    • Schmidt, A., et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34 (2016), 104–110.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 104-110
    • Schmidt, A.1
  • 132
    • 84947583295 scopus 로고    scopus 로고
    • Overflow metabolism in Escherichia coli results from efficient proteome allocation
    • Basan, M., et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528 (2015), 99–104.
    • (2015) Nature , vol.528 , pp. 99-104
    • Basan, M.1
  • 133
    • 85047258589 scopus 로고    scopus 로고
    • Protein acylation affects the artificial biosynthetic pathway for pinosylvin production in engineered E. coli
    • Xu, J.Y., et al. Protein acylation affects the artificial biosynthetic pathway for pinosylvin production in engineered E. coli. ACS Chem. Biol. 13 (2018), 1200–1208.
    • (2018) ACS Chem. Biol. , vol.13 , pp. 1200-1208
    • Xu, J.Y.1
  • 134
    • 85017430967 scopus 로고    scopus 로고
    • Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli
    • Ohtake, T., et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab. Eng. 41 (2017), 135–143.
    • (2017) Metab. Eng. , vol.41 , pp. 135-143
    • Ohtake, T.1
  • 135
    • 85031825399 scopus 로고    scopus 로고
    • 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens
    • 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab. Eng. 44 (2017), 198–212.
    • (2017) Metab. Eng. , vol.44 , pp. 198-212
    • Lange, A.1
  • 136
    • 85046410120 scopus 로고    scopus 로고
    • 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR
    • 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR. Metab. Eng. 47 (2018), 357–373.
    • (2018) Metab. Eng. , vol.47 , pp. 357-373
    • Schwechheimer, S.K.1
  • 137
    • 85031310018 scopus 로고    scopus 로고
    • iML1515, a knowledgebase that computes Escherichia coli traits
    • Monk, J.M., et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35 (2017), 904–908.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 904-908
    • Monk, J.M.1
  • 138
    • 85011094697 scopus 로고    scopus 로고
    • Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
    • Magnusdottir, S., et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35 (2017), 81–89.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 81-89
    • Magnusdottir, S.1
  • 139
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi, H.S., et al. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 76 (2010), 3097–3105.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 3097-3105
    • Choi, H.S.1
  • 140
    • 84865075156 scopus 로고    scopus 로고
    • Flux variability scanning based on enforced objective flux for identifying gene amplification targets
    • Park, J.M., et al. Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol., 6, 2012, 106.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 106
    • Park, J.M.1
  • 141
    • 84990177186 scopus 로고    scopus 로고
    • Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
    • Kim, M., et al. Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat. Commun., 7, 2016, 13090.
    • (2016) Nat. Commun. , vol.7
    • Kim, M.1
  • 142
    • 84991740197 scopus 로고    scopus 로고
    • Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes
    • 238–251.e212
    • Monk, J.M., et al. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst., 3, 2016 238–251.e212.
    • (2016) Cell Syst. , vol.3
    • Monk, J.M.1
  • 143
    • 85050988747 scopus 로고    scopus 로고
    • COBRAme: a computational framework for genome-scale models of metabolism and gene expression
    • Lloyd, C.J., et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol., 14, 2018, e1006302.
    • (2018) PLoS Comput. Biol. , vol.14
    • Lloyd, C.J.1
  • 144
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • Sanchez, B.J., et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13, 2017, 935.
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 935
    • Sanchez, B.J.1
  • 145
    • 85018729051 scopus 로고    scopus 로고
    • Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440
    • Elmore, J.R., et al. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab. Eng. Commun. 5 (2017), 1–8.
    • (2017) Metab. Eng. Commun. , vol.5 , pp. 1-8
    • Elmore, J.R.1
  • 146
    • 85048207943 scopus 로고    scopus 로고
    • Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number
    • Kang, C.W., et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab. Eng. 48 (2018), 121–128.
    • (2018) Metab. Eng. , vol.48 , pp. 121-128
    • Kang, C.W.1
  • 147
    • 85045101963 scopus 로고    scopus 로고
    • Engineered promoters enable constant gene expression at any copy number in bacteria
    • Segall-Shapiro, T.H., et al. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol. 36 (2018), 352–358.
    • (2018) Nat. Biotechnol. , vol.36 , pp. 352-358
    • Segall-Shapiro, T.H.1
  • 148
    • 84873596341 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
    • Na, D., et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31 (2013), 170–174.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 170-174
    • Na, D.1
  • 149
    • 84900873278 scopus 로고    scopus 로고
    • Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering
    • Crook, N.C., et al. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth. Biol. 3 (2014), 307–313.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 307-313
    • Crook, N.C.1
  • 150
    • 84873288058 scopus 로고    scopus 로고
    • Integrative eQTL-based analyses reveal the biology of breast cancer risk loci
    • Li, Q., et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152 (2013), 633–641.
    • (2013) Cell , vol.152 , pp. 633-641
    • Li, Q.1
  • 151
    • 85015798130 scopus 로고    scopus 로고
    • Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli
    • Wu, J., et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 44 (2017), 1083–1095.
    • (2017) J. Ind. Microbiol. Biotechnol. , vol.44 , pp. 1083-1095
    • Wu, J.1
  • 152
    • 85053507552 scopus 로고    scopus 로고
    • Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production
    • Tao, S., et al. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Microb. Cell Fact., 17, 2018, 147.
    • (2018) Microb. Cell Fact. , vol.17 , pp. 147
    • Tao, S.1
  • 153
    • 84925462732 scopus 로고    scopus 로고
    • Creating small transcription activating RNAs
    • Chappell, J., et al. Creating small transcription activating RNAs. Nat. Chem. Biol. 11 (2015), 214–220.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 214-220
    • Chappell, J.1
  • 154
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • Gilbert, L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1
  • 155
    • 84988569121 scopus 로고    scopus 로고
    • Editing DNA methylation in the mammalian genome
    • 233–247.e217
    • Liu, X.S., et al. Editing DNA methylation in the mammalian genome. Cell, 167, 2016 233–247.e217.
    • (2016) Cell , vol.167
    • Liu, X.S.1
  • 156
    • 85044647449 scopus 로고    scopus 로고
    • Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes
    • Tapsin, S., et al. Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. Nat. Commun., 9, 2018, 1289.
    • (2018) Nat. Commun. , vol.9
    • Tapsin, S.1
  • 157
    • 85054360865 scopus 로고    scopus 로고
    • Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria
    • Yang, D., et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 9835–9844.
    • (2018) Proc. Natl. Acad. Sci. U. S. A. , vol.115 , pp. 9835-9844
    • Yang, D.1
  • 158
    • 84901202594 scopus 로고    scopus 로고
    • Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis
    • Liu, Y., et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab. Eng. 24 (2014), 61–69.
    • (2014) Metab. Eng. , vol.24 , pp. 61-69
    • Liu, Y.1
  • 159
    • 85006421915 scopus 로고    scopus 로고
    • Synthetic lipid-containing scaffolds enhance production by colocalizing enzymes
    • Myhrvold, C., et al. Synthetic lipid-containing scaffolds enhance production by colocalizing enzymes. ACS Synth. Biol. 5 (2016), 1396–1403.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 1396-1403
    • Myhrvold, C.1
  • 160
    • 84919643583 scopus 로고    scopus 로고
    • Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli
    • Lewicka, A.J., et al. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli. ACS Synth. Biol. 3 (2014), 976–978.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 976-978
    • Lewicka, A.J.1
  • 161
    • 85045197699 scopus 로고    scopus 로고
    • Bacterial microcompartments
    • Kerfeld, C.A., et al. Bacterial microcompartments. Nat. Rev. Microbiol. 16 (2018), 277–290.
    • (2018) Nat. Rev. Microbiol. , vol.16 , pp. 277-290
    • Kerfeld, C.A.1
  • 162
    • 84982801326 scopus 로고    scopus 로고
    • Metabolic engineering of microbial competitive advantage for industrial fermentation processes
    • Shaw, A.J., et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353 (2016), 583–586.
    • (2016) Science , vol.353 , pp. 583-586
    • Shaw, A.J.1
  • 163
    • 84982802698 scopus 로고    scopus 로고
    • Benefits of selective feeding
    • Lennen, R.M., Benefits of selective feeding. Science 353 (2016), 542–543.
    • (2016) Science , vol.353 , pp. 542-543
    • Lennen, R.M.1
  • 164
    • 84955192252 scopus 로고    scopus 로고
    • ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment
    • Chan, C.T., et al. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12 (2016), 82–86.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 82-86
    • Chan, C.T.1
  • 165
    • 85034452883 scopus 로고    scopus 로고
    • Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production
    • Mans, R., et al. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr. Opin. Biotechnol. 50 (2018), 47–56.
    • (2018) Curr. Opin. Biotechnol. , vol.50 , pp. 47-56
    • Mans, R.1
  • 166
    • 85045069110 scopus 로고    scopus 로고
    • Evolutionary engineering of industrial microorganisms-strategies and applications
    • Zhu, Z., et al. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 102 (2018), 4615–4627.
    • (2018) Appl. Microbiol. Biotechnol. , vol.102 , pp. 4615-4627
    • Zhu, Z.1
  • 167
    • 85048761909 scopus 로고    scopus 로고
    • Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system
    • McCloskey, D., et al. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system. Metab. Eng. 48 (2018), 233–242.
    • (2018) Metab. Eng. , vol.48 , pp. 233-242
    • McCloskey, D.1
  • 168
    • 84991745987 scopus 로고    scopus 로고
    • Improved production of propionic acid using genome shuffling
    • Luna-Flores, C.H., et al. Improved production of propionic acid using genome shuffling. Biotechnol. J., 12, 2017, 1600120.
    • (2017) Biotechnol. J. , vol.12
    • Luna-Flores, C.H.1
  • 169
    • 0037034007 scopus 로고    scopus 로고
    • Genome shuffling leads to rapid phenotypic improvement in bacteria
    • Zhang, Y.X., et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415 (2002), 644–646.
    • (2002) Nature , vol.415 , pp. 644-646
    • Zhang, Y.X.1
  • 170
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper, H., et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314 (2006), 1565–1568.
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1
  • 171
    • 84953791504 scopus 로고    scopus 로고
    • Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis
    • Tan, F., et al. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb. Cell Fact., 15, 2016, 4.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 4
    • Tan, F.1
  • 172
    • 84949796862 scopus 로고    scopus 로고
    • Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids
    • Amiram, M., et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33 (2015), 1272–1279.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1272-1279
    • Amiram, M.1
  • 173
    • 85018521893 scopus 로고    scopus 로고
    • Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry
    • Chao, R., et al. Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry. ACS Synth. Biol. 6 (2017), 678–685.
    • (2017) ACS Synth. Biol. , vol.6 , pp. 678-685
    • Chao, R.1
  • 174
    • 84891385829 scopus 로고    scopus 로고
    • Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing
    • Sun, N., Zhao, H., Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110 (2013), 1811–1821.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 1811-1821
    • Sun, N.1    Zhao, H.2
  • 175
    • 85011034228 scopus 로고    scopus 로고
    • Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering
    • Garst, A.D., et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35 (2017), 48–55.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 48-55
    • Garst, A.D.1
  • 176
    • 84945388093 scopus 로고    scopus 로고
    • Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum
    • Mahr, R., et al. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab. Eng. 32 (2015), 184–194.
    • (2015) Metab. Eng. , vol.32 , pp. 184-194
    • Mahr, R.1
  • 177
    • 85008192136 scopus 로고    scopus 로고
    • Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution
    • Mundhada, H., et al. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metab. Eng. 39 (2017), 141–150.
    • (2017) Metab. Eng. , vol.39 , pp. 141-150
    • Mundhada, H.1
  • 178
    • 0032517277 scopus 로고    scopus 로고
    • Synthesis of vanillin from glucose
    • Li, K., Frost, J.W., Synthesis of vanillin from glucose. J. Am. Chem. Soc. 120 (1998), 10545–10546.
    • (1998) J. Am. Chem. Soc. , vol.120 , pp. 10545-10546
    • Li, K.1    Frost, J.W.2
  • 179
    • 65549118633 scopus 로고    scopus 로고
    • De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae)
    • Hansen, E.H., et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75 (2009), 2765–2774.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 2765-2774
    • Hansen, E.H.1
  • 180
    • 78049460641 scopus 로고    scopus 로고
    • Improved vanillin production in baker's yeast through in silico design
    • Brochado, A.R., et al. Improved vanillin production in baker's yeast through in silico design. Microb. Cell Fact., 9, 2010, 84.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 84
    • Brochado, A.R.1
  • 181
    • 84959422900 scopus 로고    scopus 로고
    • Synthetic biology's first malaria drug meets market resistance
    • Peplow, M., Synthetic biology's first malaria drug meets market resistance. Nature 530 (2016), 389–390.
    • (2016) Nature , vol.530 , pp. 389-390
    • Peplow, M.1
  • 182
    • 85021412868 scopus 로고    scopus 로고
    • Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies
    • Horinouchi, T., et al. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J. Biotechnol. 255 (2017), 47–56.
    • (2017) J. Biotechnol. , vol.255 , pp. 47-56
    • Horinouchi, T.1
  • 183
    • 85041211158 scopus 로고    scopus 로고
    • Efficient 3-hydroxybutyrate production by quiescent Escherichia coli microbial cell factories is facilitated by indole-induced proteomic and metabolomic changes
    • Thomson, N.M., et al. Efficient 3-hydroxybutyrate production by quiescent Escherichia coli microbial cell factories is facilitated by indole-induced proteomic and metabolomic changes. Biotechnol. J., 13, 2018, e1700571.
    • (2018) Biotechnol. J. , vol.13
    • Thomson, N.M.1
  • 184
    • 85014037010 scopus 로고    scopus 로고
    • A new genome-mining tool redefines the lasso peptide biosynthetic landscape
    • Tietz, J.I., et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13 (2017), 470–478.
    • (2017) Nat. Chem. Biol. , vol.13 , pp. 470-478
    • Tietz, J.I.1
  • 185
    • 85018599747 scopus 로고    scopus 로고
    • Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas
    • Islam, M.A., et al. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metab. Eng. 41 (2017), 173–181.
    • (2017) Metab. Eng. , vol.41 , pp. 173-181
    • Islam, M.A.1
  • 186
    • 85038207858 scopus 로고    scopus 로고
    • RetroPath2.0: a retrosynthesis workflow for metabolic engineers
    • Delepine, B., et al. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45 (2018), 158–170.
    • (2018) Metab. Eng. , vol.45 , pp. 158-170
    • Delepine, B.1
  • 187
    • 84930225331 scopus 로고    scopus 로고
    • Reconstructing genome-scale metabolic models with merlin
    • Dias, O., et al. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43 (2015), 3899–3910.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 3899-3910
    • Dias, O.1
  • 188
    • 85055635316 scopus 로고    scopus 로고
    • RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor
    • Wang, H., et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol., 14, 2018, e1006541.
    • (2018) PLoS Comput. Biol. , vol.14
    • Wang, H.1
  • 189
    • 85047568107 scopus 로고    scopus 로고
    • ssbio: a Python framework for structural systems biology
    • Mih, N., et al. ssbio: a Python framework for structural systems biology. Bioinformatics 34 (2018), 2155–2157.
    • (2018) Bioinformatics , vol.34 , pp. 2155-2157
    • Mih, N.1
  • 190
    • 85058737818 scopus 로고    scopus 로고
    • pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis
    • Salvy, P., et al. pyTFA and matTFA: a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis. Bioinformatics, 2018, 10.1093/bioinformatics/bty499.
    • (2018) Bioinformatics
    • Salvy, P.1
  • 191
    • 85045832505 scopus 로고    scopus 로고
    • Cameo: a python library for computer aided metabolic engineering and optimization of cell factories
    • Cardoso, J.G.R., et al. Cameo: a python library for computer aided metabolic engineering and optimization of cell factories. ACS Synth. Biol. 7 (2018), 1163–1166.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 1163-1166
    • Cardoso, J.G.R.1
  • 192
    • 85068488300 scopus 로고    scopus 로고
    • Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. arXiv.org arXiv:1710.04038v2 [q-bio.QM].
    • Heirendt, L. et al. (2018) Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. arXiv.org arXiv:1710.04038v2 [q-bio.QM].
    • (2018)
    • Heirendt, L.1
  • 193
    • 84893405383 scopus 로고    scopus 로고
    • Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
    • Chen, Z., et al. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 80 (2014), 1388–1393.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 1388-1393
    • Chen, Z.1
  • 194
    • 85055596999 scopus 로고    scopus 로고
    • Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow
    • Brunk, E., et al. Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 11096–11101.
    • (2018) Proc. Natl. Acad. Sci. U. S. A. , vol.115 , pp. 11096-11101
    • Brunk, E.1
  • 195
    • 84861963767 scopus 로고    scopus 로고
    • Genome-scale promoter engineering by coselection MAGE
    • Wang, H.H., et al. Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9 (2012), 591–593.
    • (2012) Nat. Methods , vol.9 , pp. 591-593
    • Wang, H.H.1
  • 196
    • 85040862509 scopus 로고    scopus 로고
    • Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm
    • Lee, M.J., et al. Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nat. Chem. Biol. 14 (2018), 142–147.
    • (2018) Nat. Chem. Biol. , vol.14 , pp. 142-147
    • Lee, M.J.1
  • 197
    • 84963568291 scopus 로고    scopus 로고
    • Genetic circuit design automation
    • Nielsen, A.A.K., et al. Genetic circuit design automation. Science, 352, 2016, aac7341.
    • (2016) Science , vol.352
    • Nielsen, A.A.K.1
  • 198
    • 85054013550 scopus 로고    scopus 로고
    • Programmable protein circuits in living cells
    • Gao, X.J., et al. Programmable protein circuits in living cells. Science 361 (2018), 1252–1258.
    • (2018) Science , vol.361 , pp. 1252-1258
    • Gao, X.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.