메뉴 건너뛰기




Volumn 355, Issue 6320, 2017, Pages

Industrial biomanufacturing: The future of chemical production

Author keywords

[No Author keywords available]

Indexed keywords

INDUSTRIAL CHEMICAL; BIOFUEL; ENZYME; METHANE;

EID: 85009247636     PISSN: 00368075     EISSN: 10959203     Source Type: Journal    
DOI: 10.1126/science.aag0804     Document Type: Review
Times cited : (359)

References (122)
  • 4
    • 0030966362 scopus 로고    scopus 로고
    • The history of pulp and paper bleaching: Respiratory-health effects
    • pmid: 9142078
    • K. Torén, P. D. Blanc, The history of pulp and paper bleaching: Respiratory-health effects. Lancet 349, 1316-1318 (1997). doi: 10.1016/S0140-6736(96)10141-0; pmid: 9142078
    • (1997) Lancet , vol.349 , pp. 1316-1318
    • Torén, K.1    Blanc, P.D.2
  • 5
    • 84972047946 scopus 로고
    • Textile bleaching and the birth of the chemical industry
    • K. H. Wolff, Textile bleaching and the birth of the chemical industry. Bus. Hist. Rev. 48, 143-163 (1974). doi: 10.2307/3112839
    • (1974) Bus. Hist. Rev. , vol.48 , pp. 143-163
    • Wolff, K.H.1
  • 9
    • 84952360783 scopus 로고    scopus 로고
    • Incorporating bioenergy into sustainable landscape designs
    • V. H. Dale et al., Incorporating bioenergy into sustainable landscape designs. Renew. Sustain. Energy Rev. 56, 1158-1171 (2016). doi: 10.1016/j.rser.2015.12.038
    • (2016) Renew. Sustain. Energy Rev. , vol.56 , pp. 1158-1171
    • Dale, V.H.1
  • 10
    • 84923917099 scopus 로고    scopus 로고
    • Allocating methane emissions to natural gas and oil production from shale formations
    • D. Zavala-Araiza, D. T. Allen, M. Harrison, F. C. George, G. R. Jersey, Allocating methane emissions to natural gas and oil production from shale formations. ACS Sustain. Chem.& Eng. 3, 492-498 (2015). doi: 10.1021/sc500730x
    • (2015) ACS Sustain. Chem.& Eng. , vol.3 , pp. 492-498
    • Zavala-Araiza, D.1    Allen, D.T.2    Harrison, M.3    George, F.C.4    Jersey, G.R.5
  • 11
    • 0003675348 scopus 로고    scopus 로고
    • World Bank
    • World Bank, World Development Indicators 2015 (World Bank, 2015); https://openknowledge.worldbank.org/handle/10986/21634.
    • (2015) World Development Indicators 2015
  • 13
    • 84899066005 scopus 로고    scopus 로고
    • Rethinking biological activation of methane and conversion to liquid fuels
    • pmid: 24743257
    • C. A. Haynes, R. Gonzalez, Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331-339 (2014). doi: 10.1038/nchembio.1509; pmid: 24743257
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 331-339
    • Haynes, C.A.1    Gonzalez, R.2
  • 14
    • 84856030065 scopus 로고    scopus 로고
    • Perspective on opportunities in industrial biotechnology in renewable chemicals
    • pmid: 21932250
    • B. Erickson, P. Nelson, P. Winters, Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7, 176-185 (2012). doi: 10.1002/biot.201100069; pmid: 21932250
    • (2012) Biotechnol. J. , vol.7 , pp. 176-185
    • Erickson, B.1    Nelson, P.2    Winters, P.3
  • 15
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • pmid: 21127247
    • J. D. Keasling, Manufacturing molecules through metabolic engineering. Science 330, 1355-1358 (2010). doi: 10.1126/science.1193990; pmid: 21127247
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 16
    • 84964460909 scopus 로고    scopus 로고
    • EIA
    • Energy Information Adminstration, Monthly Energy Review, Total Energy (EIA, 2016); http://www.eia.gov/totalenergy/data/monthly/index.cfm#renewable.
    • (2016) Monthly Energy Review, Total Energy
  • 17
    • 84884692692 scopus 로고    scopus 로고
    • VIIRS nightfire: Satellite pyrometry at night
    • C. D. Elvidge, M. Zhizhin, F. C. Hsu, K. E. Baugh, VIIRS nightfire: Satellite pyrometry at night. Remote Sens. 5, 4423-4449 (2013). doi: 10.3390/rs5094423
    • (2013) Remote Sens. , vol.5 , pp. 4423-4449
    • Elvidge, C.D.1    Zhizhin, M.2    Hsu, F.C.3    Baugh, K.E.4
  • 19
    • 84927750084 scopus 로고    scopus 로고
    • Enzymatic oxidation of methane
    • pmid: 25806595
    • S. Sirajuddin, A. C. Rosenzweig, Enzymatic oxidation of methane. Biochemistry 54, 2283-2294 (2015). doi: 10.1021/acs.biochem.5b00198; pmid: 25806595
    • (2015) Biochemistry , vol.54 , pp. 2283-2294
    • Sirajuddin, S.1    Rosenzweig, A.C.2
  • 20
    • 84926364931 scopus 로고    scopus 로고
    • Metabolic engineering in methanotrophic bacteria
    • pmid: 25825038
    • M. G. Kalyuzhnaya, A. W. Puri, M. E. Lidstrom, Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142-152 (2015). doi: 10.1016/j.ymben.2015.03.010; pmid: 25825038
    • (2015) Metab. Eng. , vol.29 , pp. 142-152
    • Kalyuzhnaya, M.G.1    Puri, A.W.2    Lidstrom, M.E.3
  • 21
    • 41349106563 scopus 로고    scopus 로고
    • Metabolic aspects of aerobic obligate methanotrophy
    • pmid: 18395128
    • Y. A. Trotsenko, J. C. Murrell, Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63, 183-229 (2008). doi: 10.1016/S0065-2164(07)00005-6; pmid: 18395128
    • (2008) Adv. Appl. Microbiol. , vol.63 , pp. 183-229
    • Trotsenko, Y.A.1    Murrell, J.C.2
  • 22
    • 84900547834 scopus 로고    scopus 로고
    • Bioconversion of natural gas to liquid fuel: Opportunities and challenges
    • pmid: 24726715
    • Q. Fei et al., Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol. Adv. 32, 596-614 (2014). doi: 10.1016/j.biotechadv.2014.03.011; pmid: 24726715
    • (2014) Biotechnol. Adv. , vol.32 , pp. 596-614
    • Fei, Q.1
  • 23
    • 80052338122 scopus 로고    scopus 로고
    • Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation
    • pmid: 21725016
    • A. F. Khadem et al., Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193, 4438-4446 (2011). doi: 10.1128/JB.00407-11; pmid: 21725016
    • (2011) J. Bacteriol. , vol.193 , pp. 4438-4446
    • Khadem, A.F.1
  • 24
    • 84960364921 scopus 로고    scopus 로고
    • Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1
    • pmid: 26572866
    • A. Gilman et al., Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Microb. Cell Fact. 14, 182 (2015). doi: 10.1186/s12934-015-0372-8; pmid: 26572866
    • (2015) Microb. Cell Fact. , vol.14 , pp. 182
    • Gilman, A.1
  • 25
    • 0034894280 scopus 로고    scopus 로고
    • Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. Nov
    • pmid: 11518319
    • M. Kaluzhnaya et al., Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst. Appl. Microbiol. 24, 166-176 (2001). doi: 10.1078/0723-2020-00028; pmid: 11518319
    • (2001) Syst. Appl. Microbiol. , vol.24 , pp. 166-176
    • Kaluzhnaya, M.1
  • 26
    • 84922876601 scopus 로고    scopus 로고
    • Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense
    • pmid: 25548049
    • A. W. Puri et al., Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Appl. Environ. Microbiol. 81, 1775-1781 (2015). doi: 10.1128/AEM.03795-14; pmid: 25548049
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 1775-1781
    • Puri, A.W.1
  • 27
    • 84962216108 scopus 로고    scopus 로고
    • Electroporation-based genetic manipulation in type i methanotrophs
    • pmid: 26801578
    • X. Yan, F. Chu, A. W. Puri, Y. Fu, M. E. Lidstrom, Electroporation-based genetic manipulation in type I methanotrophs. Appl. Environ. Microbiol. 82, 2062-2069 (2016). doi: 10.1128/AEM.03724-15; pmid: 26801578
    • (2016) Appl. Environ. Microbiol. , vol.82 , pp. 2062-2069
    • Yan, X.1    Chu, F.2    Puri, A.W.3    Fu, Y.4    Lidstrom, M.E.5
  • 28
    • 84959440704 scopus 로고    scopus 로고
    • Bioconversion of methane to lactate by an obligate methanotrophic bacterium
    • pmid: 26902345
    • C. A. Henard et al., Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci. Rep. 6, 21585 (2016). doi: 10.1038/srep21585; pmid: 26902345
    • (2016) Sci. Rep. , vol.6 , pp. 21585
    • Henard, C.A.1
  • 29
    • 0042871291 scopus 로고    scopus 로고
    • The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature
    • pmid: 12844389
    • H. R. Christensen, L. C. Larsen, H. Frøkiaer, The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature. Br. J. Nutr. 90, 169-178 (2003). doi: 10.1079/BJN2003863; pmid: 12844389
    • (2003) Br. J. Nutr. , vol.90 , pp. 169-178
    • Christensen, H.R.1    Larsen, L.C.2    Frøkiaer, H.3
  • 30
    • 84926364931 scopus 로고    scopus 로고
    • Metabolic engineering in methanotrophic bacteria
    • pmid: 25825038
    • M. G. Kalyuzhnaya, A. W. Puri, M. E. Lidstrom, Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29, 142-152 (2015). doi: 10.1016/j.ymben.2015.03.010; pmid: 25825038
    • (2015) Metab. Eng. , vol.29 , pp. 142-152
    • Kalyuzhnaya, M.G.1    Puri, A.W.2    Lidstrom, M.E.3
  • 31
    • 84926020090 scopus 로고    scopus 로고
    • C1-carbon sources for chemical and fuel production by microbial gas fermentation
    • pmid: 25841103
    • P. Dürre, B. J. Eikmanns, C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63-72 (2015). doi: 10.1016/j.copbio.2015.03.008; pmid: 25841103
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 63-72
    • Dürre, P.1    Eikmanns, B.J.2
  • 32
    • 84959468450 scopus 로고    scopus 로고
    • Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content
    • pmid: 26920242
    • A. J. Cal et al., Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int. J. Biol. Macromol. 87, 302-307 (2016). doi: 10.1016/j.ijbiomac.2016.02.056; pmid: 26920242
    • (2016) Int. J. Biol. Macromol. , vol.87 , pp. 302-307
    • Cal, A.J.1
  • 33
    • 84975180830 scopus 로고    scopus 로고
    • The opportunity for high-performance biomaterials from methane
    • pmid: 27681905
    • P. J. Strong et al., The opportunity for high-performance biomaterials from methane. Microorganisms 4, 11 (2016). doi: 10.3390/microorganisms4010011; pmid: 27681905
    • (2016) Microorganisms , vol.4 , pp. 11
    • Strong, P.J.1
  • 34
    • 33947205789 scopus 로고    scopus 로고
    • Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. Strain 16a
    • pmid: 17205350
    • R. W. Ye et al., Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J. Ind. Microbiol. Biotechnol. 34, 289-299 (2007). doi: 10.1007/s10295-006-0197-x; pmid: 17205350
    • (2007) J. Ind. Microbiol. Biotechnol. , vol.34 , pp. 289-299
    • Ye, R.W.1
  • 35
    • 33750737010 scopus 로고    scopus 로고
    • Production of Vitamin B 12 in aerobic methylotrophic bacteria
    • E. G. Ivanova, D. N. Fedorov, N. V. Doronina, Y. A. Trotsenko, Production of vitamin B 12 in aerobic methylotrophic bacteria. Microbiology 75, 494-496 (2006). doi: 10.1134/S0026261706040217
    • (2006) Microbiology , vol.75 , pp. 494-496
    • Ivanova, E.G.1    Fedorov, D.N.2    Doronina, N.V.3    Trotsenko, Y.A.4
  • 36
    • 85009237452 scopus 로고    scopus 로고
    • High-rate, high-yield production of methanol by ammonia-oxidizing bacteria
    • X. Ge et al., High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Crit. Rev. Biochem. Mol. Biol. 212, 147-164 (2013).
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.212 , pp. 147-164
    • Ge, X.1
  • 37
    • 84890147287 scopus 로고    scopus 로고
    • Highly efficient methane biocatalysis revealed in a methanotrophic bacterium
    • pmid: 24302011
    • M. G. Kalyuzhnaya et al., Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013). doi: 10.1038/ncomms3785; pmid: 24302011
    • (2013) Nat. Commun. , vol.4 , pp. 2785
    • Kalyuzhnaya, M.G.1
  • 38
    • 0034894280 scopus 로고    scopus 로고
    • Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. Nov
    • pmid: 11518319
    • M. Kaluzhnaya et al., Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov. Syst. Appl. Microbiol. 24, 166-176 (2001). doi: 10.1078/0723-2020-00028; pmid: 11518319
    • (2001) Syst. Appl. Microbiol. , vol.24 , pp. 166-176
    • Kaluzhnaya, M.1
  • 39
    • 77952093872 scopus 로고    scopus 로고
    • Oxidation of methane by a biological dicopper centre
    • pmid: 20410881
    • R. Balasubramanian et al., Oxidation of methane by a biological dicopper centre. Nature 465, 115-119 (2010). doi: 10.1038/nature08992; pmid: 20410881
    • (2010) Nature , vol.465 , pp. 115-119
    • Balasubramanian, R.1
  • 40
    • 84961187737 scopus 로고    scopus 로고
    • Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1)
    • pmid: 26607880
    • A. de la Torre et al., Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb. Cell Fact. 14, 188 (2015). doi: 10.1186/s12934-015-0377-3; pmid: 26607880
    • (2015) Microb. Cell Fact. , vol.14 , pp. 188
    • De La Torre, A.1
  • 41
    • 84954182240 scopus 로고    scopus 로고
    • Reversing methanogenesis to capture methane for liquid biofuel precursors
    • pmid: 26767617
    • V. W. C. Soo et al., Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb. Cell Fact. 15, 11 (2016). doi: 10.1186/s12934-015-0397-z; pmid: 26767617
    • (2016) Microb. Cell Fact. , vol.15 , pp. 11
    • Soo, V.W.C.1
  • 42
    • 84855441495 scopus 로고    scopus 로고
    • Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically
    • pmid: 22121022
    • S. Shima et al., Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481, 98-101 (2011). doi: 10.1038/nature10663; pmid: 22121022
    • (2011) Nature , vol.481 , pp. 98-101
    • Shima, S.1
  • 43
    • 77953222884 scopus 로고    scopus 로고
    • The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
    • pmid: 20520712
    • S. Scheller, M. Goenrich, R. Boecher, R. K. Thauer, B. Jaun, The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606-608 (2010). doi: 10.1038/nature09015; pmid: 20520712
    • (2010) Nature , vol.465 , pp. 606-608
    • Scheller, S.1    Goenrich, M.2    Boecher, R.3    Thauer, R.K.4    Jaun, B.5
  • 44
    • 84971570810 scopus 로고    scopus 로고
    • The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase
    • pmid: 27199421
    • T. Wongnate et al., The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953-958 (2016). doi: 10.1126/science.aaf0616; pmid: 27199421
    • (2016) Science , vol.352 , pp. 953-958
    • Wongnate, T.1
  • 45
    • 84992135078 scopus 로고    scopus 로고
    • The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea
    • pmid: 27846569
    • K. Zheng, P. D. Ngo, V. L. Owens, X. P. Yang, S. O. Mansoorabadi, The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339-342 (2016). doi: 10.1126/science.aag2947; pmid: 27846569
    • (2016) Science , vol.354 , pp. 339-342
    • Zheng, K.1    Ngo, P.D.2    Owens, V.L.3    Yang, X.P.4    Mansoorabadi, S.O.5
  • 46
    • 84957875989 scopus 로고    scopus 로고
    • Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
    • pmid: 26912857
    • S. Scheller, H. Yu, G. L. Chadwick, S. E. McGlynn, V. J. Orphan, Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703-707 (2016). doi: 10.1126/science.aad7154; pmid: 26912857
    • (2016) Science , vol.351 , pp. 703-707
    • Scheller, S.1    Yu, H.2    Chadwick, G.L.3    McGlynn, S.E.4    Orphan, V.J.5
  • 47
    • 84909606329 scopus 로고    scopus 로고
    • Building carbon-carbon bonds using a biocatalytic methanol condensation cycle
    • pmid: 25355907
    • I. W. Bogorad et al., Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl. Acad. Sci. U.S.A. 111, 15928-15933 (2014). doi: 10.1073/pnas.1413470111; pmid: 25355907
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 15928-15933
    • Bogorad, I.W.1
  • 48
    • 84922433192 scopus 로고    scopus 로고
    • Engineering Escherichia coli for methanol conversion
    • pmid: 25596507
    • J. E. N. Müller et al., Engineering Escherichia coli for methanol conversion. Metab. Eng. 28, 190-201 (2015). doi: 10.1016/j.ymben.2014.12.008; pmid: 25596507
    • (2015) Metab. Eng. , vol.28 , pp. 190-201
    • Müller, J.E.N.1
  • 49
    • 84925426233 scopus 로고    scopus 로고
    • Computational protein design enables a novel one-carbon assimilation pathway
    • pmid: 25775555
    • J. B. Siegel et al., Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl. Acad. Sci. U.S.A. 112, 3704-3709 (2015). pmid: 25775555
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 3704-3709
    • Siegel, J.B.1
  • 50
    • 84865289744 scopus 로고    scopus 로고
    • Improving carbon fixation pathways
    • pmid: 22647231
    • D. C. Ducat, P. A. Silver, Improving carbon fixation pathways. Curr. Opin. Chem. Biol. 16, 337-344 (2012). doi: 10.1016/j.cbpa.2012.05.002; pmid: 22647231
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 337-344
    • Ducat, D.C.1    Silver, P.A.2
  • 51
    • 84929504676 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for the synthesis of commodity products
    • pmid: 25908503
    • S. A. Angermayr, A. Gorchs Rovira, K. J. Hellingwerf, Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361 (2015). doi: 10.1016/j.tibtech.2015.03.009; pmid: 25908503
    • (2015) Trends Biotechnol. , vol.33 , pp. 352-361
    • Angermayr, S.A.1    Gorchs Rovira, A.2    Hellingwerf, K.J.3
  • 52
    • 84859111827 scopus 로고    scopus 로고
    • Integrated electromicrobial conversion of CO2 to higher alcohols
    • pmid: 22461604
    • H. Li et al., Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012). doi: 10.1126/science.1217643; pmid: 22461604
    • (2012) Science , vol.335 , pp. 1596
    • Li, H.1
  • 53
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
    • J. P. Torella et al., Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. U.S.A. 112, 2337-2342 (2015). doi: 10.1073/pnas.1424872112
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 2337-2342
    • Torella, J.P.1
  • 54
    • 84876029446 scopus 로고    scopus 로고
    • Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
    • pmid: 23530213
    • M. W. Keller et al., Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl. Acad. Sci. U.S.A. 110, 5840-5845 (2013). doi: 10.1073/pnas.1222607110; pmid: 23530213
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5840-5845
    • Keller, M.W.1
  • 55
    • 84891366912 scopus 로고    scopus 로고
    • Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms
    • pmid: 24863900
    • H. Latif, A. A. Zeidan, A. T. Nielsen, K. Zengler, Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr. Opin. Biotechnol. 27, 79-87 (2014). doi: 10.1016/j.copbio.2013.12.001; pmid: 24863900
    • (2014) Curr. Opin. Biotechnol. , vol.27 , pp. 79-87
    • Latif, H.1    Zeidan, A.A.2    Nielsen, A.T.3    Zengler, K.4
  • 56
    • 84886056537 scopus 로고    scopus 로고
    • Bacterial synthesis gas (syngas) fermentation
    • pmid: 24350425
    • F. R. Bengelsdorf, M. Straub, P. Dürre, Bacterial synthesis gas (syngas) fermentation. Environ. Technol. 34, 1639-1651 (2013). doi: 10.1080/09593330.2013.827747; pmid: 24350425
    • (2013) Environ. Technol. , vol.34 , pp. 1639-1651
    • Bengelsdorf, F.R.1    Straub, M.2    Dürre, P.3
  • 57
    • 84938821380 scopus 로고    scopus 로고
    • Review of syngas fermentation processes for bioethanol
    • B. Acharya, P. Roy, A. Dutta, Review of syngas fermentation processes for bioethanol. Biofuels 5, 551-564 (2014). doi: 10.1080/17597269.2014.1002996
    • (2014) Biofuels , vol.5 , pp. 551-564
    • Acharya, B.1    Roy, P.2    Dutta, A.3
  • 58
    • 77955610491 scopus 로고    scopus 로고
    • Clostridium ljungdahlii represents a microbial production platform based on syngas
    • pmid: 20616070
    • M. Köpke et al., Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. U.S.A. 107, 13087-13092 (2010). doi: 10.1073/pnas.1004716107; pmid: 20616070
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13087-13092
    • Köpke, M.1
  • 59
    • 84896905548 scopus 로고    scopus 로고
    • Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii
    • pmid: 24509933
    • A. Banerjee, C. Leang, T. Ueki, K. P. Nevin, D. R. Lovley, Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl. Environ. Microbiol. 80, 2410-2416 (2014). doi: 10.1128/AEM.03666-13; pmid: 24509933
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 2410-2416
    • Banerjee, A.1    Leang, C.2    Ueki, T.3    Nevin, K.P.4    Lovley, D.R.5
  • 60
    • 84875266678 scopus 로고    scopus 로고
    • Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica
    • pmid: 23177215
    • A. Kita et al., Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J. Biosci. Bioeng. 115, 347-352 (2013). doi: 10.1016/j.jbiosc.2012.10.013; pmid: 23177215
    • (2013) J. Biosci. Bioeng. , vol.115 , pp. 347-352
    • Kita, A.1
  • 61
    • 84908433337 scopus 로고    scopus 로고
    • Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
    • pmid: 25336453
    • T. Ueki, K. P. Nevin, T. L. Woodard, D. R. Lovley, Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5, e01636-14 (2014). doi: 10.1128/mBio.01636-14; pmid: 25336453
    • (2014) MBio , vol.5 , pp. e01636-e01714
    • Ueki, T.1    Nevin, K.P.2    Woodard, T.L.3    Lovley, D.R.4
  • 62
    • 84940421681 scopus 로고    scopus 로고
    • Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation
    • pmid: 26148714
    • J. Mock et al., Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J. Bacteriol. 197, 2965-2980 (2015). doi: 10.1128/JB.00399-15; pmid: 26148714
    • (2015) J. Bacteriol. , vol.197 , pp. 2965-2980
    • Mock, J.1
  • 63
    • 84976274590 scopus 로고    scopus 로고
    • Acetone production with metabolically engineered strains of Acetobacterium woodii
    • pmid: 26971669
    • S. Hoffmeister et al., Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab. Eng. 36, 37-47 (2016). doi: 10.1016/j.ymben.2016.03.001; pmid: 26971669
    • (2016) Metab. Eng. , vol.36 , pp. 37-47
    • Hoffmeister, S.1
  • 64
    • 84973449735 scopus 로고    scopus 로고
    • Gas fermentation: A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
    • pmid: 27242719
    • F. Liew et al., Gas fermentation: A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 7, 694 (2016). doi: 10.3389/fmicb.2016.00694; pmid: 27242719
    • (2016) Front. Microbiol. , vol.7 , pp. 694
    • Liew, F.1
  • 65
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis : Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic
    • pmid: 20714445
    • K. P. Nevin, T. L. Woodard, A. E. Franks, Microbial electrosynthesis : Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic. Am. Soc. Microbiol. 1, 1-4 (2010). pmid: 20714445
    • (2010) Am. Soc. Microbiol. , vol.1 , pp. 1-4
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3
  • 66
    • 84874738185 scopus 로고    scopus 로고
    • A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen
    • pmid: 23204413
    • C. Leang, T. Ueki, K. P. Nevin, D. R. Lovley, A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 79, 1102-1109 (2013). doi: 10.1128/AEM.02891-12; pmid: 23204413
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 1102-1109
    • Leang, C.1    Ueki, T.2    Nevin, K.P.3    Lovley, D.R.4
  • 67
    • 84952939707 scopus 로고    scopus 로고
    • Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
    • pmid: 26721997
    • K. K. Sakimoto, A. B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74-77 (2016). doi: 10.1126/science. aad3317; pmid: 26721997
    • (2016) Science , vol.351 , pp. 74-77
    • Sakimoto, K.K.1    Wong, A.B.2    Yang, P.3
  • 68
    • 84890023112 scopus 로고    scopus 로고
    • Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase
    • pmid: 24337298
    • K. Schuchmann, V. Müller, Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382-1385 (2013). doi: 10.1126/science.1244758; pmid: 24337298
    • (2013) Science , vol.342 , pp. 1382-1385
    • Schuchmann, K.1    Müller, V.2
  • 69
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
    • pmid: 25383604
    • K. Schuchmann, V. Müller, Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809-821 (2014). doi: 10.1038/nrmicro3365; pmid: 25383604
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 809-821
    • Schuchmann, K.1    Müller, V.2
  • 70
    • 84979201731 scopus 로고    scopus 로고
    • Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: A kinetic and mechanistic study
    • pmid: 27348246
    • L. B. Maia, L. Fonseca, I. Moura, J. J. G. Moura, Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: A kinetic and mechanistic study. J. Am. Chem. Soc. 138, 8834-8846 (2016). doi: 10.1021/jacs.6b03941; pmid: 27348246
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 8834-8846
    • Maia, L.B.1    Fonseca, L.2    Moura, I.3    Moura, J.J.G.4
  • 71
    • 84936854824 scopus 로고    scopus 로고
    • Advances in de novo strain design using integrated systems and synthetic biology tools
    • pmid: 26177080
    • C. Y. Ng, A. Khodayari, A. Chowdhury, C. D. Maranas, Advances in de novo strain design using integrated systems and synthetic biology tools. Curr. Opin. Chem. Biol. 28, 105-114 (2015). doi: 10.1016/j.cbpa.2015.06.026; pmid: 26177080
    • (2015) Curr. Opin. Chem. Biol. , vol.28 , pp. 105-114
    • Ng, C.Y.1    Khodayari, A.2    Chowdhury, A.3    Maranas, C.D.4
  • 72
    • 84979984723 scopus 로고    scopus 로고
    • The evolution of genome mining in microbes-A review
    • pmid: 27272205
    • N. Ziemert, M. Alanjary, T. Weber, The evolution of genome mining in microbes-A review. Nat. Prod. Rep. 33, 988-1005 (2016). doi: 10.1039/C6NP00025H; pmid: 27272205
    • (2016) Nat. Prod. Rep. , vol.33 , pp. 988-1005
    • Ziemert, N.1    Alanjary, M.2    Weber, T.3
  • 73
    • 84903827354 scopus 로고    scopus 로고
    • Computational enzyme design: Transitioning from catalytic proteins to enzymes
    • pmid: 25005925
    • W. S. Mak, J. B. Siegel, Computational enzyme design: Transitioning from catalytic proteins to enzymes. Curr. Opin. Struct. Biol. 27, 87-94 (2014). doi: 10.1016/j.sbi.2014.05.010; pmid: 25005925
    • (2014) Curr. Opin. Struct. Biol. , vol.27 , pp. 87-94
    • Mak, W.S.1    Siegel, J.B.2
  • 74
    • 84961644292 scopus 로고    scopus 로고
    • Substrate channelling as an approach to cascade reactions
    • pmid: 27001725
    • I. Wheeldon et al., Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299-309 (2016). doi: 10.1038/nchem.2459; pmid: 27001725
    • (2016) Nat. Chem. , vol.8 , pp. 299-309
    • Wheeldon, I.1
  • 75
    • 85019538562 scopus 로고    scopus 로고
    • Design, analysis and application of synthetic microbial consortia
    • X. Jia et al., Design, analysis and application of synthetic microbial consortia. Synth. Syst. Biotechnol. 1, 109-117 (2016). doi: 10.1016/j.synbio.2016.02.001
    • (2016) Synth. Syst. Biotechnol. , vol.1 , pp. 109-117
    • Jia, X.1
  • 76
    • 84973519852 scopus 로고    scopus 로고
    • Modular co-culture engineering, a new approach for metabolic engineering
    • pmid: 27242132
    • H. Zhang, X. Wang, Modular co-culture engineering, a new approach for metabolic engineering. Metab. Eng. 37, 114-121 (2016). doi: 10.1016/j.ymben.2016.05.007; pmid: 27242132
    • (2016) Metab. Eng. , vol.37 , pp. 114-121
    • Zhang, H.1    Wang, X.2
  • 77
    • 84962739598 scopus 로고    scopus 로고
    • A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery
    • pmid: 26996382
    • A. S. Karim, M. C. Jewett, A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab. Eng. 36, 116-126 (2016). doi: 10.1016/j.ymben.2016.03.002; pmid: 26996382
    • (2016) Metab. Eng. , vol.36 , pp. 116-126
    • Karim, A.S.1    Jewett, M.C.2
  • 78
    • 84975091582 scopus 로고    scopus 로고
    • Printable enzyme-embedded materials for methane to methanol conversion
    • pmid: 27301270
    • C. D. Blanchette et al., Printable enzyme-embedded materials for methane to methanol conversion. Nat. Commun. 7, 11900 (2016). doi: 10.1038/ncomms11900; pmid: 27301270
    • (2016) Nat. Commun. , vol.7 , pp. 11900
    • Blanchette, C.D.1
  • 79
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • pmid: 23360965
    • W. Jiang, D. Bikard, D. Cox, F. Zhang, L. A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233-239 (2013). doi: 10.1038/nbt.2508; pmid: 23360965
    • (2013) Nat. Biotechnol. , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 80
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • pmid: 23460208
    • J. E. DiCarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336-4343 (2013). doi: 10.1093/nar/gkt135; pmid: 23460208
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1
  • 81
    • 84923021733 scopus 로고    scopus 로고
    • Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
    • pmid: 25638686
    • T. Jakočiunas et al., Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, 213-222 (2015). doi: 10.1016/j.ymben.2015.01.008; pmid: 25638686
    • (2015) Metab. Eng. , vol.28 , pp. 213-222
    • Jakočiunas, T.1
  • 82
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • pmid: 19633652
    • H. H. Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894-898 (2009). doi: 10.1038/nature08187; pmid: 19633652
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1
  • 83
    • 84962227074 scopus 로고    scopus 로고
    • Design and synthesis of a minimal bacterial genome
    • pmid: 27013737
    • C. A. Hutchison 3rd et al., Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016). doi: 10.1126/science.aad6253; pmid: 27013737
    • (2016) Science , vol.351 , pp. aad6253
    • Hutchison, C.A.1
  • 84
    • 84961115730 scopus 로고    scopus 로고
    • Biosensor-based engineering of biosynthetic pathways
    • pmid: 26998575
    • J. K. Rogers, N. D. Taylor, G. M. Church, Biosensor-based engineering of biosynthetic pathways. Curr. Opin. Biotechnol. 42, 84-91 (2016). doi: 10.1016/j.copbio.2016.03.005; pmid: 26998575
    • (2016) Curr. Opin. Biotechnol. , vol.42 , pp. 84-91
    • Rogers, J.K.1    Taylor, N.D.2    Church, G.M.3
  • 85
    • 84959504252 scopus 로고    scopus 로고
    • Synthetic evolution of metabolic productivity using biosensors
    • pmid: 26948437
    • T. C. Williams, I. S. Pretorius, I. T. Paulsen, Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371-381 (2016). doi: 10.1016/j.tibtech.2016.02.002; pmid: 26948437
    • (2016) Trends Biotechnol. , vol.34 , pp. 371-381
    • Williams, T.C.1    Pretorius, I.S.2    Paulsen, I.T.3
  • 87
    • 84877063612 scopus 로고    scopus 로고
    • Consistent development of bioprocesses from microliter cultures to the industrial scale
    • P. Neubauer et al., Consistent development of bioprocesses from microliter cultures to the industrial scale. Eng. Life Sci. 13, 224-238 (2013). doi: 10.1002/elsc.201200021
    • (2013) Eng. Life Sci. , vol.13 , pp. 224-238
    • Neubauer, P.1
  • 88
    • 84964314828 scopus 로고    scopus 로고
    • Towards synthetic biological approaches to resource utilization on space missions
    • pmid: 25376875
    • A. A. Menezes, J. Cumbers, J. A. Hogan, A. P. Arkin, Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715-20140715 (2015). doi: 10.1098/rsif.2014.0715; pmid: 25376875
    • (2015) J. R. Soc. Interface , vol.12 , pp. 20140715
    • Menezes, A.A.1    Cumbers, J.2    Hogan, J.A.3    Arkin, A.P.4
  • 92
    • 85009263562 scopus 로고    scopus 로고
    • Yara, World scale ammonia plant opens in Burrup (2006); http://yara.com/media/press-releases/1045462/press-release/200604/world-scale-ammonia-plant-opens-in-burrup/.
    • (2006) World Scale Ammonia Plant Opens in Burrup
  • 93
    • 85009273469 scopus 로고    scopus 로고
    • The Sturgeon refinery and the high cost of valueadded
    • G. Morgan, The Sturgeon refinery and the high cost of valueadded. Alberta Oil (2014); http://www.albertaoilmagazine. com/2014/11/high-price-adding-value/.
    • (2014) Alberta Oil
    • Morgan, G.1
  • 95
    • 85009237500 scopus 로고    scopus 로고
    • Incitec plans $850 million U.S. Ammonia plant on gas price
    • J. Patton, Incitec Plans $850 Million U.S. Ammonia Plant on Gas Price. Bloomberg (2013); http://www.bloomberg.com/news/articles/2013-04-17/incitec-plans-850-million-u-sammonia-plant-on-gas-price.
    • (2013) Bloomberg
    • Patton, J.1
  • 98
    • 85054122873 scopus 로고    scopus 로고
    • $265 million ammonia plant in Grant Parish
    • I. Foris, I. F. Announces, $265 million ammonia plant in Grant Parish. Louisiana Econ. Dev. (2015); http://www. opportunitylouisiana.com/led-news/news-releases/news/2015/07/22/investimus-foris-announces-$265-millionammonia-plant-in-grant-parish.
    • (2015) Louisiana Econ. Dev.
    • Foris, I.1    Announces, I.F.2
  • 99
    • 85009237508 scopus 로고    scopus 로고
    • Google Maps, Big River United Energy (2016); https://www. google.com/maps/place/Big+River+United+Energy/@ 42.4892966,-91.1562547,17z/data=!3m1!4b1!4m5!3m4! 1s0x87e3546c5bd01ea9:0xc8a545926175dc77!8m2! 3d42.4892966!4d-91.1540607.
    • (2016) Big River United Energy
  • 100
    • 85009273454 scopus 로고    scopus 로고
    • G. Maps, ExxonMobil Baytown Refinery (2016); https://www. google.com/maps/place/Exxonmobil+Refinery/@ 29.7562611,-94.9913522,15z/data=!4m2!3m1! 1s0x0:0x1700615ea16f9969?sa=X&ved=0ahUKEwi-5qaFqOfOAhVDMyYKHeBICM0Q-BIIeDAK.
    • (2016) ExxonMobil Baytown Refinery
  • 104
    • 57049164235 scopus 로고    scopus 로고
    • Understanding the reductions in US corn ethanol production costs: An experience curve approach
    • W. G. Hettinga et al., Understanding the reductions in US corn ethanol production costs: An experience curve approach. Energy Policy 1, 190-203 (2009). doi: 10.1016/j.enpol.2008.08.002
    • (2009) Energy Policy , vol.1 , pp. 190-203
    • Hettinga, W.G.1
  • 106
    • 84984399565 scopus 로고
    • Ethanol production from grain in the United States: Agricultural impacts and economic feasibility
    • M. LeBlanc, A. Prato, Ethanol production from grain in the United States: Agricultural impacts and economic feasibility. Can. J. Agric. Econ. 31, 223-232 (1983). doi: 10.1111/j.1744-7976.1983. tb01198.x
    • (1983) Can. J. Agric. Econ. , vol.31 , pp. 223-232
    • LeBlanc, M.1    Prato, A.2
  • 108
    • 11244273082 scopus 로고    scopus 로고
    • Sparks Companies Inc. and Kansas State University
    • J. Whims, "Corn based ethanol costs and margins: Attachment 1" (Sparks Companies Inc. and Kansas State University, 2002); www.agmrc.org/media/cms/ksueth1-44EF748246D5F.pdf.
    • (2002) Corn Based Ethanol Costs and Margins: Attachment 1
    • Whims, J.1
  • 110
    • 33645975552 scopus 로고    scopus 로고
    • Modeling the process and costs of fuel ethanol production by the corn dry-grind process
    • J. R. Kwiatkowski, A. J. McAloon, F. Taylor, D. B. Johnston, Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind. Crops Prod. 23, 288-296 (2006). doi: 10.1016/j.indcrop.2005.08.004
    • (2006) Ind. Crops Prod. , vol.23 , pp. 288-296
    • Kwiatkowski, J.R.1    McAloon, A.J.2    Taylor, F.3    Johnston, D.B.4
  • 112
    • 84859335333 scopus 로고    scopus 로고
    • Microbial inorganic carbon fixation
    • T. Sato, H. Atomi, Microbial inorganic carbon fixation. eLS, 1-12 (2001); http://www.els.net/WileyCDA/ElsArticle/refIda0021900. html.
    • (2001) ELS , pp. 1-12
    • Sato, T.1    Atomi, H.2
  • 113
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: Microbial engineering for the production of sustainable biofuels
    • pmid: 27026253
    • J. C. Liao, L. Mi, S. Pontrelli, S. Luo, Fuelling the future: Microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288-304 (2016). doi: 10.1038/nrmicro.2016.32; pmid: 27026253
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 288-304
    • Liao, J.C.1    Mi, L.2    Pontrelli, S.3    Luo, S.4
  • 114
    • 0003706605 scopus 로고    scopus 로고
    • Wiley, New York, ed. 1
    • G. Michal, Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (Wiley, New York, ed. 1, 1999; http://www.amazon.co.uk/Biochemical-Pathways-Biochemistry-Molecular-Biology/dp/0470146842/ref=sr-1-1? s=books&ie=UTF8&qid=1447518627&sr=1-1&keywords=biochemical+pathways).
    • (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology
    • Michal, G.1
  • 115
    • 84878966835 scopus 로고    scopus 로고
    • Glycolytic strategy as a tradeoff between energy yield and protein cost
    • pmid: 23630264
    • A. Flamholz, E. Noor, A. Bar-Even, W. Liebermeister, R. Milo, Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. U.S.A. 110, 10039-10044 (2013). doi: 10.1073/pnas.1215283110; pmid: 23630264
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 10039-10044
    • Flamholz, A.1    Noor, E.2    Bar-Even, A.3    Liebermeister, W.4    Milo, R.5
  • 116
    • 84873625206 scopus 로고    scopus 로고
    • Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP
    • pmid: 23395757
    • K. H. Rostkowski, A. R. Pfluger, C. S. Criddle, Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour. Technol. 132, 71-77 (2013). doi: 10.1016/j.biortech.2012.12.129; pmid: 23395757
    • (2013) Bioresour. Technol. , vol.132 , pp. 71-77
    • Rostkowski, K.H.1    Pfluger, A.R.2    Criddle, C.S.3
  • 117
    • 79958269960 scopus 로고    scopus 로고
    • High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b
    • pmid: 21612919
    • C. Duan, M. Luo, X. Xing, High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102, 7349-7353 (2011). doi: 10.1016/j.biortech.2011.04.096; pmid: 21612919
    • (2011) Bioresour. Technol. , vol.102 , pp. 7349-7353
    • Duan, C.1    Luo, M.2    Xing, X.3
  • 118
    • 77955972763 scopus 로고    scopus 로고
    • Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium
    • pmid: 20581197
    • T. Hölscher, U. Breuer, L. Adrian, H. Harms, T. Maskow, Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium. Appl. Environ. Microbiol. 76, 5585-5591 (2010). doi: 10.1128/AEM.01065-10; pmid: 20581197
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 5585-5591
    • Hölscher, T.1    Breuer, U.2    Adrian, L.3    Harms, H.4    Maskow, T.5
  • 119
    • 84865211266 scopus 로고    scopus 로고
    • Genome sequence of thermotolerant Bacillus methanolicus: Features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol
    • pmid: 22610424
    • T. M. B. Heggeset et al., Genome sequence of thermotolerant Bacillus methanolicus: Features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl. Environ. Microbiol. 78, 5170-5181 (2012). doi: 10.1128/AEM.00703-12; pmid: 22610424
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 5170-5181
    • Heggeset, T.M.B.1
  • 120
    • 77955665768 scopus 로고    scopus 로고
    • Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase i and II and their roles for L-lysine production from methanol at 50 degrees C
    • pmid: 20372887
    • T. Brautaset et al., Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C. Appl. Microbiol. Biotechnol. 87, 951-964 (2010). doi: 10.1007/s00253-010-2559-6; pmid: 20372887
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 951-964
    • Brautaset, T.1
  • 121
    • 84923418693 scopus 로고    scopus 로고
    • Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains
    • I. Naerdal, J. Pfeifenschneider, T. Brautaset, V. F. Wendisch, Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb. Biotechnol. 8, 342-350 (2015). doi: 10.1111/1751-7915.12257 pmid: 25644214
    • (2015) Microb. Biotechnol. , vol.8 , pp. 342-350
    • Naerdal, I.1    Pfeifenschneider, J.2    Brautaset, T.3    Wendisch, V.F.4
  • 122
    • 84943572735 scopus 로고    scopus 로고
    • Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid a-humulene from methanol
    • pmid: 26369439
    • F. Sonntag et al., Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid a-humulene from methanol. Metab. Eng. 32, 82-94 (2015). doi: 10.1016/j.ymben.2015.09.004; pmid: 26369439
    • (2015) Metab. Eng. , vol.32 , pp. 82-94
    • Sonntag, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.