-
4
-
-
0030966362
-
The history of pulp and paper bleaching: Respiratory-health effects
-
pmid: 9142078
-
K. Torén, P. D. Blanc, The history of pulp and paper bleaching: Respiratory-health effects. Lancet 349, 1316-1318 (1997). doi: 10.1016/S0140-6736(96)10141-0; pmid: 9142078
-
(1997)
Lancet
, vol.349
, pp. 1316-1318
-
-
Torén, K.1
Blanc, P.D.2
-
5
-
-
84972047946
-
Textile bleaching and the birth of the chemical industry
-
K. H. Wolff, Textile bleaching and the birth of the chemical industry. Bus. Hist. Rev. 48, 143-163 (1974). doi: 10.2307/3112839
-
(1974)
Bus. Hist. Rev.
, vol.48
, pp. 143-163
-
-
Wolff, K.H.1
-
9
-
-
84952360783
-
Incorporating bioenergy into sustainable landscape designs
-
V. H. Dale et al., Incorporating bioenergy into sustainable landscape designs. Renew. Sustain. Energy Rev. 56, 1158-1171 (2016). doi: 10.1016/j.rser.2015.12.038
-
(2016)
Renew. Sustain. Energy Rev.
, vol.56
, pp. 1158-1171
-
-
Dale, V.H.1
-
10
-
-
84923917099
-
Allocating methane emissions to natural gas and oil production from shale formations
-
D. Zavala-Araiza, D. T. Allen, M. Harrison, F. C. George, G. R. Jersey, Allocating methane emissions to natural gas and oil production from shale formations. ACS Sustain. Chem.& Eng. 3, 492-498 (2015). doi: 10.1021/sc500730x
-
(2015)
ACS Sustain. Chem.& Eng.
, vol.3
, pp. 492-498
-
-
Zavala-Araiza, D.1
Allen, D.T.2
Harrison, M.3
George, F.C.4
Jersey, G.R.5
-
11
-
-
0003675348
-
-
World Bank
-
World Bank, World Development Indicators 2015 (World Bank, 2015); https://openknowledge.worldbank.org/handle/10986/21634.
-
(2015)
World Development Indicators 2015
-
-
-
12
-
-
84888632517
-
Small modular infrastructure
-
E. Dahlgren, C. Göçmen, K. Lackner, G. van Ryzin, Small modular infrastructure. Eng. Econ. 58, 231-264 (2013). doi: 10.1080/0013791X.2013.825038
-
(2013)
Eng. Econ.
, vol.58
, pp. 231-264
-
-
Dahlgren, E.1
Göçmen, C.2
Lackner, K.3
Van Ryzin, G.4
-
13
-
-
84899066005
-
Rethinking biological activation of methane and conversion to liquid fuels
-
pmid: 24743257
-
C. A. Haynes, R. Gonzalez, Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331-339 (2014). doi: 10.1038/nchembio.1509; pmid: 24743257
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 331-339
-
-
Haynes, C.A.1
Gonzalez, R.2
-
14
-
-
84856030065
-
Perspective on opportunities in industrial biotechnology in renewable chemicals
-
pmid: 21932250
-
B. Erickson, P. Nelson, P. Winters, Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7, 176-185 (2012). doi: 10.1002/biot.201100069; pmid: 21932250
-
(2012)
Biotechnol. J.
, vol.7
, pp. 176-185
-
-
Erickson, B.1
Nelson, P.2
Winters, P.3
-
15
-
-
78649716727
-
Manufacturing molecules through metabolic engineering
-
pmid: 21127247
-
J. D. Keasling, Manufacturing molecules through metabolic engineering. Science 330, 1355-1358 (2010). doi: 10.1126/science.1193990; pmid: 21127247
-
(2010)
Science
, vol.330
, pp. 1355-1358
-
-
Keasling, J.D.1
-
16
-
-
84964460909
-
-
EIA
-
Energy Information Adminstration, Monthly Energy Review, Total Energy (EIA, 2016); http://www.eia.gov/totalenergy/data/monthly/index.cfm#renewable.
-
(2016)
Monthly Energy Review, Total Energy
-
-
-
17
-
-
84884692692
-
VIIRS nightfire: Satellite pyrometry at night
-
C. D. Elvidge, M. Zhizhin, F. C. Hsu, K. E. Baugh, VIIRS nightfire: Satellite pyrometry at night. Remote Sens. 5, 4423-4449 (2013). doi: 10.3390/rs5094423
-
(2013)
Remote Sens.
, vol.5
, pp. 4423-4449
-
-
Elvidge, C.D.1
Zhizhin, M.2
Hsu, F.C.3
Baugh, K.E.4
-
19
-
-
84927750084
-
Enzymatic oxidation of methane
-
pmid: 25806595
-
S. Sirajuddin, A. C. Rosenzweig, Enzymatic oxidation of methane. Biochemistry 54, 2283-2294 (2015). doi: 10.1021/acs.biochem.5b00198; pmid: 25806595
-
(2015)
Biochemistry
, vol.54
, pp. 2283-2294
-
-
Sirajuddin, S.1
Rosenzweig, A.C.2
-
20
-
-
84926364931
-
Metabolic engineering in methanotrophic bacteria
-
pmid: 25825038
-
M. G. Kalyuzhnaya, A. W. Puri, M. E. Lidstrom, Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142-152 (2015). doi: 10.1016/j.ymben.2015.03.010; pmid: 25825038
-
(2015)
Metab. Eng.
, vol.29
, pp. 142-152
-
-
Kalyuzhnaya, M.G.1
Puri, A.W.2
Lidstrom, M.E.3
-
21
-
-
41349106563
-
Metabolic aspects of aerobic obligate methanotrophy
-
pmid: 18395128
-
Y. A. Trotsenko, J. C. Murrell, Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63, 183-229 (2008). doi: 10.1016/S0065-2164(07)00005-6; pmid: 18395128
-
(2008)
Adv. Appl. Microbiol.
, vol.63
, pp. 183-229
-
-
Trotsenko, Y.A.1
Murrell, J.C.2
-
22
-
-
84900547834
-
Bioconversion of natural gas to liquid fuel: Opportunities and challenges
-
pmid: 24726715
-
Q. Fei et al., Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol. Adv. 32, 596-614 (2014). doi: 10.1016/j.biotechadv.2014.03.011; pmid: 24726715
-
(2014)
Biotechnol. Adv.
, vol.32
, pp. 596-614
-
-
Fei, Q.1
-
23
-
-
80052338122
-
Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation
-
pmid: 21725016
-
A. F. Khadem et al., Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193, 4438-4446 (2011). doi: 10.1128/JB.00407-11; pmid: 21725016
-
(2011)
J. Bacteriol.
, vol.193
, pp. 4438-4446
-
-
Khadem, A.F.1
-
24
-
-
84960364921
-
Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1
-
pmid: 26572866
-
A. Gilman et al., Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb. Cell Fact. 14, 182 (2015). doi: 10.1186/s12934-015-0372-8; pmid: 26572866
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 182
-
-
Gilman, A.1
-
25
-
-
0034894280
-
Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. Nov
-
pmid: 11518319
-
M. Kaluzhnaya et al., Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst. Appl. Microbiol. 24, 166-176 (2001). doi: 10.1078/0723-2020-00028; pmid: 11518319
-
(2001)
Syst. Appl. Microbiol.
, vol.24
, pp. 166-176
-
-
Kaluzhnaya, M.1
-
26
-
-
84922876601
-
Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense
-
pmid: 25548049
-
A. W. Puri et al., Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81, 1775-1781 (2015). doi: 10.1128/AEM.03795-14; pmid: 25548049
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 1775-1781
-
-
Puri, A.W.1
-
27
-
-
84962216108
-
Electroporation-based genetic manipulation in type i methanotrophs
-
pmid: 26801578
-
X. Yan, F. Chu, A. W. Puri, Y. Fu, M. E. Lidstrom, Electroporation-based genetic manipulation in type I methanotrophs. Appl. Environ. Microbiol. 82, 2062-2069 (2016). doi: 10.1128/AEM.03724-15; pmid: 26801578
-
(2016)
Appl. Environ. Microbiol.
, vol.82
, pp. 2062-2069
-
-
Yan, X.1
Chu, F.2
Puri, A.W.3
Fu, Y.4
Lidstrom, M.E.5
-
28
-
-
84959440704
-
Bioconversion of methane to lactate by an obligate methanotrophic bacterium
-
pmid: 26902345
-
C. A. Henard et al., Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci. Rep. 6, 21585 (2016). doi: 10.1038/srep21585; pmid: 26902345
-
(2016)
Sci. Rep.
, vol.6
, pp. 21585
-
-
Henard, C.A.1
-
29
-
-
0042871291
-
The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature
-
pmid: 12844389
-
H. R. Christensen, L. C. Larsen, H. Frøkiaer, The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature. Br. J. Nutr. 90, 169-178 (2003). doi: 10.1079/BJN2003863; pmid: 12844389
-
(2003)
Br. J. Nutr.
, vol.90
, pp. 169-178
-
-
Christensen, H.R.1
Larsen, L.C.2
Frøkiaer, H.3
-
30
-
-
84926364931
-
Metabolic engineering in methanotrophic bacteria
-
pmid: 25825038
-
M. G. Kalyuzhnaya, A. W. Puri, M. E. Lidstrom, Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142-152 (2015). doi: 10.1016/j.ymben.2015.03.010; pmid: 25825038
-
(2015)
Metab. Eng.
, vol.29
, pp. 142-152
-
-
Kalyuzhnaya, M.G.1
Puri, A.W.2
Lidstrom, M.E.3
-
31
-
-
84926020090
-
C1-carbon sources for chemical and fuel production by microbial gas fermentation
-
pmid: 25841103
-
P. Dürre, B. J. Eikmanns, C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63-72 (2015). doi: 10.1016/j.copbio.2015.03.008; pmid: 25841103
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 63-72
-
-
Dürre, P.1
Eikmanns, B.J.2
-
32
-
-
84959468450
-
Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content
-
pmid: 26920242
-
A. J. Cal et al., Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int. J. Biol. Macromol. 87, 302-307 (2016). doi: 10.1016/j.ijbiomac.2016.02.056; pmid: 26920242
-
(2016)
Int. J. Biol. Macromol.
, vol.87
, pp. 302-307
-
-
Cal, A.J.1
-
33
-
-
84975180830
-
The opportunity for high-performance biomaterials from methane
-
pmid: 27681905
-
P. J. Strong et al., The opportunity for high-performance biomaterials from methane. Microorganisms 4, 11 (2016). doi: 10.3390/microorganisms4010011; pmid: 27681905
-
(2016)
Microorganisms
, vol.4
, pp. 11
-
-
Strong, P.J.1
-
34
-
-
33947205789
-
Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. Strain 16a
-
pmid: 17205350
-
R. W. Ye et al., Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J. Ind. Microbiol. Biotechnol. 34, 289-299 (2007). doi: 10.1007/s10295-006-0197-x; pmid: 17205350
-
(2007)
J. Ind. Microbiol. Biotechnol.
, vol.34
, pp. 289-299
-
-
Ye, R.W.1
-
35
-
-
33750737010
-
Production of Vitamin B 12 in aerobic methylotrophic bacteria
-
E. G. Ivanova, D. N. Fedorov, N. V. Doronina, Y. A. Trotsenko, Production of vitamin B 12 in aerobic methylotrophic bacteria. Microbiology 75, 494-496 (2006). doi: 10.1134/S0026261706040217
-
(2006)
Microbiology
, vol.75
, pp. 494-496
-
-
Ivanova, E.G.1
Fedorov, D.N.2
Doronina, N.V.3
Trotsenko, Y.A.4
-
36
-
-
85009237452
-
High-rate, high-yield production of methanol by ammonia-oxidizing bacteria
-
X. Ge et al., High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Crit. Rev. Biochem. Mol. Biol. 212, 147-164 (2013).
-
(2013)
Crit. Rev. Biochem. Mol. Biol.
, vol.212
, pp. 147-164
-
-
Ge, X.1
-
37
-
-
84890147287
-
Highly efficient methane biocatalysis revealed in a methanotrophic bacterium
-
pmid: 24302011
-
M. G. Kalyuzhnaya et al., Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013). doi: 10.1038/ncomms3785; pmid: 24302011
-
(2013)
Nat. Commun.
, vol.4
, pp. 2785
-
-
Kalyuzhnaya, M.G.1
-
38
-
-
0034894280
-
Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. Nov
-
pmid: 11518319
-
M. Kaluzhnaya et al., Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst. Appl. Microbiol. 24, 166-176 (2001). doi: 10.1078/0723-2020-00028; pmid: 11518319
-
(2001)
Syst. Appl. Microbiol.
, vol.24
, pp. 166-176
-
-
Kaluzhnaya, M.1
-
39
-
-
77952093872
-
Oxidation of methane by a biological dicopper centre
-
pmid: 20410881
-
R. Balasubramanian et al., Oxidation of methane by a biological dicopper centre. Nature 465, 115-119 (2010). doi: 10.1038/nature08992; pmid: 20410881
-
(2010)
Nature
, vol.465
, pp. 115-119
-
-
Balasubramanian, R.1
-
40
-
-
84961187737
-
Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1)
-
pmid: 26607880
-
A. de la Torre et al., Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb. Cell Fact. 14, 188 (2015). doi: 10.1186/s12934-015-0377-3; pmid: 26607880
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 188
-
-
De La Torre, A.1
-
41
-
-
84954182240
-
Reversing methanogenesis to capture methane for liquid biofuel precursors
-
pmid: 26767617
-
V. W. C. Soo et al., Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb. Cell Fact. 15, 11 (2016). doi: 10.1186/s12934-015-0397-z; pmid: 26767617
-
(2016)
Microb. Cell Fact.
, vol.15
, pp. 11
-
-
Soo, V.W.C.1
-
42
-
-
84855441495
-
Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically
-
pmid: 22121022
-
S. Shima et al., Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481, 98-101 (2011). doi: 10.1038/nature10663; pmid: 22121022
-
(2011)
Nature
, vol.481
, pp. 98-101
-
-
Shima, S.1
-
43
-
-
77953222884
-
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
-
pmid: 20520712
-
S. Scheller, M. Goenrich, R. Boecher, R. K. Thauer, B. Jaun, The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606-608 (2010). doi: 10.1038/nature09015; pmid: 20520712
-
(2010)
Nature
, vol.465
, pp. 606-608
-
-
Scheller, S.1
Goenrich, M.2
Boecher, R.3
Thauer, R.K.4
Jaun, B.5
-
44
-
-
84971570810
-
The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase
-
pmid: 27199421
-
T. Wongnate et al., The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953-958 (2016). doi: 10.1126/science.aaf0616; pmid: 27199421
-
(2016)
Science
, vol.352
, pp. 953-958
-
-
Wongnate, T.1
-
45
-
-
84992135078
-
The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea
-
pmid: 27846569
-
K. Zheng, P. D. Ngo, V. L. Owens, X. P. Yang, S. O. Mansoorabadi, The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339-342 (2016). doi: 10.1126/science.aag2947; pmid: 27846569
-
(2016)
Science
, vol.354
, pp. 339-342
-
-
Zheng, K.1
Ngo, P.D.2
Owens, V.L.3
Yang, X.P.4
Mansoorabadi, S.O.5
-
46
-
-
84957875989
-
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
-
pmid: 26912857
-
S. Scheller, H. Yu, G. L. Chadwick, S. E. McGlynn, V. J. Orphan, Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703-707 (2016). doi: 10.1126/science.aad7154; pmid: 26912857
-
(2016)
Science
, vol.351
, pp. 703-707
-
-
Scheller, S.1
Yu, H.2
Chadwick, G.L.3
McGlynn, S.E.4
Orphan, V.J.5
-
47
-
-
84909606329
-
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
-
pmid: 25355907
-
I. W. Bogorad et al., Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl. Acad. Sci. U.S.A. 111, 15928-15933 (2014). doi: 10.1073/pnas.1413470111; pmid: 25355907
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15928-15933
-
-
Bogorad, I.W.1
-
48
-
-
84922433192
-
Engineering Escherichia coli for methanol conversion
-
pmid: 25596507
-
J. E. N. Müller et al., Engineering Escherichia coli for methanol conversion. Metab. Eng. 28, 190-201 (2015). doi: 10.1016/j.ymben.2014.12.008; pmid: 25596507
-
(2015)
Metab. Eng.
, vol.28
, pp. 190-201
-
-
Müller, J.E.N.1
-
49
-
-
84925426233
-
Computational protein design enables a novel one-carbon assimilation pathway
-
pmid: 25775555
-
J. B. Siegel et al., Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl. Acad. Sci. U.S.A. 112, 3704-3709 (2015). pmid: 25775555
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 3704-3709
-
-
Siegel, J.B.1
-
50
-
-
84865289744
-
Improving carbon fixation pathways
-
pmid: 22647231
-
D. C. Ducat, P. A. Silver, Improving carbon fixation pathways. Curr. Opin. Chem. Biol. 16, 337-344 (2012). doi: 10.1016/j.cbpa.2012.05.002; pmid: 22647231
-
(2012)
Curr. Opin. Chem. Biol.
, vol.16
, pp. 337-344
-
-
Ducat, D.C.1
Silver, P.A.2
-
51
-
-
84929504676
-
Metabolic engineering of cyanobacteria for the synthesis of commodity products
-
pmid: 25908503
-
S. A. Angermayr, A. Gorchs Rovira, K. J. Hellingwerf, Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361 (2015). doi: 10.1016/j.tibtech.2015.03.009; pmid: 25908503
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 352-361
-
-
Angermayr, S.A.1
Gorchs Rovira, A.2
Hellingwerf, K.J.3
-
52
-
-
84859111827
-
Integrated electromicrobial conversion of CO2 to higher alcohols
-
pmid: 22461604
-
H. Li et al., Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012). doi: 10.1126/science.1217643; pmid: 22461604
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
-
53
-
-
84923676034
-
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
-
J. P. Torella et al., Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. U.S.A. 112, 2337-2342 (2015). doi: 10.1073/pnas.1424872112
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 2337-2342
-
-
Torella, J.P.1
-
54
-
-
84876029446
-
Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
-
pmid: 23530213
-
M. W. Keller et al., Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl. Acad. Sci. U.S.A. 110, 5840-5845 (2013). doi: 10.1073/pnas.1222607110; pmid: 23530213
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5840-5845
-
-
Keller, M.W.1
-
55
-
-
84891366912
-
Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms
-
pmid: 24863900
-
H. Latif, A. A. Zeidan, A. T. Nielsen, K. Zengler, Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr. Opin. Biotechnol. 27, 79-87 (2014). doi: 10.1016/j.copbio.2013.12.001; pmid: 24863900
-
(2014)
Curr. Opin. Biotechnol.
, vol.27
, pp. 79-87
-
-
Latif, H.1
Zeidan, A.A.2
Nielsen, A.T.3
Zengler, K.4
-
56
-
-
84886056537
-
Bacterial synthesis gas (syngas) fermentation
-
pmid: 24350425
-
F. R. Bengelsdorf, M. Straub, P. Dürre, Bacterial synthesis gas (syngas) fermentation. Environ. Technol. 34, 1639-1651 (2013). doi: 10.1080/09593330.2013.827747; pmid: 24350425
-
(2013)
Environ. Technol.
, vol.34
, pp. 1639-1651
-
-
Bengelsdorf, F.R.1
Straub, M.2
Dürre, P.3
-
57
-
-
84938821380
-
Review of syngas fermentation processes for bioethanol
-
B. Acharya, P. Roy, A. Dutta, Review of syngas fermentation processes for bioethanol. Biofuels 5, 551-564 (2014). doi: 10.1080/17597269.2014.1002996
-
(2014)
Biofuels
, vol.5
, pp. 551-564
-
-
Acharya, B.1
Roy, P.2
Dutta, A.3
-
58
-
-
77955610491
-
Clostridium ljungdahlii represents a microbial production platform based on syngas
-
pmid: 20616070
-
M. Köpke et al., Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. U.S.A. 107, 13087-13092 (2010). doi: 10.1073/pnas.1004716107; pmid: 20616070
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 13087-13092
-
-
Köpke, M.1
-
59
-
-
84896905548
-
Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii
-
pmid: 24509933
-
A. Banerjee, C. Leang, T. Ueki, K. P. Nevin, D. R. Lovley, Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl. Environ. Microbiol. 80, 2410-2416 (2014). doi: 10.1128/AEM.03666-13; pmid: 24509933
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 2410-2416
-
-
Banerjee, A.1
Leang, C.2
Ueki, T.3
Nevin, K.P.4
Lovley, D.R.5
-
60
-
-
84875266678
-
Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica
-
pmid: 23177215
-
A. Kita et al., Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J. Biosci. Bioeng. 115, 347-352 (2013). doi: 10.1016/j.jbiosc.2012.10.013; pmid: 23177215
-
(2013)
J. Biosci. Bioeng.
, vol.115
, pp. 347-352
-
-
Kita, A.1
-
61
-
-
84908433337
-
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
-
pmid: 25336453
-
T. Ueki, K. P. Nevin, T. L. Woodard, D. R. Lovley, Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5, e01636-14 (2014). doi: 10.1128/mBio.01636-14; pmid: 25336453
-
(2014)
MBio
, vol.5
, pp. e01636-e01714
-
-
Ueki, T.1
Nevin, K.P.2
Woodard, T.L.3
Lovley, D.R.4
-
62
-
-
84940421681
-
Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation
-
pmid: 26148714
-
J. Mock et al., Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J. Bacteriol. 197, 2965-2980 (2015). doi: 10.1128/JB.00399-15; pmid: 26148714
-
(2015)
J. Bacteriol.
, vol.197
, pp. 2965-2980
-
-
Mock, J.1
-
63
-
-
84976274590
-
Acetone production with metabolically engineered strains of Acetobacterium woodii
-
pmid: 26971669
-
S. Hoffmeister et al., Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab. Eng. 36, 37-47 (2016). doi: 10.1016/j.ymben.2016.03.001; pmid: 26971669
-
(2016)
Metab. Eng.
, vol.36
, pp. 37-47
-
-
Hoffmeister, S.1
-
64
-
-
84973449735
-
Gas fermentation: A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
-
pmid: 27242719
-
F. Liew et al., Gas fermentation: A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 7, 694 (2016). doi: 10.3389/fmicb.2016.00694; pmid: 27242719
-
(2016)
Front. Microbiol.
, vol.7
, pp. 694
-
-
Liew, F.1
-
65
-
-
78650173757
-
Microbial electrosynthesis : Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
-
pmid: 20714445
-
K. P. Nevin, T. L. Woodard, A. E. Franks, Microbial electrosynthesis : Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. Am. Soc. Microbiol. 1, 1-4 (2010). pmid: 20714445
-
(2010)
Am. Soc. Microbiol.
, vol.1
, pp. 1-4
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
-
66
-
-
84874738185
-
A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen
-
pmid: 23204413
-
C. Leang, T. Ueki, K. P. Nevin, D. R. Lovley, A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 79, 1102-1109 (2013). doi: 10.1128/AEM.02891-12; pmid: 23204413
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 1102-1109
-
-
Leang, C.1
Ueki, T.2
Nevin, K.P.3
Lovley, D.R.4
-
67
-
-
84952939707
-
Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
-
pmid: 26721997
-
K. K. Sakimoto, A. B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74-77 (2016). doi: 10.1126/science. aad3317; pmid: 26721997
-
(2016)
Science
, vol.351
, pp. 74-77
-
-
Sakimoto, K.K.1
Wong, A.B.2
Yang, P.3
-
68
-
-
84890023112
-
Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase
-
pmid: 24337298
-
K. Schuchmann, V. Müller, Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382-1385 (2013). doi: 10.1126/science.1244758; pmid: 24337298
-
(2013)
Science
, vol.342
, pp. 1382-1385
-
-
Schuchmann, K.1
Müller, V.2
-
69
-
-
84911440829
-
Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
-
pmid: 25383604
-
K. Schuchmann, V. Müller, Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809-821 (2014). doi: 10.1038/nrmicro3365; pmid: 25383604
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 809-821
-
-
Schuchmann, K.1
Müller, V.2
-
70
-
-
84979201731
-
Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: A kinetic and mechanistic study
-
pmid: 27348246
-
L. B. Maia, L. Fonseca, I. Moura, J. J. G. Moura, Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: A kinetic and mechanistic study. J. Am. Chem. Soc. 138, 8834-8846 (2016). doi: 10.1021/jacs.6b03941; pmid: 27348246
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 8834-8846
-
-
Maia, L.B.1
Fonseca, L.2
Moura, I.3
Moura, J.J.G.4
-
71
-
-
84936854824
-
Advances in de novo strain design using integrated systems and synthetic biology tools
-
pmid: 26177080
-
C. Y. Ng, A. Khodayari, A. Chowdhury, C. D. Maranas, Advances in de novo strain design using integrated systems and synthetic biology tools. Curr. Opin. Chem. Biol. 28, 105-114 (2015). doi: 10.1016/j.cbpa.2015.06.026; pmid: 26177080
-
(2015)
Curr. Opin. Chem. Biol.
, vol.28
, pp. 105-114
-
-
Ng, C.Y.1
Khodayari, A.2
Chowdhury, A.3
Maranas, C.D.4
-
72
-
-
84979984723
-
The evolution of genome mining in microbes-A review
-
pmid: 27272205
-
N. Ziemert, M. Alanjary, T. Weber, The evolution of genome mining in microbes-A review. Nat. Prod. Rep. 33, 988-1005 (2016). doi: 10.1039/C6NP00025H; pmid: 27272205
-
(2016)
Nat. Prod. Rep.
, vol.33
, pp. 988-1005
-
-
Ziemert, N.1
Alanjary, M.2
Weber, T.3
-
73
-
-
84903827354
-
Computational enzyme design: Transitioning from catalytic proteins to enzymes
-
pmid: 25005925
-
W. S. Mak, J. B. Siegel, Computational enzyme design: Transitioning from catalytic proteins to enzymes. Curr. Opin. Struct. Biol. 27, 87-94 (2014). doi: 10.1016/j.sbi.2014.05.010; pmid: 25005925
-
(2014)
Curr. Opin. Struct. Biol.
, vol.27
, pp. 87-94
-
-
Mak, W.S.1
Siegel, J.B.2
-
74
-
-
84961644292
-
Substrate channelling as an approach to cascade reactions
-
pmid: 27001725
-
I. Wheeldon et al., Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299-309 (2016). doi: 10.1038/nchem.2459; pmid: 27001725
-
(2016)
Nat. Chem.
, vol.8
, pp. 299-309
-
-
Wheeldon, I.1
-
75
-
-
85019538562
-
Design, analysis and application of synthetic microbial consortia
-
X. Jia et al., Design, analysis and application of synthetic microbial consortia. Synth. Syst. Biotechnol. 1, 109-117 (2016). doi: 10.1016/j.synbio.2016.02.001
-
(2016)
Synth. Syst. Biotechnol.
, vol.1
, pp. 109-117
-
-
Jia, X.1
-
76
-
-
84973519852
-
Modular co-culture engineering, a new approach for metabolic engineering
-
pmid: 27242132
-
H. Zhang, X. Wang, Modular co-culture engineering, a new approach for metabolic engineering. Metab. Eng. 37, 114-121 (2016). doi: 10.1016/j.ymben.2016.05.007; pmid: 27242132
-
(2016)
Metab. Eng.
, vol.37
, pp. 114-121
-
-
Zhang, H.1
Wang, X.2
-
77
-
-
84962739598
-
A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery
-
pmid: 26996382
-
A. S. Karim, M. C. Jewett, A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab. Eng. 36, 116-126 (2016). doi: 10.1016/j.ymben.2016.03.002; pmid: 26996382
-
(2016)
Metab. Eng.
, vol.36
, pp. 116-126
-
-
Karim, A.S.1
Jewett, M.C.2
-
78
-
-
84975091582
-
Printable enzyme-embedded materials for methane to methanol conversion
-
pmid: 27301270
-
C. D. Blanchette et al., Printable enzyme-embedded materials for methane to methanol conversion. Nat. Commun. 7, 11900 (2016). doi: 10.1038/ncomms11900; pmid: 27301270
-
(2016)
Nat. Commun.
, vol.7
, pp. 11900
-
-
Blanchette, C.D.1
-
79
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
pmid: 23360965
-
W. Jiang, D. Bikard, D. Cox, F. Zhang, L. A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233-239 (2013). doi: 10.1038/nbt.2508; pmid: 23360965
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
80
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
pmid: 23460208
-
J. E. DiCarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336-4343 (2013). doi: 10.1093/nar/gkt135; pmid: 23460208
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
-
81
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
-
pmid: 25638686
-
T. Jakočiunas et al., Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, 213-222 (2015). doi: 10.1016/j.ymben.2015.01.008; pmid: 25638686
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakočiunas, T.1
-
82
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
pmid: 19633652
-
H. H. Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894-898 (2009). doi: 10.1038/nature08187; pmid: 19633652
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
-
83
-
-
84962227074
-
Design and synthesis of a minimal bacterial genome
-
pmid: 27013737
-
C. A. Hutchison 3rd et al., Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016). doi: 10.1126/science.aad6253; pmid: 27013737
-
(2016)
Science
, vol.351
, pp. aad6253
-
-
Hutchison, C.A.1
-
84
-
-
84961115730
-
Biosensor-based engineering of biosynthetic pathways
-
pmid: 26998575
-
J. K. Rogers, N. D. Taylor, G. M. Church, Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 42, 84-91 (2016). doi: 10.1016/j.copbio.2016.03.005; pmid: 26998575
-
(2016)
Curr. Opin. Biotechnol.
, vol.42
, pp. 84-91
-
-
Rogers, J.K.1
Taylor, N.D.2
Church, G.M.3
-
85
-
-
84959504252
-
Synthetic evolution of metabolic productivity using biosensors
-
pmid: 26948437
-
T. C. Williams, I. S. Pretorius, I. T. Paulsen, Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371-381 (2016). doi: 10.1016/j.tibtech.2016.02.002; pmid: 26948437
-
(2016)
Trends Biotechnol.
, vol.34
, pp. 371-381
-
-
Williams, T.C.1
Pretorius, I.S.2
Paulsen, I.T.3
-
86
-
-
85028550972
-
Synthetic and systems biology for microbial production of commodity chemicals
-
V. Chubukov, A. Mukhopadhyay, C. Petzold, J. Keasling, H. G. Martín, Synthetic and systems biology for microbial production of commodity chemicals. npj Syst. Biol. Appl. 2, 16009 (2016). doi: 10.1038/npjsba.2016.9
-
(2016)
Npj Syst. Biol. Appl.
, vol.2
, pp. 16009
-
-
Chubukov, V.1
Mukhopadhyay, A.2
Petzold, C.3
Keasling, J.4
Martín, H.G.5
-
87
-
-
84877063612
-
Consistent development of bioprocesses from microliter cultures to the industrial scale
-
P. Neubauer et al., Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng. Life Sci. 13, 224-238 (2013). doi: 10.1002/elsc.201200021
-
(2013)
Eng. Life Sci.
, vol.13
, pp. 224-238
-
-
Neubauer, P.1
-
88
-
-
84964314828
-
Towards synthetic biological approaches to resource utilization on space missions
-
pmid: 25376875
-
A. A. Menezes, J. Cumbers, J. A. Hogan, A. P. Arkin, Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715-20140715 (2015). doi: 10.1098/rsif.2014.0715; pmid: 25376875
-
(2015)
J. R. Soc. Interface
, vol.12
, pp. 20140715
-
-
Menezes, A.A.1
Cumbers, J.2
Hogan, J.A.3
Arkin, A.P.4
-
89
-
-
84954155853
-
Grand challenges in space synthetic biology
-
pmid: 26631337
-
A. A. Menezes, M. G. Montague, J. Cumbers, J. A. Hogan, A. P. Arkin, Grand challenges in space synthetic biology. J. R. Soc. Interface 12, 20150803 (2015). doi: 10.1098/rsif.2015.0803; pmid: 26631337
-
(2015)
J. R. Soc. Interface
, vol.12
, pp. 20150803
-
-
Menezes, A.A.1
Montague, M.G.2
Cumbers, J.3
Hogan, J.A.4
Arkin, A.P.5
-
92
-
-
85009263562
-
-
Yara, World scale ammonia plant opens in Burrup (2006); http://yara.com/media/press-releases/1045462/press-release/200604/world-scale-ammonia-plant-opens-in-burrup/.
-
(2006)
World Scale Ammonia Plant Opens in Burrup
-
-
-
93
-
-
85009273469
-
The Sturgeon refinery and the high cost of valueadded
-
G. Morgan, The Sturgeon refinery and the high cost of valueadded. Alberta Oil (2014); http://www.albertaoilmagazine. com/2014/11/high-price-adding-value/.
-
(2014)
Alberta Oil
-
-
Morgan, G.1
-
95
-
-
85009237500
-
Incitec plans $850 million U.S. Ammonia plant on gas price
-
J. Patton, Incitec Plans $850 Million U.S. Ammonia Plant on Gas Price. Bloomberg (2013); http://www.bloomberg.com/news/articles/2013-04-17/incitec-plans-850-million-u-sammonia-plant-on-gas-price.
-
(2013)
Bloomberg
-
-
Patton, J.1
-
98
-
-
85054122873
-
$265 million ammonia plant in Grant Parish
-
I. Foris, I. F. Announces, $265 million ammonia plant in Grant Parish. Louisiana Econ. Dev. (2015); http://www. opportunitylouisiana.com/led-news/news-releases/news/2015/07/22/investimus-foris-announces-$265-millionammonia-plant-in-grant-parish.
-
(2015)
Louisiana Econ. Dev.
-
-
Foris, I.1
Announces, I.F.2
-
99
-
-
85009237508
-
-
Google Maps, Big River United Energy (2016); https://www. google.com/maps/place/Big+River+United+Energy/@ 42.4892966,-91.1562547,17z/data=!3m1!4b1!4m5!3m4! 1s0x87e3546c5bd01ea9:0xc8a545926175dc77!8m2! 3d42.4892966!4d-91.1540607.
-
(2016)
Big River United Energy
-
-
-
100
-
-
85009273454
-
-
G. Maps, ExxonMobil Baytown Refinery (2016); https://www. google.com/maps/place/Exxonmobil+Refinery/@ 29.7562611,-94.9913522,15z/data=!4m2!3m1! 1s0x0:0x1700615ea16f9969?sa=X&ved=0ahUKEwi-5qaFqOfOAhVDMyYKHeBICM0Q-BIIeDAK.
-
(2016)
ExxonMobil Baytown Refinery
-
-
-
104
-
-
57049164235
-
Understanding the reductions in US corn ethanol production costs: An experience curve approach
-
W. G. Hettinga et al., Understanding the reductions in US corn ethanol production costs: An experience curve approach. Energy Policy 1, 190-203 (2009). doi: 10.1016/j.enpol.2008.08.002
-
(2009)
Energy Policy
, vol.1
, pp. 190-203
-
-
Hettinga, W.G.1
-
106
-
-
84984399565
-
Ethanol production from grain in the United States: Agricultural impacts and economic feasibility
-
M. LeBlanc, A. Prato, Ethanol production from grain in the United States: Agricultural impacts and economic feasibility. Can. J. Agric. Econ. 31, 223-232 (1983). doi: 10.1111/j.1744-7976.1983. tb01198.x
-
(1983)
Can. J. Agric. Econ.
, vol.31
, pp. 223-232
-
-
LeBlanc, M.1
Prato, A.2
-
108
-
-
11244273082
-
-
Sparks Companies Inc. and Kansas State University
-
J. Whims, "Corn based ethanol costs and margins: Attachment 1" (Sparks Companies Inc. and Kansas State University, 2002); www.agmrc.org/media/cms/ksueth1-44EF748246D5F.pdf.
-
(2002)
Corn Based Ethanol Costs and Margins: Attachment 1
-
-
Whims, J.1
-
110
-
-
33645975552
-
Modeling the process and costs of fuel ethanol production by the corn dry-grind process
-
J. R. Kwiatkowski, A. J. McAloon, F. Taylor, D. B. Johnston, Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind. Crops Prod. 23, 288-296 (2006). doi: 10.1016/j.indcrop.2005.08.004
-
(2006)
Ind. Crops Prod.
, vol.23
, pp. 288-296
-
-
Kwiatkowski, J.R.1
McAloon, A.J.2
Taylor, F.3
Johnston, D.B.4
-
112
-
-
84859335333
-
Microbial inorganic carbon fixation
-
T. Sato, H. Atomi, Microbial inorganic carbon fixation. eLS, 1-12 (2001); http://www.els.net/WileyCDA/ElsArticle/refIda0021900. html.
-
(2001)
ELS
, pp. 1-12
-
-
Sato, T.1
Atomi, H.2
-
113
-
-
84961922827
-
Fuelling the future: Microbial engineering for the production of sustainable biofuels
-
pmid: 27026253
-
J. C. Liao, L. Mi, S. Pontrelli, S. Luo, Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288-304 (2016). doi: 10.1038/nrmicro.2016.32; pmid: 27026253
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 288-304
-
-
Liao, J.C.1
Mi, L.2
Pontrelli, S.3
Luo, S.4
-
114
-
-
0003706605
-
-
Wiley, New York, ed. 1
-
G. Michal, Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (Wiley, New York, ed. 1, 1999; http://www.amazon.co.uk/Biochemical-Pathways-Biochemistry-Molecular-Biology/dp/0470146842/ref=sr-1-1? s=books&ie=UTF8&qid=1447518627&sr=1-1&keywords=biochemical+pathways).
-
(1999)
Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology
-
-
Michal, G.1
-
115
-
-
84878966835
-
Glycolytic strategy as a tradeoff between energy yield and protein cost
-
pmid: 23630264
-
A. Flamholz, E. Noor, A. Bar-Even, W. Liebermeister, R. Milo, Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. U.S.A. 110, 10039-10044 (2013). doi: 10.1073/pnas.1215283110; pmid: 23630264
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 10039-10044
-
-
Flamholz, A.1
Noor, E.2
Bar-Even, A.3
Liebermeister, W.4
Milo, R.5
-
116
-
-
84873625206
-
Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP
-
pmid: 23395757
-
K. H. Rostkowski, A. R. Pfluger, C. S. Criddle, Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour. Technol. 132, 71-77 (2013). doi: 10.1016/j.biortech.2012.12.129; pmid: 23395757
-
(2013)
Bioresour. Technol.
, vol.132
, pp. 71-77
-
-
Rostkowski, K.H.1
Pfluger, A.R.2
Criddle, C.S.3
-
117
-
-
79958269960
-
High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b
-
pmid: 21612919
-
C. Duan, M. Luo, X. Xing, High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102, 7349-7353 (2011). doi: 10.1016/j.biortech.2011.04.096; pmid: 21612919
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 7349-7353
-
-
Duan, C.1
Luo, M.2
Xing, X.3
-
118
-
-
77955972763
-
Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium
-
pmid: 20581197
-
T. Hölscher, U. Breuer, L. Adrian, H. Harms, T. Maskow, Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium. Appl. Environ. Microbiol. 76, 5585-5591 (2010). doi: 10.1128/AEM.01065-10; pmid: 20581197
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 5585-5591
-
-
Hölscher, T.1
Breuer, U.2
Adrian, L.3
Harms, H.4
Maskow, T.5
-
119
-
-
84865211266
-
Genome sequence of thermotolerant Bacillus methanolicus: Features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol
-
pmid: 22610424
-
T. M. B. Heggeset et al., Genome sequence of thermotolerant Bacillus methanolicus: Features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl. Environ. Microbiol. 78, 5170-5181 (2012). doi: 10.1128/AEM.00703-12; pmid: 22610424
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 5170-5181
-
-
Heggeset, T.M.B.1
-
120
-
-
77955665768
-
Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase i and II and their roles for L-lysine production from methanol at 50 degrees C
-
pmid: 20372887
-
T. Brautaset et al., Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C. Appl. Microbiol. Biotechnol. 87, 951-964 (2010). doi: 10.1007/s00253-010-2559-6; pmid: 20372887
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.87
, pp. 951-964
-
-
Brautaset, T.1
-
121
-
-
84923418693
-
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains
-
I. Naerdal, J. Pfeifenschneider, T. Brautaset, V. F. Wendisch, Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb. Biotechnol. 8, 342-350 (2015). doi: 10.1111/1751-7915.12257 pmid: 25644214
-
(2015)
Microb. Biotechnol.
, vol.8
, pp. 342-350
-
-
Naerdal, I.1
Pfeifenschneider, J.2
Brautaset, T.3
Wendisch, V.F.4
-
122
-
-
84943572735
-
Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid a-humulene from methanol
-
pmid: 26369439
-
F. Sonntag et al., Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid a-humulene from methanol. Metab. Eng. 32, 82-94 (2015). doi: 10.1016/j.ymben.2015.09.004; pmid: 26369439
-
(2015)
Metab. Eng.
, vol.32
, pp. 82-94
-
-
Sonntag, F.1
|