메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A ACETYLTRANSFERASE; BACTERIAL ENZYME; BUTANOL; CYSTEINE; ACYLTRANSFERASE; BACTERIAL PROTEIN;

EID: 84942162949     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms9410     Document Type: Article
Times cited : (57)

References (56)
  • 1
    • 0032469479 scopus 로고    scopus 로고
    • Physiology of carbohydrate to solvent conversion by clostridia
    • Mitchell, W. J. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39, 31-130 (1998).
    • (1998) Adv. Microb. Physiol. , vol.39 , pp. 31-130
    • Mitchell, W.J.1
  • 2
    • 53049086510 scopus 로고    scopus 로고
    • Engineering solventogenic clostridia
    • Papoutsakis, E. T. Engineering solventogenic clostridia. Curr. Opin. Biotechnol. 19, 420-429 (2008).
    • (2008) Curr. Opin. Biotechnol. , vol.19 , pp. 420-429
    • Papoutsakis, E.T.1
  • 3
    • 38049162218 scopus 로고    scopus 로고
    • Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli
    • Inui, M., et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305-1316 (2008).
    • (2008) Appl. Microbiol. Biotechnol. , vol.77 , pp. 1305-1316
    • Inui, M.1
  • 4
    • 41349120749 scopus 로고    scopus 로고
    • Fermentative butanol production: Bulk chemical and biofuel
    • Durre, P. Fermentative butanol production: bulk chemical and biofuel. Ann. NY Acad. Sci. 1125, 353-362 (2008).
    • (2008) Ann. NY Acad. Sci. , vol.1125 , pp. 353-362
    • Durre, P.1
  • 5
    • 38149030843 scopus 로고    scopus 로고
    • Biobutanol: An attractive biofuel
    • Durre, P. Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525-1534 (2007).
    • (2007) Biotechnol. J. , vol.2 , pp. 1525-1534
    • Durre, P.1
  • 6
    • 51649108629 scopus 로고    scopus 로고
    • Fermentative butanol production by clostridia
    • Lee, S. Y., et al. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209-228 (2008).
    • (2008) Biotechnol. Bioeng. , vol.101 , pp. 209-228
    • Lee, S.Y.1
  • 7
    • 0022970603 scopus 로고
    • Acetone-butanol fermentation revisited
    • Jones, D. T. & Woods, D. R. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484-524 (1986).
    • (1986) Microbiol. Rev. , vol.50 , pp. 484-524
    • Jones, D.T.1    Woods, D.R.2
  • 8
    • 76749172275 scopus 로고    scopus 로고
    • Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms
    • Ezeji, T., Milne, C., Price, N. D. & Blaschek, H. P. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85, 1697-1712 (2010).
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1697-1712
    • Ezeji, T.1    Milne, C.2    Price, N.D.3    Blaschek, H.P.4
  • 9
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89 (2008).
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 10
    • 58249098522 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
    • Steen, E. J., et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36 (2008).
    • (2008) Microb. Cell Fact. , vol.7 , pp. 36
    • Steen, E.J.1
  • 11
    • 68049135724 scopus 로고    scopus 로고
    • Engineering alternative butanol production platforms in heterologous bacteria
    • Nielsen, D. R., et al. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11, 262-273 (2009).
    • (2009) Metab. Eng. , vol.11 , pp. 262-273
    • Nielsen, D.R.1
  • 12
    • 57049098094 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels
    • Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. & Keasling, J. D. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556-563 (2008).
    • (2008) Curr. Opin. Biotechnol. , vol.19 , pp. 556-563
    • Lee, S.K.1    Chou, H.2    Ham, T.S.3    Lee, T.S.4    Keasling, J.D.5
  • 13
    • 84861322005 scopus 로고    scopus 로고
    • Engineering synthetic recursive pathways to generate non-natural small molecules
    • Felnagle, E. A., Chaubey, A., Noey, E. L., Houk, K. N. & Liao, J. C. Engineering synthetic recursive pathways to generate non-natural small molecules. Nat. Chem. Biol. 8, 518-526 (2012).
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 518-526
    • Felnagle, E.A.1    Chaubey, A.2    Noey, E.L.3    Houk, K.N.4    Liao, J.C.5
  • 14
    • 0033569705 scopus 로고    scopus 로고
    • A biosynthetic thiolase in complex with a reaction intermediate: The crystal structure provides new insights into the catalytic mechanism
    • Modis, Y. & Wierenga, R. K. A biosynthetic thiolase in complex with a reaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7, 1279-1290 (1999).
    • (1999) Structure , vol.7 , pp. 1279-1290
    • Modis, Y.1    Wierenga, R.K.2
  • 15
    • 0028174351 scopus 로고
    • The 2.8A crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: A five-layered alpha beta alpha beta alpha structure constructed from two core domains of identical topology
    • Mathieu, M., et al. The 2.8A crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered alpha beta alpha beta alpha structure constructed from two core domains of identical topology. Structure 2, 797-808 (1994).
    • (1994) Structure , vol.2 , pp. 797-808
    • Mathieu, M.1
  • 16
    • 0031592777 scopus 로고    scopus 로고
    • The 1.8A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: Implications for substrate binding and reaction mechanism
    • Mathieu, M., et al. The 1.8A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J. Mol. Biol. 273, 714-728 (1997).
    • (1997) J. Mol. Biol. , vol.273 , pp. 714-728
    • Mathieu, M.1
  • 17
    • 72749112569 scopus 로고    scopus 로고
    • The thiolase reaction mechanism: The importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation
    • Meriläinen, G., Poikela, V., Kursula, P. & Wierenga, R. K. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Biochemistry 48, 11011-11025 (2009).
    • (2009) Biochemistry , vol.48 , pp. 11011-11025
    • Meriläinen, G.1    Poikela, V.2    Kursula, P.3    Wierenga, R.K.4
  • 18
    • 14144254724 scopus 로고    scopus 로고
    • High resolution crystal structures of human cytosolic thiolase (CT): A comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS i
    • Kursula, P., Sikkila, H., Fukao, T., Kondo, N. & Wierenga, R. K. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. J. Mol. Biol. 347, 189-201 (2005).
    • (2005) J. Mol. Biol. , vol.347 , pp. 189-201
    • Kursula, P.1    Sikkila, H.2    Fukao, T.3    Kondo, N.4    Wierenga, R.K.5
  • 19
    • 56849128429 scopus 로고    scopus 로고
    • The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme
    • Meriläinen, G., Schmitz, W., Wierenga, R. K. & Kursula, P. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme. FEBS J. 275, 6136-6148 (2008).
    • (2008) FEBS J. , vol.275 , pp. 6136-6148
    • Meriläinen, G.1    Schmitz, W.2    Wierenga, R.K.3    Kursula, P.4
  • 20
    • 0034646566 scopus 로고    scopus 로고
    • Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase
    • Modis, Y. & Wierenga, R. K. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J. Mol. Biol. 297, 1171-1182 (2000).
    • (2000) J. Mol. Biol. , vol.297 , pp. 1171-1182
    • Modis, Y.1    Wierenga, R.K.2
  • 21
    • 9944235916 scopus 로고    scopus 로고
    • The role of cysteine residues as redox-sensitive regulatory switches
    • Barford, D. The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struct. Biol. 14, 679-686 (2004).
    • (2004) Curr. Opin. Struct. Biol. , vol.14 , pp. 679-686
    • Barford, D.1
  • 22
    • 0035815274 scopus 로고    scopus 로고
    • Structural basis of the redox switch in the OxyR transcription factor
    • Choi, H. J., et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103-113 (2001).
    • (2001) Cell , vol.105 , pp. 103-113
    • Choi, H.J.1
  • 23
    • 34249866216 scopus 로고    scopus 로고
    • The redox-switch domain of Hsp33 functions as dual stress sensor
    • Ilbert, M., et al. The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 14, 556-563 (2007).
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 556-563
    • Ilbert, M.1
  • 24
    • 0000158375 scopus 로고
    • Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents
    • Wiesenborn, D. P., Rudolph, F. B. & Papoutsakis, E. T. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Appl. Environ. Microbiol. 54, 2717-2722 (1988).
    • (1988) Appl. Environ. Microbiol. , vol.54 , pp. 2717-2722
    • Wiesenborn, D.P.1    Rudolph, F.B.2    Papoutsakis, E.T.3
  • 25
    • 12244288341 scopus 로고    scopus 로고
    • Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation
    • Zhao, Y., Tomas, C. A., Rudolph, F. B., Papoutsakis, E. T. & Bennett, G. N. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl. Environ. Microbiol. 71, 530-537 (2005).
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 530-537
    • Zhao, Y.1    Tomas, C.A.2    Rudolph, F.B.3    Papoutsakis, E.T.4    Bennett, G.N.5
  • 26
    • 0034606690 scopus 로고    scopus 로고
    • Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition?
    • Harris, L. M., Desai, R. P., Welker, N. E. & Papoutsakis, E. T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67, 1-11 (2000).
    • (2000) Biotechnol. Bioeng. , vol.67 , pp. 1-11
    • Harris, L.M.1    Desai, R.P.2    Welker, N.E.3    Papoutsakis, E.T.4
  • 27
    • 0024079769 scopus 로고
    • Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations
    • Husemann, M. H. & Papoutsakis, E. T. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol. Bioeng. 32, 843-852 (1988).
    • (1988) Biotechnol. Bioeng. , vol.32 , pp. 843-852
    • Husemann, M.H.1    Papoutsakis, E.T.2
  • 28
    • 84871011391 scopus 로고
    • Gas production during the acetone and butyl alcohol fermentation of starch
    • Speakman, H. B. Gas production during the acetone and butyl alcohol fermentation of starch. J. Biol. Chem. 43, 401-411 (1920).
    • (1920) J. Biol. Chem. , vol.43 , pp. 401-411
    • Speakman, H.B.1
  • 29
    • 84879840909 scopus 로고    scopus 로고
    • A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures
    • Millat, T., et al. A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl. Microbiol. Biotechnol. 97, 6451-6466 (2013).
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 6451-6466
    • Millat, T.1
  • 30
    • 84879843202 scopus 로고    scopus 로고
    • Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture
    • Millat, T., Janssen, H., Bahl, H., Fischer, R. J. & Wolkenhauer, O. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb. Biotechnol. 6, 526-539 (2013).
    • (2013) Microb. Biotechnol. , vol.6 , pp. 526-539
    • Millat, T.1    Janssen, H.2    Bahl, H.3    Fischer, R.J.4    Wolkenhauer, O.5
  • 31
    • 33646202811 scopus 로고    scopus 로고
    • The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation
    • Sundaramoorthy, R., et al. The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. J. Mol. Biol. 359, 347-357 (2006).
    • (2006) J. Mol. Biol. , vol.359 , pp. 347-357
    • Sundaramoorthy, R.1
  • 32
    • 77954945975 scopus 로고    scopus 로고
    • Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch
    • Pye, V. E., Christensen, C. E., Dyer, J. H., Arent, S. & Henriksen, A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J. Biol. Chem. 285, 24078-24088 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 24078-24088
    • Pye, V.E.1    Christensen, C.E.2    Dyer, J.H.3    Arent, S.4    Henriksen, A.5
  • 33
    • 33745161382 scopus 로고    scopus 로고
    • Allosteric disulfide bonds
    • Schmidt, B., Ho, L. & Hogg, P. J. Allosteric disulfide bonds. Biochemistry 45, 7429-7433 (2006).
    • (2006) Biochemistry , vol.45 , pp. 7429-7433
    • Schmidt, B.1    Ho, L.2    Hogg, P.J.3
  • 34
    • 0030573025 scopus 로고    scopus 로고
    • The disulphide beta-cross: From cystine geometry and clustering to classification of small disulphide-rich protein folds
    • Harrison, P. M. & Sternberg, M. J. The disulphide beta-cross: from cystine geometry and clustering to classification of small disulphide-rich protein folds. J. Mol. Biol. 264, 603-623 (1996).
    • (1996) J. Mol. Biol. , vol.264 , pp. 603-623
    • Harrison, P.M.1    Sternberg, M.J.2
  • 35
    • 84878240943 scopus 로고    scopus 로고
    • Targeting allosteric disulphide bonds in cancer
    • Hogg, P. J. Targeting allosteric disulphide bonds in cancer. Nat. Rev. Cancer 13, 425-431 (2013).
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 425-431
    • Hogg, P.J.1
  • 36
    • 65449160629 scopus 로고    scopus 로고
    • Redox-switch modulation of human SSADH by dynamic catalytic loop
    • Kim, Y.-G., et al. Redox-switch modulation of human SSADH by dynamic catalytic loop. EMBO J. 28, 959-968 (2009).
    • (2009) EMBO J. , vol.28 , pp. 959-968
    • Kim, Y.-G.1
  • 37
    • 74849125882 scopus 로고    scopus 로고
    • Crystal structure of non-redox regulated SSADH from Escherichia coli
    • Ahn, J. W., Kim, Y. G. & Kim, K. J. Crystal structure of non-redox regulated SSADH from Escherichia coli. Biochem. Biophys. Res. Commun. 392, 106-111 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.392 , pp. 106-111
    • Ahn, J.W.1    Kim, Y.G.2    Kim, K.J.3
  • 38
    • 79959964863 scopus 로고    scopus 로고
    • Succinic semialdehyde dehydrogenase: Biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance
    • Kim, K.-J., et al. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid. Redox Signal. 15, 691-718 (2011).
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 691-718
    • Kim, K.-J.1
  • 39
    • 0028028387 scopus 로고
    • Building bridges: Disulphide bond formation in the cell
    • Bardwell, J. C. Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14, 199-205 (1994).
    • (1994) Mol. Microbiol. , vol.14 , pp. 199-205
    • Bardwell, J.C.1
  • 41
    • 84872665471 scopus 로고    scopus 로고
    • Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum
    • Mann, M. S. & Lütke-Eversloh, T. Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnol. Bioeng. 110, 887-897 (2013).
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 887-897
    • Mann, M.S.1    Lütke-Eversloh, T.2
  • 42
    • 58149268329 scopus 로고    scopus 로고
    • Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations
    • Sillers, R., Al-Hinai, M. A. & Papoutsakis, E. T. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng. 102, 38-49 (2009).
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 38-49
    • Sillers, R.1    Al-Hinai, M.A.2    Papoutsakis, E.T.3
  • 43
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data
    • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data. Methods Enzymol. 276, 307-326 (1997).
    • (1997) Methods Enzymol. , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 44
    • 0014432781 scopus 로고
    • Solvent content of protein crystals
    • Matthews, B. W. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497 (1968).
    • (1968) J. Mol. Biol. , vol.33 , pp. 491-497
    • Matthews, B.W.1
  • 48
    • 3543012707 scopus 로고    scopus 로고
    • Crystallography & NMR system: A new software suite for macromolecular structure determination
    • Brunger, A. T., et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921 (1998).
    • (1998) Acta Crystallogr. D Biol. Crystallogr. , vol.54 , pp. 905-921
    • Brunger, A.T.1
  • 49
    • 0027477171 scopus 로고
    • In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T i methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC
    • Mermelstein, L. D. & Papoutsakis, E. T. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC. Appl. Environ. Microbiol. 59, 1077-1081 (1993).
    • (1993) Appl. Environ. Microbiol. , vol.59 , pp. 1077-1081
    • Mermelstein, L.D.1    Papoutsakis, E.T.2
  • 50
    • 84898678879 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity
    • Jang, Y. S., Im, J. A., Choi, S. Y., Lee, J. I. & Lee, S. Y. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab. Eng. 23, 165-174 (2014).
    • (2014) Metab. Eng. , vol.23 , pp. 165-174
    • Jang, Y.S.1    Im, J.A.2    Choi, S.Y.3    Lee, J.I.4    Lee, S.Y.5
  • 51
    • 0142072824 scopus 로고    scopus 로고
    • Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling
    • Han, M.-J., Jeong, K. J., Yoo, J.-S. & Lee, S. Y. Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl. Environ. Microbiol. 69, 5772-5781 (2003).
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5772-5781
    • Han, M.-J.1    Jeong, K.J.2    Yoo, J.-S.3    Lee, S.Y.4
  • 52
    • 0014949207 scopus 로고
    • Cleavage of structural proteins during the assembly of the head of bacteriophage T4
    • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 (1970).
    • (1970) Nature , vol.227 , pp. 680-685
    • Laemmli, U.K.1
  • 53
    • 84901610547 scopus 로고    scopus 로고
    • Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains
    • Jang, Y.-S., et al. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Appl. Microbiol. Biotechnol. 98, 5105-5115 (2014).
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 5105-5115
    • Jang, Y.-S.1
  • 54
    • 77954604280 scopus 로고    scopus 로고
    • Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield
    • Mao, S., et al. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J. Proteome Res. 9, 3046-3061 (2010).
    • (2010) J. Proteome Res. , vol.9 , pp. 3046-3061
    • Mao, S.1
  • 55
    • 0032816935 scopus 로고    scopus 로고
    • Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints
    • Desai, R. P., Nielsen, L. K. & Papoutsakis, E. T. Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J. Biotechnol. 71, 191-205 (1999).
    • (1999) J. Biotechnol. , vol.71 , pp. 191-205
    • Desai, R.P.1    Nielsen, L.K.2    Papoutsakis, E.T.3
  • 56
    • 84868374643 scopus 로고    scopus 로고
    • Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum
    • Jang, Y. S., et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3, e00314-12 (2012).
    • (2012) MBio , vol.3 , pp. e00314-e00412
    • Jang, Y.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.