-
1
-
-
65349185120
-
Biofuels: a technological perspective
-
Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, et al. Biofuels: a technological perspective. Energ Environ Sci. 2008;1(5):542-64.
-
(2008)
Energ Environ Sci
, vol.1
, Issue.5
, pp. 542-564
-
-
Luque, R.1
Herrero-Davila, L.2
Campelo, J.M.3
Clark, J.H.4
Hidalgo, J.M.5
Luna, D.6
-
2
-
-
49649106060
-
Genomics of cellulosic biofuels
-
Rubin EM. Genomics of cellulosic biofuels. Nature. 2008;454(7206):841-5.
-
(2008)
Nature
, vol.454
, Issue.7206
, pp. 841-845
-
-
Rubin, E.M.1
-
3
-
-
77952967218
-
Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process
-
dos Santos Dda S, Camelo AC, Rodrigues KC, Carlos LC, Pereira N Jr. Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process. Appl Biochem Biotechnol. 2010;161(1-8):93-105.
-
(2010)
Appl Biochem Biotechnol
, vol.161
, Issue.1-8
, pp. 93-105
-
-
Santos, D.S.1
Camelo, A.C.2
Rodrigues, K.C.3
Carlos, L.C.4
Pereira, N.5
-
4
-
-
84903421930
-
Zymomonas mobilis: a novel platform for future biorefineries
-
He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, et al. Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels. 2014;7(1):101-15.
-
(2014)
Biotechnol Biofuels
, vol.7
, Issue.1
, pp. 101-115
-
-
He, M.X.1
Wu, B.2
Qin, H.3
Ruan, Z.Y.4
Tan, F.R.5
Wang, J.L.6
-
5
-
-
78649452309
-
Comparative evaluations of cellulosic raw materials for second generation bioethanol production
-
Jeon YJ, Xun Z, Rogers PL. Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett Appl Microbiol. 2010;51(5):518-24.
-
(2010)
Lett Appl Microbiol
, vol.51
, Issue.5
, pp. 518-524
-
-
Jeon, Y.J.1
Xun, Z.2
Rogers, P.L.3
-
7
-
-
84880029566
-
Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic
-
Franden MA, Pilath HM, Mohagheghi A, Pienkos PT, Zhang M. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic. Biotechnol Biofuels. 2013;6:99-113.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 99-113
-
-
Franden, M.A.1
Pilath, H.M.2
Mohagheghi, A.3
Pienkos, P.T.4
Zhang, M.5
-
8
-
-
0022457115
-
Effect of ethanol and heat on the protein pattern of Zymomonas mobilis
-
Michel GP, Starka J. Effect of ethanol and heat on the protein pattern of Zymomonas mobilis. J Bacteriol. 1986;165(3):1040-2.
-
(1986)
J Bacteriol
, vol.165
, Issue.3
, pp. 1040-1042
-
-
Michel, G.P.1
Starka, J.2
-
9
-
-
34848849025
-
Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress
-
Thanonkeo P, Laopaiboon P, Sootsuwan K, Yamada M. Magnesium ions improve growth and ethanol production of Zymomonas mobilis under heat or ethanol stress. Biotechnology. 2007;6(1):112-9.
-
(2007)
Biotechnology
, vol.6
, Issue.1
, pp. 112-119
-
-
Thanonkeo, P.1
Laopaiboon, P.2
Sootsuwan, K.3
Yamada, M.4
-
10
-
-
77954993979
-
irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses
-
Chen M. irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses. J Microbiol Biotechnol. 2010;20(7):1156-62.
-
(2010)
J Microbiol Biotechnol
, vol.20
, Issue.7
, pp. 1156-1162
-
-
Chen, M.1
-
11
-
-
73949105851
-
Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation
-
Luo LH, Seo PS, Seo JW, Heo SY, Kim DH, Kim CH. Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnol Lett. 2009;31(12):1867-71.
-
(2009)
Biotechnol Lett
, vol.31
, Issue.12
, pp. 1867-1871
-
-
Luo, L.H.1
Seo, P.S.2
Seo, J.W.3
Heo, S.Y.4
Kim, D.H.5
Kim, C.H.6
-
12
-
-
57649149334
-
Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae
-
Shi DJ, Wang CL, Wang KM. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2009;36(1):139-47.
-
(2009)
J Ind Microbiol Biotechnol
, vol.36
, Issue.1
, pp. 139-147
-
-
Shi, D.J.1
Wang, C.L.2
Wang, K.M.3
-
13
-
-
4444330508
-
Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition
-
Tao F, Miao JY, Shi GY, Zhang KC. Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem. 2005;40(1):183-7.
-
(2005)
Process Biochem
, vol.40
, Issue.1
, pp. 183-187
-
-
Tao, F.1
Miao, J.Y.2
Shi, G.Y.3
Zhang, K.C.4
-
14
-
-
77953738245
-
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae
-
Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, et al. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2010;107(23):10395-400.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, Issue.23
, pp. 10395-10400
-
-
Yang, S.1
Land, M.L.2
Klingeman, D.M.3
Pelletier, D.A.4
Lu, T.Y.5
Martin, S.L.6
-
15
-
-
84861999245
-
Transcriptome profiling of Zymomonas mobilis under furfural stress
-
He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, et al. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol. 2012;95(1):189-99.
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, Issue.1
, pp. 189-199
-
-
He, M.X.1
Wu, B.2
Shui, Z.X.3
Hu, Q.C.4
Wang, W.G.5
Tan, F.R.6
-
16
-
-
84869013121
-
Transcriptome profiling of Zymomonas mobilis under ethonal stress
-
He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, et al. Transcriptome profiling of Zymomonas mobilis under ethonal stress. Biotechnol Biofuels. 2012;5:75-84.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 75-84
-
-
He, M.X.1
Wu, B.2
Shui, Z.X.3
Hu, Q.C.4
Wang, W.G.5
Tan, F.R.6
-
17
-
-
84880487156
-
Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses
-
Yang S, Pan C, Tschaplinski TJ, Hurst GB, Engle NL, Zhou W, et al. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One. 2013;8(7):68886-99.
-
(2013)
PLoS One
, vol.8
, Issue.7
, pp. 68886-68899
-
-
Yang, S.1
Pan, C.2
Tschaplinski, T.J.3
Hurst, G.B.4
Engle, N.L.5
Zhou, W.6
-
18
-
-
84905730531
-
A system based network approach to ethanol tolerance in Saccharomyces cerevisiae
-
Kasavi C, Eraslan S, Arga KY, Oner ET, Kirdar B. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. BMC Syst Biol. 2014;8(1):90-103.
-
(2014)
BMC Syst Biol
, vol.8
, Issue.1
, pp. 90-103
-
-
Kasavi, C.1
Eraslan, S.2
Arga, K.Y.3
Oner, E.T.4
Kirdar, B.5
-
19
-
-
84907977170
-
Genetic Architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains
-
Lewis JA, Broman AT, Will J, Gasch AP. Genetic Architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains. Genetics. 2014;198(1):369-82.
-
(2014)
Genetics
, vol.198
, Issue.1
, pp. 369-382
-
-
Lewis, J.A.1
Broman, A.T.2
Will, J.3
Gasch, A.P.4
-
20
-
-
84899087848
-
Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae
-
Henderson CM, Block DE. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80(10):2966-72.
-
(2014)
Appl Environ Microbiol
, vol.80
, Issue.10
, pp. 2966-2972
-
-
Henderson, C.M.1
Block, D.E.2
-
21
-
-
52649115929
-
Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli
-
Lee JY, Sung BH, Yu BJ, Lee JH, Lee SH, Kim MS, et al. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli. Nucleic Acids Res. 2008;36(16):102-11.
-
(2008)
Nucleic Acids Res
, vol.36
, Issue.16
, pp. 102-111
-
-
Lee, J.Y.1
Sung, B.H.2
Yu, B.J.3
Lee, J.H.4
Lee, S.H.5
Kim, M.S.6
-
22
-
-
10744225041
-
Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors
-
Park KS, Lee DK, Lee H, Lee Y, Jang YS, Kim YH, et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol. 2003;21(10):1208-14.
-
(2003)
Nat Biotechnol
, vol.21
, Issue.10
, pp. 1208-1214
-
-
Park, K.S.1
Lee, D.K.2
Lee, H.3
Lee, Y.4
Jang, Y.S.5
Kim, Y.H.6
-
23
-
-
84902477557
-
Artificial transcription factor-mediated regulation of gene expression
-
van Tol N, van der Zaal BJ. Artificial transcription factor-mediated regulation of gene expression. Plant Sci. 2014;225:58-67.
-
(2014)
Plant Sci
, vol.225
, pp. 58-67
-
-
Tol, N.1
Zaal, B.J.2
-
24
-
-
33847083318
-
Global transcription machinery engineering: a new approach for improving cellular phenotype
-
Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9(3):258-67.
-
(2007)
Metab Eng
, vol.9
, Issue.3
, pp. 258-267
-
-
Alper, H.1
Stephanopoulos, G.2
-
25
-
-
40649093316
-
Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains
-
Klein-Marcuschamer D, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci USA. 2008;105(7):2319-24.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.7
, pp. 2319-2324
-
-
Klein-Marcuschamer, D.1
Stephanopoulos, G.2
-
26
-
-
33845442201
-
Engineering yeast transcription machinery for improved ethanol tolerance and production
-
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314(5805):1565-8.
-
(2006)
Science
, vol.314
, Issue.5805
, pp. 1565-1568
-
-
Alper, H.1
Moxley, J.2
Nevoigt, E.3
Fink, G.R.4
Stephanopoulos, G.5
-
27
-
-
77953577305
-
Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli
-
Hong SH, Wang X, Wood TK. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol. 2010;3(3):344-56.
-
(2010)
Microb Biotechnol
, vol.3
, Issue.3
, pp. 344-356
-
-
Hong, S.H.1
Wang, X.2
Wood, T.K.3
-
28
-
-
78349252715
-
Engineering global regulator Hha of Escherichia coli to control biofilm dispersal
-
Hong SH, Lee J, Wood TK. Engineering global regulator Hha of Escherichia coli to control biofilm dispersal. Microb Biotechnol. 2010;3(6):717-28.
-
(2010)
Microb Biotechnol
, vol.3
, Issue.6
, pp. 717-728
-
-
Hong, S.H.1
Lee, J.2
Wood, T.K.3
-
29
-
-
84874571853
-
Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)
-
Chong HQ, Huang L, Yeow JW, Wang I, Zhang HF, Song H, et al. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One. 2013;8(2):1-9.
-
(2013)
PLoS One
, vol.8
, Issue.2
, pp. 1-9
-
-
Chong, H.Q.1
Huang, L.2
Yeow, J.W.3
Wang, I.4
Zhang, H.F.5
Song, H.6
-
30
-
-
84862853727
-
Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance
-
Zhang H, Chong H, Ching CB, Song H, Jiang R. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol. 2012;94(4):1107-17.
-
(2012)
Appl Microbiol Biotechnol
, vol.94
, Issue.4
, pp. 1107-1117
-
-
Zhang, H.1
Chong, H.2
Ching, C.B.3
Song, H.4
Jiang, R.5
-
31
-
-
0028793123
-
Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes
-
Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop RM II, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166:175-6.
-
(1995)
Gene
, vol.166
, pp. 175-176
-
-
Kovach, M.E.1
Elzer, P.H.2
Steven Hill, D.3
Robertson, G.T.4
Farris, M.A.5
Roop, R.M.6
-
32
-
-
0023095029
-
Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase
-
Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO. Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol. 1987;169(3):949-54.
-
(1987)
J Bacteriol
, vol.169
, Issue.3
, pp. 949-954
-
-
Conway, T.1
Osman, Y.A.2
Konnan, J.I.3
Hoffmann, E.M.4
Ingram, L.O.5
-
33
-
-
0023039990
-
The two alcohol dehydrogenases of Zymomonas mobilis purification by differential dye ligand chromatography, molecular characterisation and physiological roles
-
Neale AD, Scopes RK, Kelly JM, Wettenhall REH. The two alcohol dehydrogenases of Zymomonas mobilis purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem. 1986;154:119-24.
-
(1986)
Eur J Biochem
, vol.154
, pp. 119-124
-
-
Neale, A.D.1
Scopes, R.K.2
Kelly, J.M.3
Wettenhall, R.E.H.4
-
34
-
-
0024616002
-
Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc
-
Mackenzie KF, Eddy CK, Ingram LO. Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol. 1989;171(2):1063-8.
-
(1989)
J Bacteriol
, vol.171
, Issue.2
, pp. 1063-1068
-
-
Mackenzie, K.F.1
Eddy, C.K.2
Ingram, L.O.3
-
36
-
-
21144437397
-
The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4
-
Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol. 2005;23(1):63-8.
-
(2005)
Nat Biotechnol
, vol.23
, Issue.1
, pp. 63-68
-
-
Seo, J.S.1
Chong, H.2
Park, H.S.3
Yoon, K.O.4
Jung, C.5
Kim, J.J.6
|