메뉴 건너뛰기




Volumn 50, Issue , 2018, Pages 47-56

Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production

Author keywords

[No Author keywords available]

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; GENES; INDUSTRIAL CHEMICALS; REVERSE ENGINEERING;

EID: 85034452883     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2017.10.011     Document Type: Review
Times cited : (124)

References (78)
  • 1
    • 84899976199 scopus 로고    scopus 로고
    • Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    • Borodina, I., Nielsen, J., Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9 (2014), 609–620.
    • (2014) Biotechnol J , vol.9 , pp. 609-620
    • Borodina, I.1    Nielsen, J.2
  • 2
    • 84889641544 scopus 로고    scopus 로고
    • From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae
    • Tippmann, S., Chen, Y., Siewers, V., Nielsen, J., From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8 (2013), 1435–1444.
    • (2013) Biotechnol J , vol.8 , pp. 1435-1444
    • Tippmann, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 4
    • 85028950493 scopus 로고    scopus 로고
    • CRISPR/Cas system for yeast genome engineering: advances and applications
    • Stovicek, V., Holkenbrink, C., Borodina, I., CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res, 2017, 10.1093/femsyr/fox030.
    • (2017) FEMS Yeast Res
    • Stovicek, V.1    Holkenbrink, C.2    Borodina, I.3
  • 5
    • 84933518878 scopus 로고    scopus 로고
    • Recent applications of synthetic biology tools for yeast metabolic engineering
    • Jensen, M.K., Keasling, J.D., Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res, 2014, 10.1111/1567-1364.12185.
    • (2014) FEMS Yeast Res
    • Jensen, M.K.1    Keasling, J.D.2
  • 6
    • 0035232377 scopus 로고    scopus 로고
    • Evolutionary engineering of industrially important microbial phenotypes
    • Sauer, U., Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73 (2001), 129–169.
    • (2001) Adv Biochem Eng Biotechnol , vol.73 , pp. 129-169
    • Sauer, U.1
  • 7
    • 84879489028 scopus 로고    scopus 로고
    • Adaptive laboratory evolution — principles and applications for biotechnology
    • Dragosits, M., Mattanovich, D., Adaptive laboratory evolution — principles and applications for biotechnology. Microb Cell Fact, 12, 2013, 64.
    • (2013) Microb Cell Fact , vol.12 , pp. 64
    • Dragosits, M.1    Mattanovich, D.2
  • 8
    • 84887294397 scopus 로고    scopus 로고
    • Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae
    • Oud, B., Guadalupe-Medina, V., Nijkamp, J.F., de Ridder, D., Pronk, J.T., van Maris, A.J.A., Daran, J.-M., Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. Proc Natl Acad Sci 110 (2013), E4223–E4231.
    • (2013) Proc Natl Acad Sci , vol.110 , pp. E4223-E4231
    • Oud, B.1    Guadalupe-Medina, V.2    Nijkamp, J.F.3    de Ridder, D.4    Pronk, J.T.5    van Maris, A.J.A.6    Daran, J.-M.7
  • 9
    • 85020655752 scopus 로고    scopus 로고
    • Experimental evolution reveals favored adaptive routes to cell aggregation in yeast
    • Hope, E.A., Amorosi, C.J., Miller, A.W., Dang, K., Heil, C.S., Dunham, M.J., Experimental evolution reveals favored adaptive routes to cell aggregation in yeast. Genetics 206 (2017), 1153–1167.
    • (2017) Genetics , vol.206 , pp. 1153-1167
    • Hope, E.A.1    Amorosi, C.J.2    Miller, A.W.3    Dang, K.4    Heil, C.S.5    Dunham, M.J.6
  • 10
    • 79960137718 scopus 로고    scopus 로고
    • Genetic variation and the fate of beneficial mutations in asexual populations
    • Lang, G.I., Botstein, D., Desai, M.M., Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188 (2011), 647–661.
    • (2011) Genetics , vol.188 , pp. 647-661
    • Lang, G.I.1    Botstein, D.2    Desai, M.M.3
  • 11
    • 85020503243 scopus 로고    scopus 로고
    • Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies
    • e00410-17
    • Sandberg, T.E., Lloyd, C.J., Palsson, B.O., Feist, A.M., Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl Environ Microbiol, 83, 2017 e00410-17.
    • (2017) Appl Environ Microbiol , vol.83
    • Sandberg, T.E.1    Lloyd, C.J.2    Palsson, B.O.3    Feist, A.M.4
  • 12
    • 84962602150 scopus 로고    scopus 로고
    • Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology
    • Sandberg, T.E., Long, C.P., Gonzalez, J.E., Feist, A.M., Antoniewicz, M.R., Palsson, B.O., Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology. PLoS One, 11, 2016, e0151130.
    • (2016) PLoS One , vol.11 , pp. e0151130
    • Sandberg, T.E.1    Long, C.P.2    Gonzalez, J.E.3    Feist, A.M.4    Antoniewicz, M.R.5    Palsson, B.O.6
  • 13
    • 85019835431 scopus 로고    scopus 로고
    • Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization
    • Radek, A., Tenhaef, N., Müller, M.F., Brüsseler, C., Wiechert, W., Marienhagen, J., Polen, T., Noack, S., Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour Technol, 2017, 10.1016/j.biortech.2017.05.055.
    • (2017) Bioresour Technol
    • Radek, A.1    Tenhaef, N.2    Müller, M.F.3    Brüsseler, C.4    Wiechert, W.5    Marienhagen, J.6    Polen, T.7    Noack, S.8
  • 14
    • 84863633909 scopus 로고    scopus 로고
    • Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1
    • Avrahami-Moyal, L., Engelberg, D., Wenger, J.W., Sherlock, G., Braun, S., Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 12 (2012), 521–533.
    • (2012) FEMS Yeast Res , vol.12 , pp. 521-533
    • Avrahami-Moyal, L.1    Engelberg, D.2    Wenger, J.W.3    Sherlock, G.4    Braun, S.5
  • 15
    • 57649219146 scopus 로고    scopus 로고
    • Super life — how and why “cell selection” leads to the fastest-growing eukaryote
    • Groeneveld, P., Stouthamer, A.H., Westerhoff, H.V., Super life — how and why “cell selection” leads to the fastest-growing eukaryote. FEBS J 276 (2009), 254–270.
    • (2009) FEBS J , vol.276 , pp. 254-270
    • Groeneveld, P.1    Stouthamer, A.H.2    Westerhoff, H.V.3
  • 16
    • 85026546145 scopus 로고    scopus 로고
    • Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations
    • e00892-17
    • Bracher, J.M., de Hulster, E., Koster, C.C., van den Broek, M., Daran, J.-M.G., van Maris, A.J.A., Pronk, J.T., Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations. Appl Environ Microbiol, 83, 2017 e00892-17.
    • (2017) Appl Environ Microbiol , vol.83
    • Bracher, J.M.1    de Hulster, E.2    Koster, C.C.3    van den Broek, M.4    Daran, J.-M.G.5    van Maris, A.J.A.6    Pronk, J.T.7
  • 17
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • Wright, J., Bellissimi, E., de Hulster, E., Wagner, A., Pronk, J.T., van Maris, A.J.A., Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11 (2011), 299–306.
    • (2011) FEMS Yeast Res , vol.11 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    de Hulster, E.3    Wagner, A.4    Pronk, J.T.5    van Maris, A.J.A.6
  • 18
    • 0027496404 scopus 로고
    • Nutrient-limited microbial growth kinetics: overview and recent advances
    • Button, D.K., Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie Van Leeuwenhoek 63 (1993), 225–235.
    • (1993) Antonie Van Leeuwenhoek , vol.63 , pp. 225-235
    • Button, D.K.1
  • 20
    • 12844268921 scopus 로고    scopus 로고
    • Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity
    • Jansen, M.L.A., Daran-Lapujade, P., de Winde, J.H., Piper, M.D.W., Pronk, J.T., Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Appl Environ Microbiol 70 (2004), 1956–1963.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 1956-1963
    • Jansen, M.L.A.1    Daran-Lapujade, P.2    de Winde, J.H.3    Piper, M.D.W.4    Pronk, J.T.5
  • 22
  • 23
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou, H., Cheng, J., Wang, B.L., Fink, G.R., Stephanopoulos, G., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14 (2012), 611–622.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5
  • 24
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • This study demonstrates how prior genetic engineering of a yeast strain can be used to focus subsequent evolutionary engineering on a specific, industrially relevant cellular process.
    • Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., Boles, E., Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci 111 (2014), 5159–5164 This study demonstrates how prior genetic engineering of a yeast strain can be used to focus subsequent evolutionary engineering on a specific, industrially relevant cellular process.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 25
    • 84959170763 scopus 로고    scopus 로고
    • Pentose and Glucose Fermenting Yeast Cell
    • WO2012049170 A2
    • Wisselink, H.W., van Maris, A.J.A., Pronk, J.T., Pentose and Glucose Fermenting Yeast Cell. 2012 WO2012049170 A2.
    • (2012)
    • Wisselink, H.W.1    van Maris, A.J.A.2    Pronk, J.T.3
  • 26
    • 84991086121 scopus 로고    scopus 로고
    • Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter
    • Li, H., Schmitz, O., Alper, H.S., Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl Microbiol Biotechnol 100 (2016), 10215–10223.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 10215-10223
    • Li, H.1    Schmitz, O.2    Alper, H.S.3
  • 29
    • 84857061668 scopus 로고    scopus 로고
    • Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
    • Oud, B., Van Maris, A.J.A., Daran, J.-M., Pronk, J.T., Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12 (2012), 183–196.
    • (2012) FEMS Yeast Res , vol.12 , pp. 183-196
    • Oud, B.1    Van Maris, A.J.A.2    Daran, J.-M.3    Pronk, J.T.4
  • 30
    • 84902162689 scopus 로고    scopus 로고
    • Analyzing the genomic variation of microbial cell factories in the era of “New Biotechnology”
    • Herrgård, M., Panagiotou, G., Analyzing the genomic variation of microbial cell factories in the era of “New Biotechnology”. Comput Struct Biotechnol J 3 (2012), 1–8.
    • (2012) Comput Struct Biotechnol J , vol.3 , pp. 1-8
    • Herrgård, M.1    Panagiotou, G.2
  • 32
    • 85019861990 scopus 로고    scopus 로고
    • Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts
    • Gorter de Vries, A.R., Pronk, J.T., Daran, J.-M.G., Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts. Appl Environ Microbiol 83 (2017), e03206–e3216.
    • (2017) Appl Environ Microbiol , vol.83 , pp. e03206-e3216
    • Gorter de Vries, A.R.1    Pronk, J.T.2    Daran, J.-M.G.3
  • 33
    • 77949551578 scopus 로고    scopus 로고
    • Whole-genome sequencing of a laboratory-evolved yeast strain
    • Araya, C.L., Payen, C., Dunham, M.J., Fields, S., Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics, 11, 2010, 88.
    • (2010) BMC Genomics , vol.11 , pp. 88
    • Araya, C.L.1    Payen, C.2    Dunham, M.J.3    Fields, S.4
  • 35
    • 84907862283 scopus 로고    scopus 로고
    • Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance
    • Demonstration of how genome sequencing of yeast strains obtained from independent, parallel evolutionary engineering experiments enables fast elucidation of the molecular basis of an industrially relevant trait.
    • Kildegaard, K.R., Hallström, B.M., Blicher, T.H., Sonnenschein, N., Jensen, N.B., Sherstyk, S., Harrison, S.J., Maury, J., Herrgård, M.J., Juncker, A.S., et al. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26 (2014), 57–66 Demonstration of how genome sequencing of yeast strains obtained from independent, parallel evolutionary engineering experiments enables fast elucidation of the molecular basis of an industrially relevant trait.
    • (2014) Metab Eng , vol.26 , pp. 57-66
    • Kildegaard, K.R.1    Hallström, B.M.2    Blicher, T.H.3    Sonnenschein, N.4    Jensen, N.B.5    Sherstyk, S.6    Harrison, S.J.7    Maury, J.8    Herrgård, M.J.9    Juncker, A.S.10
  • 36
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • González-Ramos, D., Van den Broek, M., Van Maris, A.J., Pronk, J.T., Daran, J.-M.G., Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels, 6, 2013, 48.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 48
    • González-Ramos, D.1    Van den Broek, M.2    Van Maris, A.J.3    Pronk, J.T.4    Daran, J.-M.G.5
  • 37
    • 84987981814 scopus 로고    scopus 로고
    • A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations
    • Demonstration of how a dynamic evolutionary engineering strategy decreases context dependency of an evolved phenotype. The study also illustrates application of classic yeast genetics to facilitate identification of causal mutations.
    • González-Ramos, D., Gorter de Vries, A.R., Grijseels, S.S., van Berkum, M.C., Swinnen, S., van den Broek, M., Nevoigt, E., Daran, J.-M.G., Pronk, J.T., van Maris, A.J.A., A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels, 9, 2016, 173 Demonstration of how a dynamic evolutionary engineering strategy decreases context dependency of an evolved phenotype. The study also illustrates application of classic yeast genetics to facilitate identification of causal mutations.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 173
    • González-Ramos, D.1    Gorter de Vries, A.R.2    Grijseels, S.S.3    van Berkum, M.C.4    Swinnen, S.5    van den Broek, M.6    Nevoigt, E.7    Daran, J.-M.G.8    Pronk, J.T.9    van Maris, A.J.A.10
  • 38
    • 85027139376 scopus 로고    scopus 로고
    • The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives
    • Ho, P.-W., Swinnen, S., Duitama, J., Nevoigt, E., The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives. Biotechnol Biofuels, 10, 2017, 10.
    • (2017) Biotechnol Biofuels , vol.10 , pp. 10
    • Ho, P.-W.1    Swinnen, S.2    Duitama, J.3    Nevoigt, E.4
  • 39
    • 0024508964 scopus 로고
    • Mapping mendelian factors underlying quantitative traits using RFLP linkage maps
    • Lander, E.S., Botstein, D., Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121 (1989), 185–199.
    • (1989) Genetics , vol.121 , pp. 185-199
    • Lander, E.S.1    Botstein, D.2
  • 41
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • Almario, M.P., Reyes, L.H., Kao, K.C., Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110 (2013), 2616–2623.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2616-2623
    • Almario, M.P.1    Reyes, L.H.2    Kao, K.C.3
  • 42
  • 44
    • 84940882226 scopus 로고    scopus 로고
    • Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses
    • Quantitative analysis of phenotypic trade-offs in a system that has become a paradigm for modern evolutionary engineering experiments in yeast.
    • Caspeta, L., Nielsen, J., Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio 6 (2015), e00431–e515 Quantitative analysis of phenotypic trade-offs in a system that has become a paradigm for modern evolutionary engineering experiments in yeast.
    • (2015) MBio , vol.6 , pp. e00431-e515
    • Caspeta, L.1    Nielsen, J.2
  • 45
    • 84971247513 scopus 로고    scopus 로고
    • Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C
    • Caspeta, L., Chen, Y., Nielsen, J., Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C. Sci Rep, 6, 2016, 27003.
    • (2016) Sci Rep , vol.6 , pp. 27003
    • Caspeta, L.1    Chen, Y.2    Nielsen, J.3
  • 46
    • 84878524493 scopus 로고    scopus 로고
    • How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism
    • This analysis of the importance of resource allocation in microbial evolution provides highly valuable insights for design of (dynamic) evolutionary engineering experiments.
    • Berkhout, J., Bosdriesz, E., Nikerel, E., Molenaar, D., de Ridder, D., Teusink, B., Bruggeman, F.J., How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism. Genetics 194 (2013), 505–512 This analysis of the importance of resource allocation in microbial evolution provides highly valuable insights for design of (dynamic) evolutionary engineering experiments.
    • (2013) Genetics , vol.194 , pp. 505-512
    • Berkhout, J.1    Bosdriesz, E.2    Nikerel, E.3    Molenaar, D.4    de Ridder, D.5    Teusink, B.6    Bruggeman, F.J.7
  • 47
    • 84959560542 scopus 로고    scopus 로고
    • Metabolic trade-offs in yeast are caused by F1F0-ATP synthase
    • Nilsson, A., Nielsen, J., Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci Rep, 6, 2016, 22264.
    • (2016) Sci Rep , vol.6 , pp. 22264
    • Nilsson, A.1    Nielsen, J.2
  • 48
    • 85018655538 scopus 로고    scopus 로고
    • Coutilization of D-glucose, D-xylose, and L-arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering
    • Wang, C., Zhao, J., Qiu, C., Wang, S., Shen, Y., Du, B., Ding, Y., Bao, X., Coutilization of D-glucose, D-xylose, and L-arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering. Biomed Res Int 2017 (2017), 1–8.
    • (2017) Biomed Res Int , vol.2017 , pp. 1-8
    • Wang, C.1    Zhao, J.2    Qiu, C.3    Wang, S.4    Shen, Y.5    Du, B.6    Ding, Y.7    Bao, X.8
  • 49
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink, H.W., Toirkens, M.J., Wu, Q., Pronk, J.T., van Maris, A.J.A., Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75 (2009), 907–914.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    van Maris, A.J.A.5
  • 50
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
    • Kuyper, M., Winkler, A., van Dijken, J.P., Pronk, J.T., Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4 (2004), 655–664.
    • (2004) FEMS Yeast Res , vol.4 , pp. 655-664
    • Kuyper, M.1    Winkler, A.2    van Dijken, J.P.3    Pronk, J.T.4
  • 51
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae
    • Nijland, J.G., Shin, H.Y., de Jong, R.M., de Waal, P.P., Klaassen, P., Driessen, A.J., Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels, 7, 2014, 168.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 168
    • Nijland, J.G.1    Shin, H.Y.2    de Jong, R.M.3    de Waal, P.P.4    Klaassen, P.5    Driessen, A.J.6
  • 52
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • Smith, J., van Rensburg, E., Görgens, J.F., Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol, 14, 2014, 41.
    • (2014) BMC Biotechnol , vol.14 , pp. 41
    • Smith, J.1    van Rensburg, E.2    Görgens, J.F.3
  • 53
    • 19044396051 scopus 로고    scopus 로고
    • Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity
    • Jansen, M.L.A., Diderich, J.A., Mashego, M., Hassane, A., De Winde, J.H., Daran-Lapujade, P., Pronk, J.T., Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology 151 (2005), 1657–1669.
    • (2005) Microbiology , vol.151 , pp. 1657-1669
    • Jansen, M.L.A.1    Diderich, J.A.2    Mashego, M.3    Hassane, A.4    De Winde, J.H.5    Daran-Lapujade, P.6    Pronk, J.T.7
  • 54
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • Koppram, R., Albers, E., Olsson, L., Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels, 5, 2012, 32.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 55
    • 84893502065 scopus 로고    scopus 로고
    • Mutational landscape of yeast mutator strains
    • Genetic engineering strategies for increasing the genome-wide incidence of specific types of mutations in growing yeast cultures.
    • Serero, A., Jubin, C., Loeillet, S., Legoix-Né, P., Nicolas, A.G., Mutational landscape of yeast mutator strains. Proc Natl Acad Sci 111 (2014), 1897–1902 Genetic engineering strategies for increasing the genome-wide incidence of specific types of mutations in growing yeast cultures.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 1897-1902
    • Serero, A.1    Jubin, C.2    Loeillet, S.3    Legoix-Né, P.4    Nicolas, A.G.5
  • 56
    • 85005781392 scopus 로고    scopus 로고
    • The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss
    • Solis-Escalante, D., Van den Broek, M., Kuijpers, N.G.A., Pronk, J.T., Boles, E., Daran, J.-M., Daran-Lapujade, P., The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res, 2015, 15.
    • (2015) FEMS Yeast Res , pp. 15
    • Solis-Escalante, D.1    Van den Broek, M.2    Kuijpers, N.G.A.3    Pronk, J.T.4    Boles, E.5    Daran, J.-M.6    Daran-Lapujade, P.7
  • 60
    • 84877280637 scopus 로고    scopus 로고
    • Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM
    • e99-e99 Elegant demonstration of a method to accelerate evolution at a specific, predefined locus in the yeast genome.
    • Finney-Manchester, S.P., Maheshri, N., Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res, 41, 2013 e99-e99 Elegant demonstration of a method to accelerate evolution at a specific, predefined locus in the yeast genome.
    • (2013) Nucleic Acids Res , vol.41
    • Finney-Manchester, S.P.1    Maheshri, N.2
  • 63
    • 84926201540 scopus 로고    scopus 로고
    • Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA
    • Demeke, M.M., Foulquié-Moreno, M.R., Dumortier, F., Thevelein, J.M., Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLOS Genet, 11, 2015, e1005010.
    • (2015) PLOS Genet , vol.11 , pp. e1005010
    • Demeke, M.M.1    Foulquié-Moreno, M.R.2    Dumortier, F.3    Thevelein, J.M.4
  • 65
    • 78149432728 scopus 로고    scopus 로고
    • Variable tandem repeats accelerate evolution of coding and regulatory sequences
    • Gemayel, R., Vinces, M.D., Legendre, M., Verstrepen, K.J., Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44 (2010), 445–477.
    • (2010) Annu Rev Genet , vol.44 , pp. 445-477
    • Gemayel, R.1    Vinces, M.D.2    Legendre, M.3    Verstrepen, K.J.4
  • 66
    • 84964314476 scopus 로고    scopus 로고
    • Structures of naturally evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous recombination
    • Zhao, Y., Strope, P.K., Kozmin, S.G., McCusker, J.H., Dietrich, F.S., Kokoska, R.J., Petes, T.D., Structures of naturally evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous recombination. G3 Genes, Genomes, Genet 4 (2014), 2259–2269.
    • (2014) G3 Genes, Genomes, Genet , vol.4 , pp. 2259-2269
    • Zhao, Y.1    Strope, P.K.2    Kozmin, S.G.3    McCusker, J.H.4    Dietrich, F.S.5    Kokoska, R.J.6    Petes, T.D.7
  • 67
    • 85017464092 scopus 로고    scopus 로고
    • Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
    • Verhoeven, M.D., Lee, M., Kamoen, L., van den Broek, M., Janssen, D.B., Daran, J.-M.G., van Maris, A.J.A., Pronk, J.T., Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep, 7, 2017, 46155.
    • (2017) Sci Rep , vol.7 , pp. 46155
    • Verhoeven, M.D.1    Lee, M.2    Kamoen, L.3    van den Broek, M.4    Janssen, D.B.5    Daran, J.-M.G.6    van Maris, A.J.A.7    Pronk, J.T.8
  • 68
    • 84888771270 scopus 로고    scopus 로고
    • Improving carotenoids production in yeast via adaptive laboratory evolution
    • Reyes, L.H., Gomez, J.M., Kao, K.C., Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21 (2014), 26–33.
    • (2014) Metab Eng , vol.21 , pp. 26-33
    • Reyes, L.H.1    Gomez, J.M.2    Kao, K.C.3
  • 69
    • 84924176808 scopus 로고    scopus 로고
    • An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica
    • Liu, L., Pan, A., Spofford, C., Zhou, N., Alper, H.S., An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29 (2015), 36–45.
    • (2015) Metab Eng , vol.29 , pp. 36-45
    • Liu, L.1    Pan, A.2    Spofford, C.3    Zhou, N.4    Alper, H.S.5
  • 71
    • 84872655172 scopus 로고    scopus 로고
    • Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
    • Otero, J.M., Cimini, D., Patil, K.R., Poulsen, S.G., Olsson, L., Nielsen, J., Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One, 8, 2013, e54144.
    • (2013) PLoS One , vol.8 , pp. e54144
    • Otero, J.M.1    Cimini, D.2    Patil, K.R.3    Poulsen, S.G.4    Olsson, L.5    Nielsen, J.6
  • 72
    • 85024874626 scopus 로고    scopus 로고
    • Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications
    • Lin, J.-L., Wagner, J.M., Alper, H.S., Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol Adv, 2017, 10.1016/j.biotechadv.2017.07.005.
    • (2017) Biotechnol Adv
    • Lin, J.-L.1    Wagner, J.M.2    Alper, H.S.3
  • 73
    • 85023613454 scopus 로고    scopus 로고
    • Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae
    • Shi, S., Choi, Y.W., Zhao, H., Tan, M.H., Ang, E.L., Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. Bioresour Technol, 2017, 10.1016/j.biortech.2017.06.114.
    • (2017) Bioresour Technol
    • Shi, S.1    Choi, Y.W.2    Zhao, H.3    Tan, M.H.4    Ang, E.L.5
  • 74
    • 85021690473 scopus 로고    scopus 로고
    • Engineering and in vivo applications of riboswitches
    • Hallberg, Z.F., Su, Y., Kitto, R.Z., Hammond, M.C., Engineering and in vivo applications of riboswitches. Annu Rev Biochem 86 (2017), 515–539.
    • (2017) Annu Rev Biochem , vol.86 , pp. 515-539
    • Hallberg, Z.F.1    Su, Y.2    Kitto, R.Z.3    Hammond, M.C.4
  • 75
    • 79959913313 scopus 로고    scopus 로고
    • Biosensors and their applications in microbial metabolic engineering
    • Zhang, F., Keasling, J., Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19 (2011), 323–329.
    • (2011) Trends Microbiol , vol.19 , pp. 323-329
    • Zhang, F.1    Keasling, J.2
  • 76
    • 84959504252 scopus 로고    scopus 로고
    • Synthetic evolution of metabolic productivity using biosensors
    • Williams, T.C., Pretorius, I.S., Paulsen, I.T., Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol 34 (2016), 371–381.
    • (2016) Trends Biotechnol , vol.34 , pp. 371-381
    • Williams, T.C.1    Pretorius, I.S.2    Paulsen, I.T.3
  • 77
    • 85027997650 scopus 로고    scopus 로고
    • Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae
    • Pioneering study on the application of synthetic regulatory circuits for evolutionary engineering of anabolic product formation.
    • Leavitt, J.M., Wagner, J.M., Tu, C.C., Tong, A., Liu, Y., Alper, H.S., Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol J, 2017, 10.1002/biot.201600687 Pioneering study on the application of synthetic regulatory circuits for evolutionary engineering of anabolic product formation.
    • (2017) Biotechnol J
    • Leavitt, J.M.1    Wagner, J.M.2    Tu, C.C.3    Tong, A.4    Liu, Y.5    Alper, H.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.