메뉴 건너뛰기




Volumn 283, Issue 1, 2018, Pages 213-231

Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts

Author keywords

CPT; etomoxir; fatty acid oxidation; Keywordscarnitine palmitoyltransferase; memory; T cells

Indexed keywords

CARNITINE PALMITOYLTRANSFERASE I; ETOMOXIR; FATTY ACID; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; LONG CHAIN FATTY ACID; MEDIUM CHAIN FATTY ACID; SHORT CHAIN FATTY ACID; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 6; ALCOHOL DEHYDROGENASE; LONG-CHAIN-ALCOHOL DEHYDROGENASE;

EID: 85045642759     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/imr.12655     Document Type: Review
Times cited : (107)

References (195)
  • 1
    • 77953749960 scopus 로고    scopus 로고
    • Generation of effector CD8 +  T cells and their conversion to memory T cells
    • Cui W, Kaech SM. Generation of effector CD8 +  T cells and their conversion to memory T cells. Immunol Rev. 2010;236:151-166.
    • (2010) Immunol Rev , vol.236 , pp. 151-166
    • Cui, W.1    Kaech, S.M.2
  • 2
    • 84867896903 scopus 로고    scopus 로고
    • Transcriptional control of effector and memory CD8 +  T cell differentiation
    • Kaech SM, Cui W. Transcriptional control of effector and memory CD8 +  T cell differentiation. Nat Rev Immunol. 2012;12:749-761.
    • (2012) Nat Rev Immunol , vol.12 , pp. 749-761
    • Kaech, S.M.1    Cui, W.2
  • 3
    • 34247849183 scopus 로고    scopus 로고
    • Effector and memory CTL differentiation
    • Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171-192.
    • (2007) Annu Rev Immunol , vol.25 , pp. 171-192
    • Williams, M.A.1    Bevan, M.J.2
  • 4
    • 71749113233 scopus 로고    scopus 로고
    • Diversity in T cell memory: an embarrassment of riches
    • Jameson SC, Masopust D. Diversity in T cell memory: an embarrassment of riches. Immunity. 2009;31:859-871.
    • (2009) Immunity , vol.31 , pp. 859-871
    • Jameson, S.C.1    Masopust, D.2
  • 5
    • 85044853234 scopus 로고    scopus 로고
    • Understanding subset diversity in T cell memory
    • Jameson SC, Masopust D. Understanding subset diversity in T cell memory. Immunity. 2018;48:214-226.
    • (2018) Immunity , vol.48 , pp. 214-226
    • Jameson, S.C.1    Masopust, D.2
  • 6
    • 0347382593 scopus 로고    scopus 로고
    • Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells
    • Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191-1198.
    • (2003) Nat Immunol , vol.4 , pp. 1191-1198
    • Kaech, S.M.1    Tan, J.T.2    Wherry, E.J.3    Konieczny, B.T.4    Surh, C.D.5    Ahmed, R.6
  • 7
    • 84893372990 scopus 로고    scopus 로고
    • Pillars article: two subsets of memory T lymphocytes with distinct homing potentials and effector functions
    • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Pillars article: two subsets of memory T lymphocytes with distinct homing potentials and effector functions. J Immunol. 2014;192:840-844.
    • (2014) J Immunol , vol.192 , pp. 840-844
    • Sallusto, F.1    Lenig, D.2    Forster, R.3    Lipp, M.4    Lanzavecchia, A.5
  • 8
    • 0035937587 scopus 로고    scopus 로고
    • Preferential localization of effector memory cells in nonlymphoid tissue
    • Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291:2413-2417.
    • (2001) Science , vol.291 , pp. 2413-2417
    • Masopust, D.1    Vezys, V.2    Marzo, A.L.3    Lefrancois, L.4
  • 9
    • 84957431152 scopus 로고    scopus 로고
    • Tissue-resident memory T cells: local specialists in immune defence
    • Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16:79-89.
    • (2016) Nat Rev Immunol , vol.16 , pp. 79-89
    • Mueller, S.N.1    Mackay, L.K.2
  • 10
    • 84936846381 scopus 로고    scopus 로고
    • The emerging role of resident memory T cells in protective immunity and inflammatory disease
    • Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat Med. 2015;21:688-697.
    • (2015) Nat Med , vol.21 , pp. 688-697
    • Park, C.O.1    Kupper, T.S.2
  • 11
    • 85037033045 scopus 로고    scopus 로고
    • White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection
    • e1156
    • Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, et al. White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity. 2017;47:1154-1168, e1156.
    • (2017) Immunity , vol.47 , pp. 1154-1168
    • Han, S.J.1    Glatman Zaretsky, A.2    Andrade-Oliveira, V.3
  • 12
    • 0031587875 scopus 로고    scopus 로고
    • Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice
    • Maraskovsky E, O'Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice. Cell. 1997;89:1011-1019.
    • (1997) Cell , vol.89 , pp. 1011-1019
    • Maraskovsky, E.1    O'Reilly, L.A.2    Teepe, M.3    Corcoran, L.M.4    Peschon, J.J.5    Strasser, A.6
  • 13
    • 0035892899 scopus 로고    scopus 로고
    • IL-7 enhances the survival and maintains the size of naive T cells
    • Rathmell JC, Farkash EA, Gao W, Thompson CB. IL-7 enhances the survival and maintains the size of naive T cells. J Immunol. 2001;167:6869-6876.
    • (2001) J Immunol , vol.167 , pp. 6869-6876
    • Rathmell, J.C.1    Farkash, E.A.2    Gao, W.3    Thompson, C.B.4
  • 14
    • 0035902513 scopus 로고    scopus 로고
    • IL-7 is critical for homeostatic proliferation and survival of naive T cells
    • Tan JT, Dudl E, LeRoy E, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA. 2001;98:8732-8737.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8732-8737
    • Tan, J.T.1    Dudl, E.2    LeRoy, E.3
  • 15
    • 0033136288 scopus 로고    scopus 로고
    • Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors
    • Pallard C, Stegmann AP, van Kleffens T, Smart F, Venkitaraman A, Spits H. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity. 1999;10:525-535.
    • (1999) Immunity , vol.10 , pp. 525-535
    • Pallard, C.1    Stegmann, A.P.2    van Kleffens, T.3    Smart, F.4    Venkitaraman, A.5    Spits, H.6
  • 16
    • 0030587823 scopus 로고    scopus 로고
    • IL-15 stimulates the expansion of AIDS virus-specific CTL
    • Kanai T, Thomas EK, Yasutomi Y, Letvin NL. IL-15 stimulates the expansion of AIDS virus-specific CTL. J Immunol. 1996;157:3681-3687.
    • (1996) J Immunol , vol.157 , pp. 3681-3687
    • Kanai, T.1    Thomas, E.K.2    Yasutomi, Y.3    Letvin, N.L.4
  • 17
    • 0032211699 scopus 로고    scopus 로고
    • IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation
    • Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998;9:669-676.
    • (1998) Immunity , vol.9 , pp. 669-676
    • Lodolce, J.P.1    Boone, D.L.2    Chai, S.3
  • 20
    • 27744519400 scopus 로고    scopus 로고
    • Fuel feeds function: energy metabolism and the T-cell response
    • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844-852.
    • (2005) Nat Rev Immunol , vol.5 , pp. 844-852
    • Fox, C.J.1    Hammerman, P.S.2    Thompson, C.B.3
  • 21
    • 0033635249 scopus 로고    scopus 로고
    • In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability
    • Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell. 2000;6:683-692.
    • (2000) Mol Cell , vol.6 , pp. 683-692
    • Rathmell, J.C.1    Vander Heiden, M.G.2    Harris, M.H.3    Frauwirth, K.A.4    Thompson, C.B.5
  • 23
    • 0021270340 scopus 로고
    • Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat
    • Ardawi MS, Newsholme EA. Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat. Biochem J. 1984;221:255-260.
    • (1984) Biochem J , vol.221 , pp. 255-260
    • Ardawi, M.S.1    Newsholme, E.A.2
  • 24
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871-882.
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3
  • 26
    • 84999264542 scopus 로고    scopus 로고
    • Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells
    • Angela M, Endo Y, Asou HK, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells. Nat Commun. 2016;7:13683.
    • (2016) Nat Commun , vol.7 , pp. 13683
    • Angela, M.1    Endo, Y.2    Asou, H.K.3
  • 27
    • 34548014737 scopus 로고    scopus 로고
    • Revving the engine: signal transduction fuels T cell activation
    • Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27:173-178.
    • (2007) Immunity , vol.27 , pp. 173-178
    • Jones, R.G.1    Thompson, C.B.2
  • 28
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the warburg effect: the metabolic requirements of cell proliferation
    • Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Heiden, M.G.V.1    Cantley, L.C.2    Thompson, C.B.3
  • 29
    • 0036170440 scopus 로고    scopus 로고
    • Activation and inhibition of lymphocytes by costimulation
    • Frauwirth KA, Thompson CB. Activation and inhibition of lymphocytes by costimulation. J Clin Invest. 2002;109:295-299.
    • (2002) J Clin Invest , vol.109 , pp. 295-299
    • Frauwirth, K.A.1    Thompson, C.B.2
  • 30
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth KA, Riley JL, Harris MH, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769-777.
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1    Riley, J.L.2    Harris, M.H.3
  • 31
    • 85003681016 scopus 로고    scopus 로고
    • Metabolic pathways in T cell activation and lineage differentiation
    • Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28:514-524.
    • (2016) Semin Immunol , vol.28 , pp. 514-524
    • Almeida, L.1    Lochner, M.2    Berod, L.3    Sparwasser, T.4
  • 32
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: insights into metabolism and lymphocyte function
    • Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.
    • (2013) Science , vol.342 , pp. 1242454
    • Pearce, E.L.1    Poffenberger, M.C.2    Chang, C.H.3    Jones, R.G.4
  • 33
    • 84904057246 scopus 로고    scopus 로고
    • The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
    • Macintyre AN, Gerriets VA, Nichols AG, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61-72.
    • (2014) Cell Metab , vol.20 , pp. 61-72
    • Macintyre, A.N.1    Gerriets, V.A.2    Nichols, A.G.3
  • 34
    • 84951276483 scopus 로고    scopus 로고
    • The cytotoxic T cell proteome and its shaping by the kinase mTOR
    • Hukelmann JL, Anderson KE, Sinclair LV, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17:104-112.
    • (2016) Nat Immunol , vol.17 , pp. 104-112
    • Hukelmann, J.L.1    Anderson, K.E.2    Sinclair, L.V.3
  • 36
    • 84885377829 scopus 로고    scopus 로고
    • The Warburg effect then and now: from cancer to inflammatory diseases
    • Palsson-McDermott EM, O'Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays. 2013;35:965-973.
    • (2013) BioEssays , vol.35 , pp. 965-973
    • Palsson-McDermott, E.M.1    O'Neill, L.A.2
  • 37
    • 84878831880 scopus 로고    scopus 로고
    • Posttranscriptional control of T cell effector function by aerobic glycolysis
    • Chang CH, Curtis JD, Maggi LB Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239-1251.
    • (2013) Cell , vol.153 , pp. 1239-1251
    • Chang, C.H.1    Curtis, J.D.2    Maggi, L.B.3
  • 38
    • 0027960973 scopus 로고
    • Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production
    • Greiner EF, Guppy M, Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem. 1994;269:31484-31490.
    • (1994) J Biol Chem , vol.269 , pp. 31484-31490
    • Greiner, E.F.1    Guppy, M.2    Brand, K.3
  • 39
    • 84874242919 scopus 로고    scopus 로고
    • Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
    • Sena LA, Li S, Jairaman A, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38:225-236.
    • (2013) Immunity , vol.38 , pp. 225-236
    • Sena, L.A.1    Li, S.2    Jairaman, A.3
  • 40
    • 85020251212 scopus 로고    scopus 로고
    • Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation
    • e1257
    • Tarasenko TN, Pacheco SE, Koenig MK, et al. Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metab. 2017;25:1254-1268; e1257.
    • (2017) Cell Metab , vol.25 , pp. 1254-1268
    • Tarasenko, T.N.1    Pacheco, S.E.2    Koenig, M.K.3
  • 41
    • 84992389978 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation
    • Ron-Harel N, Santos D, Ghergurovich JM, et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016;24:104-117.
    • (2016) Cell Metab , vol.24 , pp. 104-117
    • Ron-Harel, N.1    Santos, D.2    Ghergurovich, J.M.3
  • 42
    • 84992579961 scopus 로고    scopus 로고
    • Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription
    • Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci. 2016;41:712-730.
    • (2016) Trends Biochem Sci , vol.41 , pp. 712-730
    • Boukouris, A.E.1    Zervopoulos, S.D.2    Michelakis, E.D.3
  • 43
    • 85014844261 scopus 로고    scopus 로고
    • mTOR signaling in growth, metabolism, and disease
    • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960-976.
    • (2017) Cell , vol.168 , pp. 960-976
    • Saxton, R.A.1    Sabatini, D.M.2
  • 44
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T-cell differentiation and function
    • Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 2012;249:43-58.
    • (2012) Immunol Rev , vol.249 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 46
    • 84929008302 scopus 로고    scopus 로고
    • mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation
    • Pollizzi KN, Patel CH, Sun IH, et al. mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest. 2015;125:2090-2108.
    • (2015) J Clin Invest , vol.125 , pp. 2090-2108
    • Pollizzi, K.N.1    Patel, C.H.2    Sun, I.H.3
  • 47
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8 +  T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8 +  T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67-78.
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 48
    • 84860237060 scopus 로고    scopus 로고
    • Regulation and function of mTOR signalling in T cell fate decisions
    • Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 2012;12:325-338.
    • (2012) Nat Rev Immunol , vol.12 , pp. 325-338
    • Chi, H.1
  • 49
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1    Pollizzi, K.N.2    Waickman, A.T.3
  • 50
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
    • Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010;33:301-311.
    • (2010) Immunity , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 51
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1    Kole, T.P.2    Zheng, Y.3
  • 52
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming DW, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335:1638-1643.
    • (2012) Science , vol.335 , pp. 1638-1643
    • Lamming, D.W.1    Ye, L.2    Katajisto, P.3
  • 53
    • 84871861969 scopus 로고    scopus 로고
    • PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8 +  T cells
    • Finlay DK, Rosenzweig E, Sinclair LV, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8 +  T cells. J Exp Med. 2012;209:2441-2453.
    • (2012) J Exp Med , vol.209 , pp. 2441-2453
    • Finlay, D.K.1    Rosenzweig, E.2    Sinclair, L.V.3
  • 54
    • 84886672916 scopus 로고    scopus 로고
    • Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen
    • Doedens AL, Phan AT, Stradner MH, et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol. 2013;14:1173-1182.
    • (2013) Nat Immunol , vol.14 , pp. 1173-1182
    • Doedens, A.L.1    Phan, A.T.2    Stradner, M.H.3
  • 55
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171-183.
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Duvel, K.1    Yecies, J.L.2    Menon, S.3
  • 56
    • 84903277871 scopus 로고    scopus 로고
    • Integrating canonical and metabolic signalling programmes in the regulation of T cell responses
    • Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol. 2014;14:435-446.
    • (2014) Nat Rev Immunol , vol.14 , pp. 435-446
    • Pollizzi, K.N.1    Powell, J.D.2
  • 57
    • 84949097681 scopus 로고    scopus 로고
    • Hypoxia-inducible factors regulate T cell metabolism and function
    • Phan AT, Goldrath AW. Hypoxia-inducible factors regulate T cell metabolism and function. Mol Immunol. 2015;68:527-535.
    • (2015) Mol Immunol , vol.68 , pp. 527-535
    • Phan, A.T.1    Goldrath, A.W.2
  • 58
    • 79951745387 scopus 로고    scopus 로고
    • Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism
    • Macintyre AN, Finlay D, Preston G, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity. 2011;34:224-236.
    • (2011) Immunity , vol.34 , pp. 224-236
    • Macintyre, A.N.1    Finlay, D.2    Preston, G.3
  • 59
    • 84914108445 scopus 로고    scopus 로고
    • Influence of mTOR in energy and metabolic homeostasis
    • Haissaguerre M, Saucisse N, Cota D. Influence of mTOR in energy and metabolic homeostasis. Mol Cell Endocrinol. 2014;397:67-77.
    • (2014) Mol Cell Endocrinol , vol.397 , pp. 67-77
    • Haissaguerre, M.1    Saucisse, N.2    Cota, D.3
  • 60
    • 84867099976 scopus 로고    scopus 로고
    • Expanding roles for SREBP in metabolism
    • Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab. 2012;16:414-419.
    • (2012) Cell Metab , vol.16 , pp. 414-419
    • Shao, W.1    Espenshade, P.J.2
  • 61
    • 84876684375 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
    • Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14:489-499.
    • (2013) Nat Immunol , vol.14 , pp. 489-499
    • Kidani, Y.1    Elsaesser, H.2    Hock, M.B.3
  • 62
    • 84922080059 scopus 로고    scopus 로고
    • De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
    • Berod L, Friedrich C, Nandan A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327-1333.
    • (2014) Nat Med , vol.20 , pp. 1327-1333
    • Berod, L.1    Friedrich, C.2    Nandan, A.3
  • 63
    • 84897505811 scopus 로고    scopus 로고
    • Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity
    • Lee J, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-3199.
    • (2014) J Immunol , vol.192 , pp. 3190-3199
    • Lee, J.1    Walsh, M.C.2    Hoehn, K.L.3    James, D.E.4    Wherry, E.J.5    Choi, Y.6
  • 64
    • 84947017066 scopus 로고    scopus 로고
    • Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1
    • Endo Y, Asou HK, Matsugae N, et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 2015;12:1042-1055.
    • (2015) Cell Rep , vol.12 , pp. 1042-1055
    • Endo, Y.1    Asou, H.K.2    Matsugae, N.3
  • 65
    • 85045001662 scopus 로고    scopus 로고
    • De novo fatty acid synthesis during mycobacterial infection is a prerequisite for the function of highly proliferative T cells, but not for dendritic cells or macrophages
    • Stüve P, Minarrieta L, Erdmann H, et al. De novo fatty acid synthesis during mycobacterial infection is a prerequisite for the function of highly proliferative T cells, but not for dendritic cells or macrophages. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00495
    • (2018) Front Immunol
    • Stüve, P.1    Minarrieta, L.2    Erdmann, H.3
  • 66
    • 84964267895 scopus 로고    scopus 로고
    • Fatty acid metabolism in the regulation of T cell function
    • Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36:81-91.
    • (2015) Trends Immunol , vol.36 , pp. 81-91
    • Lochner, M.1    Berod, L.2    Sparwasser, T.3
  • 67
    • 66349099340 scopus 로고    scopus 로고
    • Fatty acid metabolism: target for metabolic syndrome
    • Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138-S143.
    • (2009) J Lipid Res , vol.50 , pp. S138-S143
    • Wakil, S.J.1    Abu-Elheiga, L.A.2
  • 68
    • 84985991676 scopus 로고    scopus 로고
    • Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease
    • Raha S, Raud B, Oberdorfer L, et al. Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease. Eur J Immunol. 2016;46:2233-2238.
    • (2016) Eur J Immunol , vol.46 , pp. 2233-2238
    • Raha, S.1    Raud, B.2    Oberdorfer, L.3
  • 69
    • 85015216648 scopus 로고    scopus 로고
    • Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism
    • Pan Y, Tian T, Park CO, et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 2017;543:252-256.
    • (2017) Nature , vol.543 , pp. 252-256
    • Pan, Y.1    Tian, T.2    Park, C.O.3
  • 70
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8 +  T cell memory development
    • van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8 +  T cell memory development. Immunity. 2012;36:68-78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • van der Windt, G.J.1    Everts, B.2    Chang, C.H.3
  • 71
    • 84883423963 scopus 로고    scopus 로고
    • CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
    • van der Windt GJ, O'Sullivan D, Everts B, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci USA. 2013;110:14336-14341.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 14336-14341
    • van der Windt, G.J.1    O'Sullivan, D.2    Everts, B.3
  • 72
    • 67650074206 scopus 로고    scopus 로고
    • mTOR regulates memory CD8 T-cell differentiation
    • Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108-112.
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1    Turner, A.P.2    Shaffer, V.O.3
  • 73
    • 84906221604 scopus 로고    scopus 로고
    • Serine-threonine kinases in TCR signaling
    • Navarro MN, Cantrell DA. Serine-threonine kinases in TCR signaling. Nat Immunol. 2014;15:808-814.
    • (2014) Nat Immunol , vol.15 , pp. 808-814
    • Navarro, M.N.1    Cantrell, D.A.2
  • 74
    • 79956142389 scopus 로고    scopus 로고
    • Characterization of the metabolic phenotype of rapamycin-treated CD8 +  T cells with augmented ability to generate long-lasting memory cells
    • He S, Kato K, Jiang J, et al. Characterization of the metabolic phenotype of rapamycin-treated CD8 +  T cells with augmented ability to generate long-lasting memory cells. PLoS ONE. 2011;6:e20107.
    • (2011) PLoS ONE , vol.6
    • He, S.1    Kato, K.2    Jiang, J.3
  • 75
    • 84907886513 scopus 로고    scopus 로고
    • Tsc1 promotes the differentiation of memory CD8 +  T cells via orchestrating the transcriptional and metabolic programs
    • Shrestha S, Yang K, Wei J, Karmaus PW, Neale G, Chi H. Tsc1 promotes the differentiation of memory CD8 +  T cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci USA. 2014;111:14858-14863.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 14858-14863
    • Shrestha, S.1    Yang, K.2    Wei, J.3    Karmaus, P.W.4    Neale, G.5    Chi, H.6
  • 76
    • 33947730608 scopus 로고    scopus 로고
    • Asymmetric T lymphocyte division in the initiation of adaptive immune responses
    • Chang JT, Palanivel VR, Kinjyo I, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science. 2007;315:1687-1691.
    • (2007) Science , vol.315 , pp. 1687-1691
    • Chang, J.T.1    Palanivel, V.R.2    Kinjyo, I.3
  • 77
    • 84963525930 scopus 로고    scopus 로고
    • Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation
    • Pollizzi KN, Sun IH, Patel CH, et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol. 2016;17:704-711.
    • (2016) Nat Immunol , vol.17 , pp. 704-711
    • Pollizzi, K.N.1    Sun, I.H.2    Patel, C.H.3
  • 78
    • 84964527036 scopus 로고    scopus 로고
    • Metabolic maintenance of cell asymmetry following division in activated T lymphocytes
    • Verbist KC, Guy CS, Milasta S, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-393.
    • (2016) Nature , vol.532 , pp. 389-393
    • Verbist, K.C.1    Guy, C.S.2    Milasta, S.3
  • 79
    • 84957963858 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner
    • Zhang L, Tschumi BO, Lopez-Mejia IC, et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 2016;14:1206-1217.
    • (2016) Cell Rep , vol.14 , pp. 1206-1217
    • Zhang, L.1    Tschumi, B.O.2    Lopez-Mejia, I.C.3
  • 80
    • 79151486083 scopus 로고    scopus 로고
    • Metabolism, migration and memory in cytotoxic T cells
    • Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol. 2011;11:109-117.
    • (2011) Nat Rev Immunol , vol.11 , pp. 109-117
    • Finlay, D.1    Cantrell, D.A.2
  • 81
    • 84863344634 scopus 로고    scopus 로고
    • Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation
    • Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity. 2012;36:374-387.
    • (2012) Immunity , vol.36 , pp. 374-387
    • Rao, R.R.1    Li, Q.2    Gubbels Bupp, M.R.3    Shrikant, P.A.4
  • 82
    • 84879610438 scopus 로고    scopus 로고
    • FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory
    • Tejera MM, Kim EH, Sullivan JA, Plisch EH, Suresh M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J Immunol. 2013;191:187-199.
    • (2013) J Immunol , vol.191 , pp. 187-199
    • Tejera, M.M.1    Kim, E.H.2    Sullivan, J.A.3    Plisch, E.H.4    Suresh, M.5
  • 83
    • 85018350259 scopus 로고    scopus 로고
    • Wong AH-T, Jones RG. The role of AMPK in T cell metabolism and function
    • Ma EH, Poffenberger MC. Wong AH-T, Jones RG. The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 2017;46:45-52.
    • (2017) Curr Opin Immunol , vol.46 , pp. 45-52
    • Ma, E.H.1    Poffenberger, M.C.2
  • 84
    • 85041140494 scopus 로고    scopus 로고
    • AMPK: guardian of metabolism and mitochondrial homeostasis
    • Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121-135.
    • (2018) Nat Rev Mol Cell Biol , vol.19 , pp. 121-135
    • Herzig, S.1    Shaw, R.J.2
  • 85
    • 10944247187 scopus 로고    scopus 로고
    • The AMP-activated protein kinase pathway–new players upstream and downstream
    • Hardie DG. The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci. 2004;117:5479-5487.
    • (2004) J Cell Sci , vol.117 , pp. 5479-5487
    • Hardie, D.G.1
  • 86
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251-262.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 87
    • 20844451123 scopus 로고    scopus 로고
    • AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
    • Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15-25.
    • (2005) Cell Metab , vol.1 , pp. 15-25
    • Kahn, B.B.1    Alquier, T.2    Carling, D.3    Hardie, D.G.4
  • 88
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9:563-575.
    • (2009) Nat Rev Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 89
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016-1023.
    • (2011) Nat Cell Biol , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 90
    • 80054726323 scopus 로고    scopus 로고
    • The liver kinase B1 is a central regulator of T cell development, activation, and metabolism
    • MacIver NJ, Blagih J, Saucillo DC, et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol. 2011;187:4187-4198.
    • (2011) J Immunol , vol.187 , pp. 4187-4198
    • MacIver, N.J.1    Blagih, J.2    Saucillo, D.C.3
  • 91
    • 73849112608 scopus 로고    scopus 로고
    • The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression
    • Cao Y, Li H, Liu H, Zheng C, Ji H, Liu X. The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res. 2010;20:99-108.
    • (2010) Cell Res , vol.20 , pp. 99-108
    • Cao, Y.1    Li, H.2    Liu, H.3    Zheng, C.4    Ji, H.5    Liu, X.6
  • 92
    • 74249122511 scopus 로고    scopus 로고
    • LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells
    • Tamas P, Macintyre A, Finlay D, et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol. 2010;40:242-253.
    • (2010) Eur J Immunol , vol.40 , pp. 242-253
    • Tamas, P.1    Macintyre, A.2    Finlay, D.3
  • 93
    • 84921309472 scopus 로고    scopus 로고
    • The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
    • Blagih J, Coulombe F, Vincent EE, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41-54.
    • (2015) Immunity , vol.42 , pp. 41-54
    • Blagih, J.1    Coulombe, F.2    Vincent, E.E.3
  • 94
    • 44849141880 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
    • Mayer A, Denanglaire S, Viollet B, Leo O, Andris F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol. 2008;38:948-956.
    • (2008) Eur J Immunol , vol.38 , pp. 948-956
    • Mayer, A.1    Denanglaire, S.2    Viollet, B.3    Leo, O.4    Andris, F.5
  • 96
    • 3142594193 scopus 로고    scopus 로고
    • The LKB1 tumor suppressor negatively regulates mTOR signaling
    • Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91-99.
    • (2004) Cancer Cell , vol.6 , pp. 91-99
    • Shaw, R.J.1    Bardeesy, N.2    Manning, B.D.3
  • 97
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214-226.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 98
    • 0035970805 scopus 로고    scopus 로고
    • Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
    • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001;291:2613-2616.
    • (2001) Science , vol.291 , pp. 2613-2616
    • Abu-Elheiga, L.1    Matzuk, M.M.2    Abo-Hashema, K.A.3    Wakil, S.J.4
  • 100
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132-141.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 101
    • 84911103917 scopus 로고    scopus 로고
    • Autophagy is essential for effector CD8(+) T cell survival and memory formation
    • Xu X, Araki K, Li S, et al. Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol. 2014;15:1152-1161.
    • (2014) Nat Immunol , vol.15 , pp. 1152-1161
    • Xu, X.1    Araki, K.2    Li, S.3
  • 102
    • 0033538473 scopus 로고    scopus 로고
    • Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
    • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115-124.
    • (1999) Cell , vol.98 , pp. 115-124
    • Wu, Z.1    Puigserver, P.2    Andersson, U.3
  • 103
    • 84872667668 scopus 로고    scopus 로고
    • AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity
    • O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol. 2013;366:135-151.
    • (2013) Mol Cell Endocrinol , vol.366 , pp. 135-151
    • O'Neill, H.M.1    Holloway, G.P.2    Steinberg, G.R.3
  • 104
    • 84904764021 scopus 로고    scopus 로고
    • AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice
    • O'Neill HM, Lally JS, Galic S, et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia. 2014;57:1693-1702.
    • (2014) Diabetologia , vol.57 , pp. 1693-1702
    • O'Neill, H.M.1    Lally, J.S.2    Galic, S.3
  • 105
    • 84889887123 scopus 로고    scopus 로고
    • Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
    • Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19:1649-1654.
    • (2013) Nat Med , vol.19 , pp. 1649-1654
    • Fullerton, M.D.1    Galic, S.2    Marcinko, K.3
  • 106
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103-107.
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1    Walsh, M.C.2    Cejas, P.J.3
  • 107
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic pathways in immune cell activation and quiescence
    • Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633-643.
    • (2013) Immunity , vol.38 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 108
  • 109
    • 84931030791 scopus 로고    scopus 로고
    • Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system
    • Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266:72-92.
    • (2015) Immunol Rev , vol.266 , pp. 72-92
    • Walsh, M.C.1    Lee, J.2    Choi, Y.3
  • 110
    • 0033561039 scopus 로고    scopus 로고
    • TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
    • Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015-1024.
    • (1999) Genes Dev , vol.13 , pp. 1015-1024
    • Lomaga, M.A.1    Yeh, W.C.2    Sarosi, I.3
  • 111
    • 33748460821 scopus 로고    scopus 로고
    • TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis
    • King CG, Kobayashi T, Cejas PJ, et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med. 2006;12:1088-1092.
    • (2006) Nat Med , vol.12 , pp. 1088-1092
    • King, C.G.1    Kobayashi, T.2    Cejas, P.J.3
  • 112
    • 84907495015 scopus 로고    scopus 로고
    • IL-18 synergizes with IL-7 to drive slow proliferation of naive CD8 T cells by costimulating self-peptide-mediated TCR signals
    • Walsh MC, Pearce EL, Cejas PJ, Lee J, Wang LS, Choi Y. IL-18 synergizes with IL-7 to drive slow proliferation of naive CD8 T cells by costimulating self-peptide-mediated TCR signals. J Immunol. 2014;193:3992-4001.
    • (2014) J Immunol , vol.193 , pp. 3992-4001
    • Walsh, M.C.1    Pearce, E.L.2    Cejas, P.J.3    Lee, J.4    Wang, L.S.5    Choi, Y.6
  • 114
    • 84918583229 scopus 로고    scopus 로고
    • Metformin directly acts on mitochondria to alter cellular bioenergetics
    • Andrzejewski S, Gravel SP, Pollak M, St-Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab. 2014;2:12.
    • (2014) Cancer Metab , vol.2 , pp. 12
    • Andrzejewski, S.1    Gravel, S.P.2    Pollak, M.3    St-Pierre, J.4
  • 115
    • 84939612531 scopus 로고    scopus 로고
    • Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
    • Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS ONE. 2014;9:e106710.
    • (2014) PLoS ONE , vol.9
    • Zarrouk, M.1    Finlay, D.K.2    Foretz, M.3    Viollet, B.4    Cantrell, D.A.5
  • 116
    • 0001105243 scopus 로고
    • Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine
    • Fritz IB, Yue KT. Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J Lipid Res. 1963;4:279-288.
    • (1963) J Lipid Res , vol.4 , pp. 279-288
    • Fritz, I.B.1    Yue, K.T.2
  • 118
    • 79956326256 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
    • Zaugg K, Yao Y, Reilly PT, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25:1041-1051.
    • (2011) Genes Dev , vol.25 , pp. 1041-1051
    • Zaugg, K.1    Yao, Y.2    Reilly, P.T.3
  • 120
    • 43749088942 scopus 로고    scopus 로고
    • CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity
    • Sierra AY, Gratacos E, Carrasco P, et al. CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem. 2008;283:6878-6885.
    • (2008) J Biol Chem , vol.283 , pp. 6878-6885
    • Sierra, A.Y.1    Gratacos, E.2    Carrasco, P.3
  • 121
    • 85017166008 scopus 로고    scopus 로고
    • Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer
    • Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7:e2226.
    • (2016) Cell Death Dis , vol.7
    • Qu, Q.1    Zeng, F.2    Liu, X.3    Wang, Q.J.4    Deng, F.5
  • 122
    • 0842287450 scopus 로고    scopus 로고
    • Mitochondrial beta-oxidation
    • Bartlett K, Eaton S. Mitochondrial beta-oxidation. Eur J Biochem. 2004;271:462-469.
    • (2004) Eur J Biochem , vol.271 , pp. 462-469
    • Bartlett, K.1    Eaton, S.2
  • 123
    • 84875465199 scopus 로고    scopus 로고
    • Cancer metabolism: fatty acid oxidation in the limelight
    • Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227-232.
    • (2013) Nat Rev Cancer , vol.13 , pp. 227-232
    • Carracedo, A.1    Cantley, L.C.2    Pandolfi, P.P.3
  • 124
    • 77957608608 scopus 로고    scopus 로고
    • A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation
    • Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33:469-477.
    • (2010) J Inherit Metab Dis , vol.33 , pp. 469-477
    • Houten, S.M.1    Wanders, R.J.2
  • 125
    • 0042337449 scopus 로고    scopus 로고
    • Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets
    • Abu-Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA. 2003;100:10207-10212.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10207-10212
    • Abu-Elheiga, L.1    Oh, W.2    Kordari, P.3    Wakil, S.J.4
  • 127
    • 33846005164 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth
    • Deberardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem. 2006;281:37372-37380.
    • (2006) J Biol Chem , vol.281 , pp. 37372-37380
    • Deberardinis, R.J.1    Lum, J.J.2    Thompson, C.B.3
  • 128
    • 84885055994 scopus 로고    scopus 로고
    • Inhibiting glycolytic metabolism enhances CD8 +  T cell memory and antitumor function
    • Sukumar M, Liu J, Ji Y, et al. Inhibiting glycolytic metabolism enhances CD8 +  T cell memory and antitumor function. J Clin Invest. 2013;123:4479-4488.
    • (2013) J Clin Invest , vol.123 , pp. 4479-4488
    • Sukumar, M.1    Liu, J.2    Ji, Y.3
  • 129
    • 2942623933 scopus 로고    scopus 로고
    • Initial antigen encounter programs CD8 +  T cells competent to develop into memory cells that are activated in an antigen-free, IL-7- and IL-15-rich environment
    • Carrio R, Bathe OF, Malek TR. Initial antigen encounter programs CD8 +  T cells competent to develop into memory cells that are activated in an antigen-free, IL-7- and IL-15-rich environment. J Immunol. 2004;172:7315-7323.
    • (2004) J Immunol , vol.172 , pp. 7315-7323
    • Carrio, R.1    Bathe, O.F.2    Malek, T.R.3
  • 130
    • 84904392273 scopus 로고    scopus 로고
    • Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
    • O'Sullivan D, van der Windt GJ, Huang SC, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41:75-88.
    • (2014) Immunity , vol.41 , pp. 75-88
    • O'Sullivan, D.1    van der Windt, G.J.2    Huang, S.C.3
  • 131
  • 134
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 +  T cell subsets
    • Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 +  T cell subsets. J Immunol. 2011;186:3299-3303.
    • (2011) J Immunol , vol.186 , pp. 3299-3303
    • Michalek, R.D.1    Gerriets, V.A.2    Jacobs, S.R.3
  • 135
    • 13044277575 scopus 로고    scopus 로고
    • Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation
    • Kurtz DM, Rinaldo P, Rhead WJ, et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA. 1998;95:15592-15597.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 15592-15597
    • Kurtz, D.M.1    Rinaldo, P.2    Rhead, W.J.3
  • 136
    • 0034782503 scopus 로고    scopus 로고
    • Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse
    • Cox KB, Hamm DA, Millington DS, et al. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet. 2001;10:2069-2077.
    • (2001) Hum Mol Genet , vol.10 , pp. 2069-2077
    • Cox, K.B.1    Hamm, D.A.2    Millington, D.S.3
  • 137
    • 85014013395 scopus 로고    scopus 로고
    • Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency–studies on treatment effects and long-term outcomes in mouse models
    • Tucci S. Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency–studies on treatment effects and long-term outcomes in mouse models. J Inherit Metab Dis. 2017;40:317-323.
    • (2017) J Inherit Metab Dis , vol.40 , pp. 317-323
    • Tucci, S.1
  • 138
    • 77957577200 scopus 로고    scopus 로고
    • Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models
    • Spiekerkoetter U, Wood PA. Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models. J Inherit Metab Dis. 2010;33:539-546.
    • (2010) J Inherit Metab Dis , vol.33 , pp. 539-546
    • Spiekerkoetter, U.1    Wood, P.A.2
  • 139
    • 26244431937 scopus 로고    scopus 로고
    • Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse
    • Nyman LR, Cox KB, Hoppel CL, et al. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse. Mol Genet Metab. 2005;86:179-187.
    • (2005) Mol Genet Metab , vol.86 , pp. 179-187
    • Nyman, L.R.1    Cox, K.B.2    Hoppel, C.L.3
  • 140
    • 33645655060 scopus 로고    scopus 로고
    • Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation
    • Bentebibel A, Sebastian D, Herrero L, et al. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation. Biochemistry. 2006;45:4339-4350.
    • (2006) Biochemistry , vol.45 , pp. 4339-4350
    • Bentebibel, A.1    Sebastian, D.2    Herrero, L.3
  • 141
    • 79955826359 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research
    • Ceccarelli SM, Chomienne O, Gubler M, Arduini A. Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research. J Med Chem. 2011;54:3109-3152.
    • (2011) J Med Chem , vol.54 , pp. 3109-3152
    • Ceccarelli, S.M.1    Chomienne, O.2    Gubler, M.3    Arduini, A.4
  • 142
    • 0023655399 scopus 로고
    • Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors
    • Declercq PE, Falck JR, Kuwajima M, Tyminski H, Foster DW, McGarry JD. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987;262:9812-9821.
    • (1987) J Biol Chem , vol.262 , pp. 9812-9821
    • Declercq, P.E.1    Falck, J.R.2    Kuwajima, M.3    Tyminski, H.4    Foster, D.W.5    McGarry, J.D.6
  • 144
    • 84976478216 scopus 로고    scopus 로고
    • Mitochondrial dynamics controls T cell fate through metabolic programming
    • Buck MD, O'Sullivan D, Klein Geltink RI, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63-76.
    • (2016) Cell , vol.166 , pp. 63-76
    • Buck, M.D.1    O'Sullivan, D.2    Klein Geltink, R.I.3
  • 145
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15:846-855.
    • (2014) Nat Immunol , vol.15 , pp. 846-855
    • Huang, S.C.1    Everts, B.2    Ivanova, Y.3
  • 146
    • 84962450023 scopus 로고    scopus 로고
    • Fatty acid oxidation in macrophage polarization
    • Nomura M, Liu J, Rovira II, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol. 2016;17:216-217.
    • (2016) Nat Immunol , vol.17 , pp. 216-217
    • Nomura, M.1    Liu, J.2    Rovira, I.I.3
  • 147
    • 0024262853 scopus 로고
    • Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine
    • Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988;63:1036-1043.
    • (1988) Circ Res , vol.63 , pp. 1036-1043
    • Lopaschuk, G.D.1    Wall, S.R.2    Olley, P.M.3    Davies, N.J.4
  • 149
    • 84999751988 scopus 로고    scopus 로고
    • Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection
    • Phan AT, Doedens AL, Palazon A, et al. Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity. 2016;45:1024-1037.
    • (2016) Immunity , vol.45 , pp. 1024-1037
    • Phan, A.T.1    Doedens, A.L.2    Palazon, A.3
  • 150
    • 84959521117 scopus 로고    scopus 로고
    • Mitochondrial cristae: where beauty meets functionality
    • Cogliati S, Enriquez JA, Scorrano L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci. 2016;41:261-273.
    • (2016) Trends Biochem Sci , vol.41 , pp. 261-273
    • Cogliati, S.1    Enriquez, J.A.2    Scorrano, L.3
  • 151
    • 84884909413 scopus 로고    scopus 로고
    • Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
    • Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155:160-171.
    • (2013) Cell , vol.155 , pp. 160-171
    • Cogliati, S.1    Frezza, C.2    Soriano, M.E.3
  • 152
    • 84999672289 scopus 로고    scopus 로고
    • VHL brings Warburg into the memory spotlight
    • Delgoffe GM. VHL brings Warburg into the memory spotlight. Immunity. 2016;45:953-955.
    • (2016) Immunity , vol.45 , pp. 953-955
    • Delgoffe, G.M.1
  • 153
    • 84971510696 scopus 로고    scopus 로고
    • Short- and medium-chain fatty acids in energy metabolism: the cellular perspective
    • Schonfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57:943-954.
    • (2016) J Lipid Res , vol.57 , pp. 943-954
    • Schonfeld, P.1    Wojtczak, L.2
  • 155
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451-455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1    Campbell, C.2    Fan, X.3
  • 156
    • 84971268506 scopus 로고    scopus 로고
    • Memory CD8 + T cells require increased concentrations of acetate induced by stress for optimal function
    • Balmer ML, Ma EH, Bantug GR, et al. Memory CD8 + T cells require increased concentrations of acetate induced by stress for optimal function. Immunity. 2016;44:1312-1324.
    • (2016) Immunity , vol.44 , pp. 1312-1324
    • Balmer, M.L.1    Ma, E.H.2    Bantug, G.R.3
  • 157
    • 33745823168 scopus 로고    scopus 로고
    • Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2 +  in T lymphocytes
    • Tamas P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2 +  in T lymphocytes. J Exp Med. 2006;203:1665-1670.
    • (2006) J Exp Med , vol.203 , pp. 1665-1670
    • Tamas, P.1    Hawley, S.A.2    Clarke, R.G.3
  • 158
    • 84919496051 scopus 로고    scopus 로고
    • The role of fatty acid oxidation in the metabolic reprograming of activated T-cells
    • Byersdorfer CA. The role of fatty acid oxidation in the metabolic reprograming of activated T-cells. Front Immunol. 2014;5:641.
    • (2014) Front Immunol , vol.5 , pp. 641
    • Byersdorfer, C.A.1
  • 159
    • 85019417377 scopus 로고    scopus 로고
    • Biochemical underpinnings of immune cell metabolic phenotypes
    • Olenchock BA, Rathmell JC, Vander Heiden MG. Biochemical underpinnings of immune cell metabolic phenotypes. Immunity. 2017;46:703-713.
    • (2017) Immunity , vol.46 , pp. 703-713
    • Olenchock, B.A.1    Rathmell, J.C.2    Vander Heiden, M.G.3
  • 160
    • 84907200741 scopus 로고    scopus 로고
    • Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease
    • Glick GD, Rossignol R, Lyssiotis CA, et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J Pharmacol Exp Ther. 2014;351:298-307.
    • (2014) J Pharmacol Exp Ther , vol.351 , pp. 298-307
    • Glick, G.D.1    Rossignol, R.2    Lyssiotis, C.A.3
  • 161
    • 79251500689 scopus 로고    scopus 로고
    • Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease
    • Gatza E, Wahl DR, Opipari AW, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med. 2011;3:67ra68.
    • (2011) Sci Transl Med , vol.3 , pp. 67ra68
    • Gatza, E.1    Wahl, D.R.2    Opipari, A.W.3
  • 162
    • 84891607730 scopus 로고    scopus 로고
    • Effector T cells require fatty acid metabolism during murine graft-versus-host disease
    • Byersdorfer CA, Tkachev V, Opipari AW, et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood. 2013;122:3230-3237.
    • (2013) Blood , vol.122 , pp. 3230-3237
    • Byersdorfer, C.A.1    Tkachev, V.2    Opipari, A.W.3
  • 163
    • 79958244231 scopus 로고    scopus 로고
    • PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation
    • Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812:1007-1022.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 1007-1022
    • Varga, T.1    Czimmerer, Z.2    Nagy, L.3
  • 164
    • 84931431126 scopus 로고    scopus 로고
    • Programmed death-1 controls T cell survival by regulating oxidative metabolism
    • Tkachev V, Goodell S, Opipari AW, et al. Programmed death-1 controls T cell survival by regulating oxidative metabolism. J Immunol. 2015;194:5789-5800.
    • (2015) J Immunol , vol.194 , pp. 5789-5800
    • Tkachev, V.1    Goodell, S.2    Opipari, A.W.3
  • 165
    • 27144496045 scopus 로고    scopus 로고
    • CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
    • Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543-9553.
    • (2005) Mol Cell Biol , vol.25 , pp. 9543-9553
    • Parry, R.V.1    Chemnitz, J.M.2    Frauwirth, K.A.3
  • 167
    • 84925688346 scopus 로고    scopus 로고
    • PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
    • Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.
    • (2015) Nat Commun , vol.6 , pp. 6692
    • Patsoukis, N.1    Bardhan, K.2    Chatterjee, P.3
  • 168
    • 84863448693 scopus 로고    scopus 로고
    • The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases
    • Choi JM, Bothwell AL. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells. 2012;33:217-222.
    • (2012) Mol Cells , vol.33 , pp. 217-222
    • Choi, J.M.1    Bothwell, A.L.2
  • 169
    • 74949089659 scopus 로고    scopus 로고
    • Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
    • Samudio I, Harmancey R, Fiegl M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120:142-156.
    • (2010) J Clin Invest , vol.120 , pp. 142-156
    • Samudio, I.1    Harmancey, R.2    Fiegl, M.3
  • 170
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661-665.
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.M.1    Chandel, N.S.2    Hay, N.3
  • 171
    • 79955601028 scopus 로고    scopus 로고
    • Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
    • Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta. 2011;1807:726-734.
    • (2011) Biochim Biophys Acta , vol.1807 , pp. 726-734
    • Pike, L.S.1    Smift, A.L.2    Croteau, N.J.3    Ferrick, D.A.4    Wu, M.5
  • 172
    • 84941876397 scopus 로고    scopus 로고
    • Metabolic functions of FABPs–mechanisms and therapeutic implications
    • Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11:592-605.
    • (2015) Nat Rev Endocrinol , vol.11 , pp. 592-605
    • Hotamisligil, G.S.1    Bernlohr, D.A.2
  • 173
    • 68349148211 scopus 로고    scopus 로고
    • Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
    • Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15:930-939.
    • (2009) Nat Med , vol.15 , pp. 930-939
    • Feuerer, M.1    Herrero, L.2    Cipolletta, D.3
  • 174
    • 84862986986 scopus 로고    scopus 로고
    • PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells
    • Cipolletta D, Feuerer M, Li A, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486:549-553.
    • (2012) Nature , vol.486 , pp. 549-553
    • Cipolletta, D.1    Feuerer, M.2    Li, A.3
  • 175
    • 85018897784 scopus 로고    scopus 로고
    • Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries
    • Ho PC, Kaech SM. Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Curr Opin Immunol. 2017;46:38-44.
    • (2017) Curr Opin Immunol , vol.46 , pp. 38-44
    • Ho, P.C.1    Kaech, S.M.2
  • 176
    • 84961736633 scopus 로고    scopus 로고
    • Emerging concepts of T cell metabolism as a target of immunotherapy
    • Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol. 2016;17:364-368.
    • (2016) Nat Immunol , vol.17 , pp. 364-368
    • Chang, C.H.1    Pearce, E.L.2
  • 177
    • 84962506335 scopus 로고    scopus 로고
    • Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression
    • Zhang Y, Ertl HC. Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol. 2016;7:32.
    • (2016) Front Immunol , vol.7 , pp. 32
    • Zhang, Y.1    Ertl, H.C.2
  • 178
    • 84926514026 scopus 로고    scopus 로고
    • T cell metabolic fitness in antitumor immunity
    • Siska PJ, Rathmell JC. T cell metabolic fitness in antitumor immunity. Trends Immunol. 2015;36:257-264.
    • (2015) Trends Immunol , vol.36 , pp. 257-264
    • Siska, P.J.1    Rathmell, J.C.2
  • 179
    • 84941344937 scopus 로고    scopus 로고
    • Metabolic competition in the tumor microenvironment is a driver of cancer progression
    • Chang CH, Qiu J, O'Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229-1241.
    • (2015) Cell , vol.162 , pp. 1229-1241
    • Chang, C.H.1    Qiu, J.2    O'Sullivan, D.3
  • 180
    • 34748912615 scopus 로고    scopus 로고
    • Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
    • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763-777.
    • (2007) Nat Rev Cancer , vol.7 , pp. 763-777
    • Menendez, J.A.1    Lupu, R.2
  • 181
    • 85030419289 scopus 로고    scopus 로고
    • Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy
    • e379
    • Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32:377-391; e379.
    • (2017) Cancer Cell , vol.32 , pp. 377-391
    • Zhang, Y.1    Kurupati, R.2    Liu, L.3
  • 182
    • 85041491059 scopus 로고    scopus 로고
    • The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism
    • Kapnick SM, Pacheco SE, McGuire PJ. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabol Clin Exp. 2018;81:97-112.
    • (2018) Metabol Clin Exp , vol.81 , pp. 97-112
    • Kapnick, S.M.1    Pacheco, S.E.2    McGuire, P.J.3
  • 184
    • 33747606236 scopus 로고    scopus 로고
    • Fatal neonatal-onset mitochondrial respiratory chain disease with T cell immunodeficiency
    • Reichenbach J, Schubert R, Horvath R, et al. Fatal neonatal-onset mitochondrial respiratory chain disease with T cell immunodeficiency. Pediatr Res. 2006;60:321-326.
    • (2006) Pediatr Res , vol.60 , pp. 321-326
    • Reichenbach, J.1    Schubert, R.2    Horvath, R.3
  • 185
    • 84958618764 scopus 로고    scopus 로고
    • The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders
    • Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23-44.
    • (2016) Annu Rev Physiol , vol.78 , pp. 23-44
    • Houten, S.M.1    Violante, S.2    Ventura, F.V.3    Wanders, R.J.4
  • 186
    • 84888345135 scopus 로고    scopus 로고
    • Association of a genetic variant of carnitine palmitoyltransferase 1A with infections in Alaska Native children
    • Gessner BD, Gillingham MB, Wood T, Koeller DM. Association of a genetic variant of carnitine palmitoyltransferase 1A with infections in Alaska Native children. J Pediatr. 2013;163:1716-1721.
    • (2013) J Pediatr , vol.163 , pp. 1716-1721
    • Gessner, B.D.1    Gillingham, M.B.2    Wood, T.3    Koeller, D.M.4
  • 187
    • 85041289383 scopus 로고    scopus 로고
    • SIRT1 and HIF1alpha signaling in metabolism and immune responses
    • Yu Q, Dong L, Li Y, Liu G. SIRT1 and HIF1alpha signaling in metabolism and immune responses. Cancer Lett. 2018;418:20-26.
    • (2018) Cancer Lett , vol.418 , pp. 20-26
    • Yu, Q.1    Dong, L.2    Li, Y.3    Liu, G.4
  • 188
    • 85039962901 scopus 로고    scopus 로고
    • Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1
    • Jeng MY, Hull PA, Fei M, et al. Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1. J Exp Med. 2018;215:51-62.
    • (2018) J Exp Med , vol.215 , pp. 51-62
    • Jeng, M.Y.1    Hull, P.A.2    Fei, M.3
  • 189
    • 84930765209 scopus 로고    scopus 로고
    • 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
    • Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581-590.
    • (2015) Nat Med , vol.21 , pp. 581-590
    • Long, A.H.1    Haso, W.M.2    Shern, J.F.3
  • 190
    • 85028732437 scopus 로고    scopus 로고
    • 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8(+) T cell proliferation
    • Choi BK, Lee DY, Lee DG, et al. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8(+) T cell proliferation. Cell Mol Immunol. 2017;14:748-757.
    • (2017) Cell Mol Immunol , vol.14 , pp. 748-757
    • Choi, B.K.1    Lee, D.Y.2    Lee, D.G.3
  • 191
    • 84958648353 scopus 로고    scopus 로고
    • Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells
    • Kawalekar OU, O'Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:380-390.
    • (2016) Immunity , vol.44 , pp. 380-390
    • Kawalekar, O.U.1    O'Connor, R.S.2    Fraietta, J.A.3
  • 192
    • 85034452613 scopus 로고    scopus 로고
    • Targeting immuno-metabolism to improve anti-cancer therapies
    • Beezhold K, Byersdorfer CA. Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Lett. 2018;414:127-135.
    • (2018) Cancer Lett , vol.414 , pp. 127-135
    • Beezhold, K.1    Byersdorfer, C.A.2
  • 193
    • 84904035279 scopus 로고    scopus 로고
    • Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential
    • Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142:517-525.
    • (2014) Immunology , vol.142 , pp. 517-525
    • Cipolletta, D.1
  • 194
    • 84892144705 scopus 로고    scopus 로고
    • Regulation of energy metabolism by long-chain fatty acids
    • Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 2014;53:124-144.
    • (2014) Prog Lipid Res , vol.53 , pp. 124-144
    • Nakamura, M.T.1    Yudell, B.E.2    Loor, J.J.3
  • 195
    • 76449100708 scopus 로고    scopus 로고
    • PPARs: diverse regulators in energy metabolism and metabolic diseases
    • Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res. 2010;20:124-137.
    • (2010) Cell Res , vol.20 , pp. 124-137
    • Wang, Y.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.