메뉴 건너뛰기




Volumn 69, Issue 16, 2012, Pages 2671-2690

Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries

Author keywords

Biobutanol; Industrial biotechnology; Isoprenoids; Metabolic engineering; Substrate range; Yeast

Indexed keywords

ALCOHOL; ASCORBIC ACID; BETA AMYRIN; BETA CAROTENE; BETA FARNESENE; BIODIESEL; BIOFUEL; BUTANOL; EPIDERMAL GROWTH FACTOR; GERANYLGERANIOL; GLUCAGON; HEPATITIS B SURFACE ANTIGEN; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE; ICOSAPENTAENOIC ACID; IMMUNOGLOBULIN G; ISOPRENOID; LACTIC ACID; LINALOOL; METHYLMALONYL COENZYME A DECARBOXYLASE; POLYHYDROXYALKANOIC ACID; PROPYLENE GLYCOL; PYRUVIC ACID; RESVERATROL; RIBITOL; RIBOSE; SOMATOMEDIN; SUCCINIC ACID; VALENCENE; VANILLIN;

EID: 84864186953     PISSN: 1420682X     EISSN: 14209071     Source Type: Journal    
DOI: 10.1007/s00018-012-0945-1     Document Type: Review
Times cited : (350)

References (145)
  • 1
    • 0035068997 scopus 로고    scopus 로고
    • Metabolic engineering
    • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55(3):263-283
    • (2001) Appl Microbiol Biotechnol , vol.55 , Issue.3 , pp. 263-283
    • Nielsen, J.1
  • 2
    • 79961179947 scopus 로고    scopus 로고
    • Synergies between synthetic biology and metabolic engineering
    • Nielsen J, Keasling JD (2011) Synergies between synthetic biology and metabolic engineering. Nat Biotechnol 29(8): 693-695
    • (2011) Nat Biotechnol , vol.29 , Issue.8 , pp. 693-695
    • Nielsen, J.1    Keasling, J.D.2
  • 3
    • 33847073370 scopus 로고    scopus 로고
    • Expanding the metabolic engineering toolbox: More options to engineer cells
    • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25(3):132-137
    • (2007) Trends Biotechnol , vol.25 , Issue.3 , pp. 132-137
    • Tyo, K.E.1    Alper, H.S.2    Stephanopoulos, G.N.3
  • 4
    • 77952888809 scopus 로고    scopus 로고
    • Toward design-based engineering of industrial microbes
    • Tyo KE, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13(3):255-262
    • (2010) Curr Opin Microbiol , vol.13 , Issue.3 , pp. 255-262
    • Tyo, K.E.1    Kocharin, K.2    Nielsen, J.3
  • 5
    • 38349164135 scopus 로고    scopus 로고
    • Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae
    • Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122-131
    • (2008) FEMS Yeast Res , vol.8 , Issue.1 , pp. 122-131
    • Nielsen, J.1    Jewett, M.C.2
  • 6
    • 79960104605 scopus 로고    scopus 로고
    • Microbial laboratory evolution in the era of genome-scale science
    • Conrad TM, Lewis NE, Palsson BO (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509
    • (2011) Mol Syst Biol , vol.7 , pp. 509
    • Conrad, T.M.1    Lewis, N.E.2    Palsson, B.O.3
  • 7
    • 70449519261 scopus 로고    scopus 로고
    • Impact of yeast systems biology on industrial biotechnology
    • Petranovic D, Vemuri GN (2009) Impact of yeast systems biology on industrial biotechnology. J Biotechnol 144(3):204-211
    • (2009) J Biotechnol , vol.144 , Issue.3 , pp. 204-211
    • Petranovic, D.1    Vemuri, G.N.2
  • 8
    • 79960414910 scopus 로고    scopus 로고
    • Systems metabolic engineering for chemicals and materials
    • Lee JW, Kim TY, Jang YS, Choi S, Lee SY (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370-378
    • (2011) Trends Biotechnol , vol.29 , Issue.8 , pp. 370-378
    • Lee, J.W.1    Kim, T.Y.2    Jang, Y.S.3    Choi, S.4    Lee, S.Y.5
  • 9
    • 23944445881 scopus 로고    scopus 로고
    • Eco-efficiency analysis of biotechnological processes
    • Saling P (2005) Eco-efficiency analysis of biotechnological processes. Appl Microbiol Biotechnol 68(1):1-8
    • (2005) Appl Microbiol Biotechnol , vol.68 , Issue.1 , pp. 1-8
    • Saling, P.1
  • 10
    • 79952574144 scopus 로고    scopus 로고
    • Weedy lignocellulosic feedstock and microbial metabolic engineering: Advancing the generation of 'Biofuel'
    • Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'. Appl Microbiol Biotechnol 89(5):1289-1303
    • (2011) Appl Microbiol Biotechnol , vol.89 , Issue.5 , pp. 1289-1303
    • Chandel, A.K.1    Singh, O.V.2
  • 11
    • 77957330454 scopus 로고    scopus 로고
    • Engineered microbial systems for enhanced conversion of lignocellulosic biomass
    • Elkins JG, Raman B, Keller M (2010) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21(5):657-662
    • (2010) Curr Opin Biotechnol , vol.21 , Issue.5 , pp. 657-662
    • Elkins, J.G.1    Raman, B.2    Keller, M.3
  • 12
    • 79959320676 scopus 로고    scopus 로고
    • Microbial diversity of cellulose hydrolysis
    • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259-263
    • (2011) Curr Opin Microbiol , vol.14 , Issue.3 , pp. 259-263
    • Wilson, D.B.1
  • 13
    • 79952123299 scopus 로고    scopus 로고
    • Opportunities for yeast metabolic engineering: Lessons from synthetic biology
    • Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262-276
    • (2011) Biotechnol J , vol.6 , Issue.3 , pp. 262-276
    • Krivoruchko, A.1    Siewers, V.2    Nielsen, J.3
  • 14
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379-412
    • (2008) Microbiol Mol Biol Rev , vol.72 , Issue.3 , pp. 379-412
    • Nevoigt, E.1
  • 15
    • 84864236526 scopus 로고    scopus 로고
    • Systems biology of yeast: Enabling technology for development of cell factories for production of advanced biofuels
    • in press
    • de Jong B, Siewers V, Nielsen J (2011) Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol (in press)
    • (2011) Curr Opin Biotechnol
    • De Jong, B.1    Siewers, V.2    Nielsen, J.3
  • 16
    • 84857058761 scopus 로고    scopus 로고
    • A systems-level approach for metabolic engineering of yeast cell factories
    • Kim IK, Roldao A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12(2):228-248
    • (2012) FEMS Yeast Res , vol.12 , Issue.2 , pp. 228-248
    • Kim, I.K.1    Roldao, A.2    Siewers, V.3    Nielsen, J.4
  • 17
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76(1): 190-195
    • (2010) Appl Environ Microbiol , vol.76 , Issue.1 , pp. 190-195
    • Guadalupe Medina, V.1    Almering, M.J.2    Van Maris, A.J.3    Pronk, J.T.4
  • 18
    • 79960656765 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism
    • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21
    • (2011) Biotechnol Biofuels , vol.4 , pp. 21
    • Chen, X.1    Nielsen, K.F.2    Borodina, I.3    Kielland-Brandt, M.C.4    Karhumaa, K.5
  • 19
    • 81455143861 scopus 로고    scopus 로고
    • Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase
    • Yu KO, Jung J, Kim SW, Park CH, Han SO (2012) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109(1):110-115
    • (2012) Biotechnol Bioeng , vol.109 , Issue.1 , pp. 110-115
    • Yu, K.O.1    Jung, J.2    Kim, S.W.3    Park, C.H.4    Han, S.O.5
  • 22
    • 29544439347 scopus 로고    scopus 로고
    • Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast
    • Lee W, Dasilva NA (2006) Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab Eng 8(1):58-65
    • (2006) Metab Eng , vol.8 , Issue.1 , pp. 58-65
    • Lee, W.1    Dasilva, N.A.2
  • 23
    • 74149093593 scopus 로고    scopus 로고
    • Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol
    • Toivari M, Maaheimo H, Penttilä M, Ruohonen L (2010) Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Appl Microbiol Biot 85(3):731-739
    • (2010) Appl Microbiol Biot , vol.85 , Issue.3 , pp. 731-739
    • Toivari, M.1    Maaheimo, H.2    Penttilä, M.3    Ruohonen, L.4
  • 24
    • 79955972014 scopus 로고    scopus 로고
    • Modification of carbon flux in Saccharomyces cerevisiae to improve L-lactic acid production
    • Zhao L, Wang J, Zhou J, Liu L, Du G, Chen J (2011) Modification of carbon flux in Saccharomyces cerevisiae to improve L-lactic acid production. Wei Sheng Wu Xue Bao 51(1):50-58
    • (2011) Wei Sheng Wu Xue Bao , vol.51 , Issue.1 , pp. 50-58
    • Zhao, L.1    Wang, J.2    Zhou, J.3    Liu, L.4    Du, G.5    Chen, J.6
  • 25
    • 33644848894 scopus 로고    scopus 로고
    • Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae
    • Zhang B, Carlson R, Srienc F (2006) Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 72(1):536-543
    • (2006) Appl Environ Microbiol , vol.72 , Issue.1 , pp. 536-543
    • Zhang, B.1    Carlson, R.2    Srienc, F.3
  • 27
    • 78049430020 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
    • Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12(6):518-525
    • (2010) Metab Eng , vol.12 , Issue.6 , pp. 518-525
    • Raab, A.M.1    Gebhardt, G.2    Bolotina, N.3    Weuster-Botz, D.4    Lang, C.5
  • 28
    • 79952806663 scopus 로고    scopus 로고
    • Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers
    • Madsen KM, Udatha GD, Semba S, Otero JM, Koetter P, Nielsen J, Ebizuka Y, Kushiro T, Panagiotou G (2011) Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers. PLoS One 6(3):e14763
    • (2011) PLoS One , vol.6 , Issue.3
    • Madsen, K.M.1    Udatha, G.D.2    Semba, S.3    Otero, J.M.4    Koetter, P.5    Nielsen, J.6    Ebizuka, Y.7    Kushiro, T.8    Panagiotou, G.9
  • 29
    • 34447543117 scopus 로고    scopus 로고
    • High-level production of betacarotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous
    • Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of betacarotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73(13):4342-4350
    • (2007) Appl Environ Microbiol , vol.73 , Issue.13 , pp. 4342-4350
    • Verwaal, R.1    Wang, J.2    Meijnen, J.P.3    Visser, H.4    Sandmann, G.5    Van Den Berg, J.A.6    Van Ooyen, A.J.7
  • 33
    • 79952539027 scopus 로고    scopus 로고
    • Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)- anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae
    • Eudes A, Baidoo E, Yang F, BurdH, Hadi M, Collins F, Keasling J, Loqué D (2011) Production of tranilast [N-(3′,4′- dimethoxycinnamoyl)- anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 89(4):989-1000
    • (2011) Appl Microbiol Biotechnol , vol.89 , Issue.4 , pp. 989-1000
    • Eudes, A.1    Baidoo, E.2    Yang, F.3    Burdh Hadi, M.4    Collins, F.5    Keasling, J.6    Loqué, D.7
  • 34
    • 77951531018 scopus 로고    scopus 로고
    • Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae
    • Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106(1):86-96
    • (2010) Biotechnol Bioeng , vol.106 , Issue.1 , pp. 86-96
    • Asadollahi, M.A.1    Maury, J.2    Schalk, M.3    Clark, A.4    Nielsen, J.5
  • 35
    • 79953171537 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel {delta}5-desaturase from Paramecium tetraurelia
    • Tavares S, Grotkjaer T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel {delta}5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol 77(5):1854-1861
    • (2011) Appl Environ Microbiol , vol.77 , Issue.5 , pp. 1854-1861
    • Tavares, S.1    Grotkjaer, T.2    Obsen, T.3    Haslam, R.P.4    Napier, J.A.5    Gunnarsson, N.6
  • 37
    • 8144221054 scopus 로고    scopus 로고
    • Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii
    • Sauer M, Branduardi P, Valli M, Porro D (2004) Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol 70(10):6086-6091
    • (2004) Appl Environ Microbiol , vol.70 , Issue.10 , pp. 6086-6091
    • Sauer, M.1    Branduardi, P.2    Valli, M.3    Porro, D.4
  • 38
    • 78049274151 scopus 로고    scopus 로고
    • Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae
    • Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76(19):6449-6454
    • (2010) Appl Environ Microbiol , vol.76 , Issue.19 , pp. 6449-6454
    • Rico, J.1    Pardo, E.2    Orejas, M.3
  • 39
    • 33645057433 scopus 로고    scopus 로고
    • Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae
    • Mutka SC, Bondi SM, Carney JR, Da Silva NA, Kealey JT (2006) Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 6(1):40-47
    • (2006) FEMS Yeast Res , vol.6 , Issue.1 , pp. 40-47
    • Mutka, S.C.1    Bondi, S.M.2    Carney, J.R.3    Da Silva, N.A.4    Kealey, J.T.5
  • 40
    • 79551478567 scopus 로고    scopus 로고
    • Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes
    • Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77(3):1033-1040
    • (2011) Appl Environ Microbiol , vol.77 , Issue.3 , pp. 1033-1040
    • Albertsen, L.1    Chen, Y.2    Bach, L.S.3    Rattleff, S.4    Maury, J.5    Brix, S.6    Nielsen, J.7    Mortensen, U.H.8
  • 43
    • 79955466455 scopus 로고    scopus 로고
    • Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine
    • Mapelli V, Hillestrøm PR, Kápolna E, Larsen EH, Olsson L (2011) Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metab Eng 13(3):282-293
    • (2011) Metab Eng , vol.13 , Issue.3 , pp. 282-293
    • Mapelli, V.1    Hillestrøm, P.R.2    Kápolna, E.3    Larsen, E.H.4    Olsson, L.5
  • 44
    • 77955404499 scopus 로고    scopus 로고
    • Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae
    • Siewers V, San-Bento R, Nielsen J (2010) Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae. Biotechnol Bioeng 106(5):841-844
    • (2010) Biotechnol Bioeng , vol.106 , Issue.5 , pp. 841-844
    • Siewers, V.1    San-Bento, R.2    Nielsen, J.3
  • 45
    • 0034469184 scopus 로고    scopus 로고
    • Improved secretion of native human insulinlike growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells
    • Vai M, Brambilla L, Orlandi I, Rota N, Ranzi BM, Alberghina L, Porro D (2000) Improved secretion of native human insulinlike growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl Environ Microbiol 66(12):5477-5479
    • (2000) Appl Environ Microbiol , vol.66 , Issue.12 , pp. 5477-5479
    • Vai, M.1    Brambilla, L.2    Orlandi, I.3    Rota, N.4    Ranzi, B.M.5    Alberghina, L.6    Porro, D.7
  • 46
    • 0034212430 scopus 로고    scopus 로고
    • Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains
    • Egel-Mitani M, Andersen AS, Diers II, Hach M, Thim L, Hastrup S, Vad K (2000) Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains. Enzyme Microb Technol 26(9-10):671-677
    • (2000) Enzyme Microb Technol , vol.26 , Issue.9-10 , pp. 671-677
    • Egel-Mitani, M.1    Andersen, A.S.2    Diers, I.I.3    Hach, M.4    Thim, L.5    Hastrup, S.6    Vad, K.7
  • 47
    • 33646397008 scopus 로고    scopus 로고
    • Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae
    • Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23(4):790-797
    • (2006) Pharm Res , vol.23 , Issue.4 , pp. 790-797
    • Hackel, B.J.1    Huang, D.2    Bubolz, J.C.3    Wang, X.X.4    Shusta, E.V.5
  • 48
    • 33846167472 scopus 로고    scopus 로고
    • Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldehyde-3-phosphate dehydrogenase promoter of Pichia pastoris
    • Vellanki RN, Komaravelli N, Tatineni R, Mangamoori LN (2007) Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldehyde-3-phosphate dehydrogenase promoter of Pichia pastoris. Biotechnol Lett 29(2):313-318
    • (2007) Biotechnol Lett , vol.29 , Issue.2 , pp. 313-318
    • Vellanki, R.N.1    Komaravelli, N.2    Tatineni, R.3    Mangamoori, L.N.4
  • 49
    • 33644671160 scopus 로고    scopus 로고
    • Parvovirus B19 VP2-proteins produced in Saccharomyces cerevisiae: Comparison with VP2-particles produced by baculovirusderived vectors
    • Lowin T, Raab U, Schroeder J, Franssila R, Modrow S (2005) Parvovirus B19 VP2-proteins produced in Saccharomyces cerevisiae: comparison with VP2-particles produced by baculovirusderived vectors. J Vet Med B Infect Dis Vet Public Health 52(7-8):348-352
    • (2005) J Vet Med B Infect Dis Vet Public Health , vol.52 , Issue.7-8 , pp. 348-352
    • Lowin, T.1    Raab, U.2    Schroeder, J.3    Franssila, R.4    Modrow, S.5
  • 50
    • 41549115843 scopus 로고    scopus 로고
    • Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: Production of O-fucosylated epidermal growth factor domains
    • Chigira Y, Oka T, Okajima T, Jigami Y (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18(4):303-314
    • (2008) Glycobiology , vol.18 , Issue.4 , pp. 303-314
    • Chigira, Y.1    Oka, T.2    Okajima, T.3    Jigami, Y.4
  • 51
    • 68149137106 scopus 로고    scopus 로고
    • Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae
    • Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD (2009) Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192-1201
    • (2009) Biotechnol Bioeng , vol.103 , Issue.6 , pp. 1192-1201
    • Rakestraw, J.A.1    Sazinsky, S.L.2    Piatesi, A.3    Antipov, E.4    Wittrup, K.D.5
  • 52
    • 67349105393 scopus 로고    scopus 로고
    • Expression of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae using GAL1 promoter
    • Kim E-J, Park Y-K, Lim H-K, Park Y-C, Seo J-H (2009) Expression of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae using GAL1 promoter. J Biotech 141(3-4):155-159
    • (2009) J Biotech , vol.141 , Issue.3-4 , pp. 155-159
    • Kim, E.-J.1    Park, Y.-K.2    Lim, H.-K.3    Park, Y.-C.4    Seo, J.-H.5
  • 53
    • 77957357536 scopus 로고    scopus 로고
    • Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae
    • Kim HJ, Lee SJ, Kim H-J (2010) Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae. J Biotechnol 150(1):31-36
    • (2010) J Biotechnol , vol.150 , Issue.1 , pp. 31-36
    • Kim, H.J.1    Lee, S.J.2    Kim, H.-J.3
  • 54
    • 78349256225 scopus 로고    scopus 로고
    • Prospects of yeast systems biology for human health: Integrating lipid, protein and energy metabolism
    • Petranovic D, Tyo K, Vemuri GN, Nielsen J (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10(8):1046-1059
    • (2010) FEMS Yeast Res , vol.10 , Issue.8 , pp. 1046-1059
    • Petranovic, D.1    Tyo, K.2    Vemuri, G.N.3    Nielsen, J.4
  • 55
    • 71149110113 scopus 로고    scopus 로고
    • Systems biology from a yeast omics perspective
    • Snyder M, Gallagher JE (2009) Systems biology from a yeast omics perspective. FEBS Lett 583(24):3895-3899
    • (2009) FEBS Lett , vol.583 , Issue.24 , pp. 3895-3899
    • Snyder, M.1    Gallagher, J.E.2
  • 57
    • 78650068228 scopus 로고    scopus 로고
    • Proteomics and systems biology to tackle biological complexity: Yeast as a case study
    • Alberghina L, Cirulli C (2010) Proteomics and systems biology to tackle biological complexity: yeast as a case study. Proteomics 10(24):4337-4341
    • (2010) Proteomics , vol.10 , Issue.24 , pp. 4337-4341
    • Alberghina, L.1    Cirulli, C.2
  • 58
    • 79958755967 scopus 로고    scopus 로고
    • Biofuel and biomass subsidies in the US, EU and Brazil: Towards a transparent system of notification
    • Josling T, Blandford D, Earley J (2010) Biofuel and biomass subsidies in the US, EU and Brazil: towards a transparent system of notification. IPC position paper
    • (2010) IPC Position Paper
    • Josling, T.1    Blandford, D.2    Earley, J.3
  • 64
    • 33845609259 scopus 로고    scopus 로고
    • Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
    • Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87-94
    • (2007) Metab Eng , vol.9 , Issue.1 , pp. 87-94
    • Den Haan, R.1    Rose, S.H.2    Lynd, L.R.3    Van Zyl, W.H.4
  • 65
    • 4143107093 scopus 로고    scopus 로고
    • Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase
    • Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70(8):5037-5040
    • (2004) Appl Environ Microbiol , vol.70 , Issue.8 , pp. 5037-5040
    • Shigechi, H.1    Koh, J.2    Fujita, Y.3    Matsumoto, T.4    Bito, Y.5    Ueda, M.6    Satoh, E.7    Fukuda, H.8    Kondo, A.9
  • 66
    • 4644280289 scopus 로고    scopus 로고
    • Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
    • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70(9):5407-5414
    • (2004) Appl Environ Microbiol , vol.70 , Issue.9 , pp. 5407-5414
    • Katahira, S.1    Fujita, Y.2    Mizuike, A.3    Fukuda, H.4    Kondo, A.5
  • 67
    • 2342638898 scopus 로고    scopus 로고
    • Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme
    • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207-1212
    • (2004) Appl Environ Microbiol , vol.70 , Issue.2 , pp. 1207-1212
    • Fujita, Y.1    Ito, J.2    Ueda, M.3    Fukuda, H.4    Kondo, A.5
  • 69
    • 0034607901 scopus 로고    scopus 로고
    • Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene
    • Ostergaard S, Roca C, Ronnow B, Nielsen J, Olsson L (2000) Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnol Bioeng 68(3):252-259
    • (2000) Biotechnol Bioeng , vol.68 , Issue.3 , pp. 252-259
    • Ostergaard, S.1    Roca, C.2    Ronnow, B.3    Nielsen, J.4    Olsson, L.5
  • 70
    • 38349193136 scopus 로고    scopus 로고
    • Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha
    • Dmytruk OV, Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Sibirny AA (2008) Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res 8(1):165-173
    • (2008) FEMS Yeast Res , vol.8 , Issue.1 , pp. 165-173
    • Dmytruk, O.V.1    Voronovsky, A.Y.2    Abbas, C.A.3    Dmytruk, K.V.4    Ishchuk, O.P.5    Sibirny, A.A.6
  • 74
    • 80455156250 scopus 로고    scopus 로고
    • Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae
    • Ghosh A, Zhao H, Price ND (2011) Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS One 6(11):e27316
    • (2011) PLoS One , vol.6 , Issue.11
    • Ghosh, A.1    Zhao, H.2    Price, N.D.3
  • 75
    • 77952691597 scopus 로고    scopus 로고
    • PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae
    • Garcia Sanchez R, Hahn-Hagerdal B, Gorwa-Grauslund MF (2010) PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb Cell Fact 9:40
    • (2010) Microb Cell Fact , vol.9 , pp. 40
    • Garcia Sanchez, R.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 76
    • 32044452893 scopus 로고    scopus 로고
    • Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering
    • Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465-6472
    • (2005) Appl Environ Microbiol , vol.71 , Issue.11 , pp. 6465-6472
    • Bro, C.1    Knudsen, S.2    Regenberg, B.3    Olsson, L.4    Nielsen, J.5
  • 77
    • 0033664269 scopus 로고    scopus 로고
    • Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
    • Ostergaard S, Olsson L, Johnston M, Nielsen J (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18(12):1283-1286
    • (2000) Nat Biotechnol , vol.18 , Issue.12 , pp. 1283-1286
    • Ostergaard, S.1    Olsson, L.2    Johnston, M.3    Nielsen, J.4
  • 78
    • 79961072482 scopus 로고    scopus 로고
    • Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis
    • Hong KK, Vongsangnak W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci USA 108(29):12179-12184
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.29 , pp. 12179-12184
    • Hong, K.K.1    Vongsangnak, W.2    Vemuri, G.N.3    Nielsen, J.4
  • 80
    • 84864232463 scopus 로고    scopus 로고
    • Xylose isomerase genes and their use in fermentation of pentose sugars
    • WO Patent WO 2010/074577 A1
    • Teunissen AWRH, De Bont JAM (2010) Xylose isomerase genes and their use in fermentation of pentose sugars. WO Patent WO 2010/074577 A1
    • (2010)
    • Teunissen, A.W.R.H.1    De Bont, J.A.M.2
  • 81
    • 84864249567 scopus 로고    scopus 로고
    • Transformed eukaryotic cells that directly convert xylose to xylulose
    • US Patent US 7622284
    • Op Den Camp HJMO, Harhangi HR, Van Der Drift C, Pronk JT (2009) Transformed eukaryotic cells that directly convert xylose to xylulose. US Patent US 7622284
    • (2009)
    • Op Den Camp, H.J.M.O.1    Harhangi, H.R.2    Van Der Drift, C.3    Pronk, J.T.4
  • 84
    • 84864232464 scopus 로고    scopus 로고
    • Stable recombinant yeasts for fermenting xylose to ethanol
    • US Patent US 7527927
    • Ho NWY, Chen Z-D (2009) Stable recombinant yeasts for fermenting xylose to ethanol. US Patent US 7527927
    • (2009)
    • Ho, N.W.Y.1    Chen, Z.-D.2
  • 85
    • 84864247760 scopus 로고    scopus 로고
    • Novel arabinose-fermenting eukaryotic cells
    • WO Patent WO 2009/011591 A2
    • De Bont JAM (2009) Novel arabinose-fermenting eukaryotic cells. WO Patent WO 2009/011591 A2
    • (2009)
    • De Bont, J.A.M.1
  • 87
    • 84864249570 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose utilization
    • WO Patent WO 2010/039692 A2
    • Hughes SR, Butt TR (2010) Saccharomyces cerevisiae engineered for xylose utilization. WO Patent WO 2010/039692 A2
    • (2010)
    • Hughes, S.R.1    Butt, T.R.2
  • 88
    • 78650157655 scopus 로고    scopus 로고
    • Bioengineering of microorganisms for C3 to C5 alcohols production
    • Mainguet SE, Liao JC (2010) Bioengineering of microorganisms for C3 to C5 alcohols production. Biotechnol J 5(12):1297-1308
    • (2010) Biotechnol J , vol.5 , Issue.12 , pp. 1297-1308
    • Mainguet, S.E.1    Liao, J.C.2
  • 89
    • 63049085861 scopus 로고    scopus 로고
    • Engineering metabolic systems for production of advanced fuels
    • Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36(4):471-479
    • (2009) J Ind Microbiol Biotechnol , vol.36 , Issue.4 , pp. 471-479
    • Yan, Y.1    Liao, J.C.2
  • 91
    • 84864247761 scopus 로고    scopus 로고
    • Butanol production by metabolically engineered yeast
    • US Patent US 2010/0062505 A1
    • Gunawardena U, Meinhold P, Peters MW, Urano J, Feldman RMR (2010) Butanol production by metabolically engineered yeast. US Patent US 2010/0062505 A1
    • (2010)
    • Gunawardena, U.1    Meinhold, P.2    Peters, M.W.3    Urano, J.4    Feldman, R.M.R.5
  • 93
    • 77955333835 scopus 로고    scopus 로고
    • A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine
    • Wallner T, Miers SA, McConnell S (2009) A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine. J Eng Gas Turb Power 131(3):032802. (http://scitation.aip.org/getabs/servlet/ GetabsServlet?prog=normal&id=JETPEZ000131000003032802000001&idtype= cvips&gifs=yes)
    • (2009) J Eng Gas Turb Power , vol.131 , Issue.3 , pp. 032802
    • Wallner, T.1    Miers, S.A.2    McConnell, S.3
  • 95
    • 68049135724 scopus 로고    scopus 로고
    • Engineering alternative butanol production platforms in heterologous bacteria
    • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11(4-5):262-273
    • (2009) Metab Eng , vol.11 , Issue.4-5 , pp. 262-273
    • Nielsen, D.R.1    Leonard, E.2    Yoon, S.H.3    Tseng, H.C.4    Yuan, C.5    Prather, K.L.6
  • 96
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259-2266
    • (2008) Appl Environ Microbiol , vol.74 , Issue.8 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    Van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 97
    • 0032475934 scopus 로고    scopus 로고
    • An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae
    • Dickinson JR, Harrison SJ, Hewlins MJ (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273(40):25751-25756
    • (1998) J Biol Chem , vol.273 , Issue.40 , pp. 25751-25756
    • Dickinson, J.R.1    Harrison, S.J.2    Hewlins, M.J.3
  • 98
    • 79952535978 scopus 로고    scopus 로고
    • Production of recombinant proteins and metabolites in yeasts: When are these systems better than bacterial production systems?
    • Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, Mattanovich D (2011) Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems? Appl Microbiol Biotechnol 89(4): 939-948
    • (2011) Appl Microbiol Biotechnol , vol.89 , Issue.4 , pp. 939-948
    • Porro, D.1    Gasser, B.2    Fossati, T.3    Maurer, M.4    Branduardi, P.5    Sauer, M.6    Mattanovich, D.7
  • 100
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86-89
    • (2008) Nature , vol.451 , Issue.7174 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 103
    • 80052425565 scopus 로고    scopus 로고
    • Production of isobutanol in yeast mitochondria
    • US Patent US 2010/0129886 A1
    • Anthony LC, Huang LL, Ye RW (2010) Production of isobutanol in yeast mitochondria. US Patent US 2010/0129886 A1
    • (2010)
    • Anthony, L.C.1    Huang, L.L.2    Ye, R.W.3
  • 104
    • 84864249571 scopus 로고    scopus 로고
    • Fermentative production of isobutanol with yeast
    • US Patent US 2011/0053235 A1
    • Festel G, Boles E, Weber C, Brat D (2011) Fermentative production of isobutanol with yeast. US Patent US 2011/0053235 A1
    • (2011)
    • Festel, G.1    Boles, E.2    Weber, C.3    Brat, D.4
  • 106
    • 84864232466 scopus 로고    scopus 로고
    • Engineered microorganisms for the production of one or more target compounds
    • WO Patent WO 2010/075504 A2
    • Buelter T, Meinhold P, Smith C, Aristidou A, Dundon CA, Urano J (2010) Engineered microorganisms for the production of one or more target compounds. WO Patent WO 2010/075504 A2
    • (2010)
    • Buelter, T.1    Meinhold, P.2    Smith, C.3    Aristidou, A.4    Dundon, C.A.5    Urano, J.6
  • 108
    • 84864247762 scopus 로고    scopus 로고
    • Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids
    • US Patent US 2011/0183393 A1
    • Dundon CA, Aristidou A, Hawkins A, Lies D, Albert LH (2011) Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids. US Patent US 2011/0183393 A1
    • (2011)
    • Dundon, C.A.1    Aristidou, A.2    Hawkins, A.3    Lies, D.4    Albert, L.H.5
  • 109
    • 84864201290 scopus 로고    scopus 로고
    • Fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes
    • US Patent US 2008/0261230 A1
    • Liao D-I, Nelson MJ, Bramucci MG (2008) Fermentive production of isobutanol using highly active ketol-acid reductoisomerase enzymes. US Patent US 2008/0261230 A1
    • (2008)
    • Liao, D.-I.1    Nelson, M.J.2    Bramucci, M.G.3
  • 112
    • 84864247763 scopus 로고    scopus 로고
    • Identification and use of bacterial [2Fe-2S] dihydroxy-acid dehydratases
    • US Patent US 2010/0081154 A1
    • Flint D, Rothman SC, Suh W, Tomb J-F, Ye RW (2010) Identification and use of bacterial [2Fe-2S] dihydroxy-acid dehydratases. US Patent US 2010/0081154 A1
    • (2010)
    • Flint, D.1    Rothman, S.C.2    Suh, W.3    Tomb, J.-F.4    Ye, R.W.5
  • 113
    • 84864249572 scopus 로고    scopus 로고
    • Increased heterologous Fe-S enzyme activity in yeast
    • US Patent US 2010/0081179 A1
    • Anthony LC, Maggio-Hall LA, Rothman SC, Tomb J-F (2010) Increased heterologous Fe-S enzyme activity in yeast. US Patent US 2010/0081179 A1
    • (2010)
    • Anthony, L.C.1    Maggio-Hall, L.A.2    Rothman, S.C.3    Tomb, J.-F.4
  • 114
    • 84864232471 scopus 로고    scopus 로고
    • Yeast with increased butanol tolerance involving a multidrug efflux pump gene
    • US Patent US 2010/0221801 A1
    • Van Dyk TK (2010) Yeast with increased butanol tolerance involving a multidrug efflux pump gene. US Patent US 2010/0221801 A1
    • (2010)
    • Van Dyk, T.K.1
  • 115
    • 84864201293 scopus 로고    scopus 로고
    • Yeast with increased butanol tolerance involving cell wall integrity pathway
    • US Patent US 2010/0167364 A1
    • Bramucci MG, Larossa RA, Smulski DR (2010) Yeast with increased butanol tolerance involving cell wall integrity pathway. US Patent US 2010/0167364 A1
    • (2010)
    • Bramucci, M.G.1    Larossa, R.A.2    Smulski, D.R.3
  • 116
    • 84864247770 scopus 로고    scopus 로고
    • Yeast with increased butanol tolerance involving high osmolarity/glycerol response pathway
    • US Patent US 2010/0167365 A1
    • Bramucci MG, Larossa RA, Smulski DR (2010) Yeast with increased butanol tolerance involving high osmolarity/glycerol response pathway. US Patent US 2010/0167365 A1
    • (2010)
    • Bramucci, M.G.1    Larossa, R.A.2    Smulski, D.R.3
  • 117
    • 85076281823 scopus 로고    scopus 로고
    • Yeast with increased butanol tolerance involving filamentous growth response
    • US Patent US 2010/0167363 A1
    • Bramucci MG, Larossa RA, Singh M (2010) Yeast with increased butanol tolerance involving filamentous growth response. US Patent US 2010/0167363 A1
    • (2010)
    • Bramucci, M.G.1    Larossa, R.A.2    Singh, M.3
  • 118
    • 85076291267 scopus 로고    scopus 로고
    • Yeast strain for production of four carbon alcohols
    • US Patent US 2009/0280546 A1
    • Larossa RA (2009) Yeast strain for production of four carbon alcohols. US Patent US 2009/0280546 A1
    • (2009)
    • Larossa, R.A.1
  • 119
    • 67449106543 scopus 로고    scopus 로고
    • Butanol tolerance in a selection of microorganisms
    • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153(1-3):13-20
    • (2009) Appl Biochem Biotechnol , vol.153 , Issue.1-3 , pp. 13-20
    • Knoshaug, E.P.1    Zhang, M.2
  • 120
    • 32944474480 scopus 로고    scopus 로고
    • Microbial isoprenoid production: An example of green chemistry through metabolic engineering
    • Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19-51
    • (2005) Adv Biochem Eng Biotechnol , vol.100 , pp. 19-51
    • Maury, J.1    Asadollahi, M.A.2    Moller, K.3    Clark, A.4    Nielsen, J.5
  • 121
    • 80052647009 scopus 로고    scopus 로고
    • Metabolic engineering of microbial pathways for advanced biofuels production
    • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775-783
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.6 , pp. 775-783
    • Zhang, F.1    Rodriguez, S.2    Keasling, J.D.3
  • 122
    • 33845736982 scopus 로고    scopus 로고
    • Biosynthesis and engineering of isoprenoid small molecules
    • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980-990
    • (2007) Appl Microbiol Biotechnol , vol.73 , Issue.5 , pp. 980-990
    • Withers, S.T.1    Keasling, J.D.2
  • 123
    • 48149106189 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for isoprenoid production
    • Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep 25(4):656-661
    • (2008) Nat Prod Rep , vol.25 , Issue.4 , pp. 656-661
    • Kirby, J.1    Keasling, J.D.2
  • 124
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160-168
    • (2007) Metab Eng , vol.9 , Issue.2 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.K.4    Keasling, J.D.5
  • 125
    • 84863738549 scopus 로고    scopus 로고
    • Method for producing terpenes and MEP-transformed microorganisms therefore
    • US Patent US 2009/0155874 A1
    • Clark A, Maury J, Asadollahi MA, MØLler K, Nielsen J, Schalk M (2009) Method for producing terpenes and MEP-transformed microorganisms therefore. US Patent US 2009/0155874 A1
    • (2009)
    • Clark, A.1    Maury, J.2    Asadollahi, M.A.3    MØller, K.4    Nielsen, J.5    Schalk, M.6
  • 126
    • 56949088585 scopus 로고    scopus 로고
    • Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae
    • Maury J, Asadollahi MA, Moller K, Schalk M, Clark A, Formenti LR, Nielsen J (2008) Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae. FEBS Lett 582(29):4032-4038
    • (2008) FEBS Lett , vol.582 , Issue.29 , pp. 4032-4038
    • Maury, J.1    Asadollahi, M.A.2    Moller, K.3    Schalk, M.4    Clark, A.5    Formenti, L.R.6    Nielsen, J.7
  • 127
    • 70349686929 scopus 로고    scopus 로고
    • Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts
    • Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 84(6):1003-1019
    • (2009) Appl Microbiol Biotechnol , vol.84 , Issue.6 , pp. 1003-1019
    • Muntendam, R.1    Melillo, E.2    Ryden, A.3    Kayser, O.4
  • 128
    • 33751120932 scopus 로고    scopus 로고
    • Production of isoprenoid pharmaceuticals by engineered microbes
    • Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674-681
    • (2006) Nat Chem Biol , vol.2 , Issue.12 , pp. 674-681
    • Chang, M.C.1    Keasling, J.D.2
  • 129
    • 84864201288 scopus 로고    scopus 로고
    • Genetically modified microbes producing isoprenoids
    • WO Patent WO 2010/141452 A1
    • Ubersax JA, Platt DM (2010) Genetically modified microbes producing isoprenoids. WO Patent WO 2010/141452 A1
    • (2010)
    • Ubersax, J.A.1    Platt, D.M.2
  • 130
    • 84864232468 scopus 로고    scopus 로고
    • Production of isoprenoids
    • WO Patent WO 2009/042070 A2
    • Tsuruta H, Lenihan JR, Regentin R (2009) Production of isoprenoids. WO Patent WO 2009/042070 A2
    • (2009)
    • Tsuruta, H.1    Lenihan, J.R.2    Regentin, R.3
  • 132
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796-802
    • (2003) Nat Biotechnol , vol.21 , Issue.7 , pp. 796-802
    • Martin, V.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 133
    • 84864251106 scopus 로고    scopus 로고
    • Method for enhancing production of isoprenoid compounds
    • US Patent US 7670825
    • Keasling JD, Newman JD, Pitera DJ (2010) Method for enhancing production of isoprenoid compounds. US Patent US 7670825
    • (2010)
    • Keasling, J.D.1    Newman, J.D.2    Pitera, D.J.3
  • 134
    • 0028230982 scopus 로고
    • Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae
    • Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14(6):3834-3841
    • (1994) Mol Cell Biol , vol.14 , Issue.6 , pp. 3834-3841
    • Johnston, M.1    Flick, J.S.2    Pexton, T.3
  • 135
    • 38449112770 scopus 로고    scopus 로고
    • Production of plant sesquiterpenes in Saccharomyces cerevisiae: Effect of ERG9 repression on sesquiterpene biosynthesis
    • Asadollahi MA, Maury J, Moller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666-677
    • (2008) Biotechnol Bioeng , vol.99 , Issue.3 , pp. 666-677
    • Asadollahi, M.A.1    Maury, J.2    Moller, K.3    Nielsen, K.F.4    Schalk, M.5    Clark, A.6    Nielsen, J.7
  • 136
    • 84864247765 scopus 로고    scopus 로고
    • Methods of increasing isoprenoid or isoprenoid precursor production
    • WO Patent WO 2009/005704 A1
    • Kizer J (2009) Methods of increasing isoprenoid or isoprenoid precursor production. WO Patent WO 2009/005704 A1
    • (2009)
    • Kizer, J.1
  • 137
    • 84864258524 scopus 로고    scopus 로고
    • Nucleic acids encoding modified cytochrome P450 enzymes and methods of use thereof
    • US Patent US 2009/0098626 A1
    • Chang M, Krupa RA, Ro D-K, Yoshikuni Y, Keasling JD (2009) Nucleic acids encoding modified cytochrome P450 enzymes and methods of use thereof. US Patent US 2009/0098626 A1
    • (2009)
    • Chang, M.1    Krupa, R.A.2    Ro, D.-K.3    Yoshikuni, Y.4    Keasling, J.D.5
  • 138
    • 84864249574 scopus 로고    scopus 로고
    • Methods of monitoring metabolic pathways
    • WO Patent WO 2009/097339 A1
    • Bajad S, Leavell M (2009) Methods of monitoring metabolic pathways. WO Patent WO 2009/097339 A1
    • (2009)
    • Bajad, S.1    Leavell, M.2
  • 140
    • 84864201291 scopus 로고    scopus 로고
    • Method for production of isoprenoids
    • US Patent US 2010/0151519 A1
    • Julien B, Burlingame R (2010) Method for production of isoprenoids. US Patent US 2010/0151519 A1
    • (2010)
    • Julien, B.1    Burlingame, R.2
  • 141
    • 84864249573 scopus 로고    scopus 로고
    • Method to increase hydrophobic compound titer in a recombinant microorganism
    • US Patent US 7256014
    • Kinney AJ, Ni H, Rouviere PE, Suh W (2007) Method to increase hydrophobic compound titer in a recombinant microorganism. US Patent US 7256014
    • (2007)
    • Kinney, A.J.1    Ni, H.2    Rouviere, P.E.3    Suh, W.4
  • 142
    • 84864247766 scopus 로고    scopus 로고
    • Biological production of tetradehydrolycopene
    • US Patent US 7087403
    • Brzostowicz PC, Rouviere PE, Pollak DM (2006) Biological production of tetradehydrolycopene. US Patent US 7087403
    • (2006)
    • Brzostowicz, P.C.1    Rouviere, P.E.2    Pollak, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.