-
1
-
-
77953749960
-
Generation of effector CD8 + T cells and their conversion to memory T cells
-
Cui W, Kaech SM. Generation of effector CD8 + T cells and their conversion to memory T cells. Immunol Rev. 2010;236:151-166.
-
(2010)
Immunol Rev
, vol.236
, pp. 151-166
-
-
Cui, W.1
Kaech, S.M.2
-
2
-
-
84867896903
-
Transcriptional control of effector and memory CD8 + T cell differentiation
-
Kaech SM, Cui W. Transcriptional control of effector and memory CD8 + T cell differentiation. Nat Rev Immunol. 2012;12:749-761.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 749-761
-
-
Kaech, S.M.1
Cui, W.2
-
3
-
-
34247849183
-
Effector and memory CTL differentiation
-
Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171-192.
-
(2007)
Annu Rev Immunol
, vol.25
, pp. 171-192
-
-
Williams, M.A.1
Bevan, M.J.2
-
4
-
-
71749113233
-
Diversity in T cell memory: an embarrassment of riches
-
Jameson SC, Masopust D. Diversity in T cell memory: an embarrassment of riches. Immunity. 2009;31:859-871.
-
(2009)
Immunity
, vol.31
, pp. 859-871
-
-
Jameson, S.C.1
Masopust, D.2
-
5
-
-
85044853234
-
Understanding subset diversity in T cell memory
-
Jameson SC, Masopust D. Understanding subset diversity in T cell memory. Immunity. 2018;48:214-226.
-
(2018)
Immunity
, vol.48
, pp. 214-226
-
-
Jameson, S.C.1
Masopust, D.2
-
6
-
-
0347382593
-
Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells
-
Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191-1198.
-
(2003)
Nat Immunol
, vol.4
, pp. 1191-1198
-
-
Kaech, S.M.1
Tan, J.T.2
Wherry, E.J.3
Konieczny, B.T.4
Surh, C.D.5
Ahmed, R.6
-
7
-
-
84893372990
-
Pillars article: two subsets of memory T lymphocytes with distinct homing potentials and effector functions
-
Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Pillars article: two subsets of memory T lymphocytes with distinct homing potentials and effector functions. J Immunol. 2014;192:840-844.
-
(2014)
J Immunol
, vol.192
, pp. 840-844
-
-
Sallusto, F.1
Lenig, D.2
Forster, R.3
Lipp, M.4
Lanzavecchia, A.5
-
8
-
-
0035937587
-
Preferential localization of effector memory cells in nonlymphoid tissue
-
Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291:2413-2417.
-
(2001)
Science
, vol.291
, pp. 2413-2417
-
-
Masopust, D.1
Vezys, V.2
Marzo, A.L.3
Lefrancois, L.4
-
9
-
-
84957431152
-
Tissue-resident memory T cells: local specialists in immune defence
-
Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16:79-89.
-
(2016)
Nat Rev Immunol
, vol.16
, pp. 79-89
-
-
Mueller, S.N.1
Mackay, L.K.2
-
10
-
-
84936846381
-
The emerging role of resident memory T cells in protective immunity and inflammatory disease
-
Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat Med. 2015;21:688-697.
-
(2015)
Nat Med
, vol.21
, pp. 688-697
-
-
Park, C.O.1
Kupper, T.S.2
-
11
-
-
85037033045
-
White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection
-
e1156
-
Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, et al. White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity. 2017;47:1154-1168, e1156.
-
(2017)
Immunity
, vol.47
, pp. 1154-1168
-
-
Han, S.J.1
Glatman Zaretsky, A.2
Andrade-Oliveira, V.3
-
12
-
-
0031587875
-
Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice
-
Maraskovsky E, O'Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice. Cell. 1997;89:1011-1019.
-
(1997)
Cell
, vol.89
, pp. 1011-1019
-
-
Maraskovsky, E.1
O'Reilly, L.A.2
Teepe, M.3
Corcoran, L.M.4
Peschon, J.J.5
Strasser, A.6
-
13
-
-
0035892899
-
IL-7 enhances the survival and maintains the size of naive T cells
-
Rathmell JC, Farkash EA, Gao W, Thompson CB. IL-7 enhances the survival and maintains the size of naive T cells. J Immunol. 2001;167:6869-6876.
-
(2001)
J Immunol
, vol.167
, pp. 6869-6876
-
-
Rathmell, J.C.1
Farkash, E.A.2
Gao, W.3
Thompson, C.B.4
-
14
-
-
0035902513
-
IL-7 is critical for homeostatic proliferation and survival of naive T cells
-
Tan JT, Dudl E, LeRoy E, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA. 2001;98:8732-8737.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 8732-8737
-
-
Tan, J.T.1
Dudl, E.2
LeRoy, E.3
-
15
-
-
0033136288
-
Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors
-
Pallard C, Stegmann AP, van Kleffens T, Smart F, Venkitaraman A, Spits H. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity. 1999;10:525-535.
-
(1999)
Immunity
, vol.10
, pp. 525-535
-
-
Pallard, C.1
Stegmann, A.P.2
van Kleffens, T.3
Smart, F.4
Venkitaraman, A.5
Spits, H.6
-
16
-
-
0030587823
-
IL-15 stimulates the expansion of AIDS virus-specific CTL
-
Kanai T, Thomas EK, Yasutomi Y, Letvin NL. IL-15 stimulates the expansion of AIDS virus-specific CTL. J Immunol. 1996;157:3681-3687.
-
(1996)
J Immunol
, vol.157
, pp. 3681-3687
-
-
Kanai, T.1
Thomas, E.K.2
Yasutomi, Y.3
Letvin, N.L.4
-
17
-
-
0032211699
-
IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation
-
Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998;9:669-676.
-
(1998)
Immunity
, vol.9
, pp. 669-676
-
-
Lodolce, J.P.1
Boone, D.L.2
Chai, S.3
-
20
-
-
27744519400
-
Fuel feeds function: energy metabolism and the T-cell response
-
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844-852.
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 844-852
-
-
Fox, C.J.1
Hammerman, P.S.2
Thompson, C.B.3
-
21
-
-
0033635249
-
In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability
-
Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell. 2000;6:683-692.
-
(2000)
Mol Cell
, vol.6
, pp. 683-692
-
-
Rathmell, J.C.1
Vander Heiden, M.G.2
Harris, M.H.3
Frauwirth, K.A.4
Thompson, C.B.5
-
22
-
-
0034904776
-
Growth factors can influence cell growth and survival through effects on glucose metabolism
-
Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001;21:5899-5912.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 5899-5912
-
-
Vander Heiden, M.G.1
Plas, D.R.2
Rathmell, J.C.3
Fox, C.J.4
Harris, M.H.5
Thompson, C.B.6
-
23
-
-
0021270340
-
Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat
-
Ardawi MS, Newsholme EA. Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat. Biochem J. 1984;221:255-260.
-
(1984)
Biochem J
, vol.221
, pp. 255-260
-
-
Ardawi, M.S.1
Newsholme, E.A.2
-
24
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871-882.
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
-
26
-
-
84999264542
-
Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells
-
Angela M, Endo Y, Asou HK, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells. Nat Commun. 2016;7:13683.
-
(2016)
Nat Commun
, vol.7
, pp. 13683
-
-
Angela, M.1
Endo, Y.2
Asou, H.K.3
-
27
-
-
34548014737
-
Revving the engine: signal transduction fuels T cell activation
-
Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27:173-178.
-
(2007)
Immunity
, vol.27
, pp. 173-178
-
-
Jones, R.G.1
Thompson, C.B.2
-
28
-
-
66249108601
-
Understanding the warburg effect: the metabolic requirements of cell proliferation
-
Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Heiden, M.G.V.1
Cantley, L.C.2
Thompson, C.B.3
-
29
-
-
0036170440
-
Activation and inhibition of lymphocytes by costimulation
-
Frauwirth KA, Thompson CB. Activation and inhibition of lymphocytes by costimulation. J Clin Invest. 2002;109:295-299.
-
(2002)
J Clin Invest
, vol.109
, pp. 295-299
-
-
Frauwirth, K.A.1
Thompson, C.B.2
-
30
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, Riley JL, Harris MH, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16:769-777.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
-
31
-
-
85003681016
-
Metabolic pathways in T cell activation and lineage differentiation
-
Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 2016;28:514-524.
-
(2016)
Semin Immunol
, vol.28
, pp. 514-524
-
-
Almeida, L.1
Lochner, M.2
Berod, L.3
Sparwasser, T.4
-
32
-
-
84885670616
-
Fueling immunity: insights into metabolism and lymphocyte function
-
Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.
-
(2013)
Science
, vol.342
, pp. 1242454
-
-
Pearce, E.L.1
Poffenberger, M.C.2
Chang, C.H.3
Jones, R.G.4
-
33
-
-
84904057246
-
The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
-
Macintyre AN, Gerriets VA, Nichols AG, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61-72.
-
(2014)
Cell Metab
, vol.20
, pp. 61-72
-
-
Macintyre, A.N.1
Gerriets, V.A.2
Nichols, A.G.3
-
34
-
-
84951276483
-
The cytotoxic T cell proteome and its shaping by the kinase mTOR
-
Hukelmann JL, Anderson KE, Sinclair LV, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17:104-112.
-
(2016)
Nat Immunol
, vol.17
, pp. 104-112
-
-
Hukelmann, J.L.1
Anderson, K.E.2
Sinclair, L.V.3
-
36
-
-
84885377829
-
The Warburg effect then and now: from cancer to inflammatory diseases
-
Palsson-McDermott EM, O'Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays. 2013;35:965-973.
-
(2013)
BioEssays
, vol.35
, pp. 965-973
-
-
Palsson-McDermott, E.M.1
O'Neill, L.A.2
-
37
-
-
84878831880
-
Posttranscriptional control of T cell effector function by aerobic glycolysis
-
Chang CH, Curtis JD, Maggi LB Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153:1239-1251.
-
(2013)
Cell
, vol.153
, pp. 1239-1251
-
-
Chang, C.H.1
Curtis, J.D.2
Maggi, L.B.3
-
38
-
-
0027960973
-
Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production
-
Greiner EF, Guppy M, Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem. 1994;269:31484-31490.
-
(1994)
J Biol Chem
, vol.269
, pp. 31484-31490
-
-
Greiner, E.F.1
Guppy, M.2
Brand, K.3
-
39
-
-
84874242919
-
Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
-
Sena LA, Li S, Jairaman A, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38:225-236.
-
(2013)
Immunity
, vol.38
, pp. 225-236
-
-
Sena, L.A.1
Li, S.2
Jairaman, A.3
-
40
-
-
85020251212
-
Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation
-
e1257
-
Tarasenko TN, Pacheco SE, Koenig MK, et al. Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metab. 2017;25:1254-1268; e1257.
-
(2017)
Cell Metab
, vol.25
, pp. 1254-1268
-
-
Tarasenko, T.N.1
Pacheco, S.E.2
Koenig, M.K.3
-
41
-
-
84992389978
-
Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation
-
Ron-Harel N, Santos D, Ghergurovich JM, et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 2016;24:104-117.
-
(2016)
Cell Metab
, vol.24
, pp. 104-117
-
-
Ron-Harel, N.1
Santos, D.2
Ghergurovich, J.M.3
-
42
-
-
84992579961
-
Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription
-
Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci. 2016;41:712-730.
-
(2016)
Trends Biochem Sci
, vol.41
, pp. 712-730
-
-
Boukouris, A.E.1
Zervopoulos, S.D.2
Michelakis, E.D.3
-
43
-
-
85014844261
-
mTOR signaling in growth, metabolism, and disease
-
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960-976.
-
(2017)
Cell
, vol.168
, pp. 960-976
-
-
Saxton, R.A.1
Sabatini, D.M.2
-
44
-
-
84865301337
-
mTOR, metabolism, and the regulation of T-cell differentiation and function
-
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 2012;249:43-58.
-
(2012)
Immunol Rev
, vol.249
, pp. 43-58
-
-
Waickman, A.T.1
Powell, J.D.2
-
46
-
-
84929008302
-
mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation
-
Pollizzi KN, Patel CH, Sun IH, et al. mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest. 2015;125:2090-2108.
-
(2015)
J Clin Invest
, vol.125
, pp. 2090-2108
-
-
Pollizzi, K.N.1
Patel, C.H.2
Sun, I.H.3
-
47
-
-
74649085700
-
The mTOR kinase determines effector versus memory CD8 + T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
-
Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8 + T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 2010;32:67-78.
-
(2010)
Immunity
, vol.32
, pp. 67-78
-
-
Rao, R.R.1
Li, Q.2
Odunsi, K.3
Shrikant, P.A.4
-
48
-
-
84860237060
-
Regulation and function of mTOR signalling in T cell fate decisions
-
Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 2012;12:325-338.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 325-338
-
-
Chi, H.1
-
49
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12:295-303.
-
(2011)
Nat Immunol
, vol.12
, pp. 295-303
-
-
Delgoffe, G.M.1
Pollizzi, K.N.2
Waickman, A.T.3
-
50
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010;33:301-311.
-
(2010)
Immunity
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
51
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832-844.
-
(2009)
Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
-
52
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming DW, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335:1638-1643.
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
Ye, L.2
Katajisto, P.3
-
53
-
-
84871861969
-
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8 + T cells
-
Finlay DK, Rosenzweig E, Sinclair LV, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8 + T cells. J Exp Med. 2012;209:2441-2453.
-
(2012)
J Exp Med
, vol.209
, pp. 2441-2453
-
-
Finlay, D.K.1
Rosenzweig, E.2
Sinclair, L.V.3
-
54
-
-
84886672916
-
Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen
-
Doedens AL, Phan AT, Stradner MH, et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol. 2013;14:1173-1182.
-
(2013)
Nat Immunol
, vol.14
, pp. 1173-1182
-
-
Doedens, A.L.1
Phan, A.T.2
Stradner, M.H.3
-
55
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171-183.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
-
56
-
-
84903277871
-
Integrating canonical and metabolic signalling programmes in the regulation of T cell responses
-
Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol. 2014;14:435-446.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 435-446
-
-
Pollizzi, K.N.1
Powell, J.D.2
-
57
-
-
84949097681
-
Hypoxia-inducible factors regulate T cell metabolism and function
-
Phan AT, Goldrath AW. Hypoxia-inducible factors regulate T cell metabolism and function. Mol Immunol. 2015;68:527-535.
-
(2015)
Mol Immunol
, vol.68
, pp. 527-535
-
-
Phan, A.T.1
Goldrath, A.W.2
-
58
-
-
79951745387
-
Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism
-
Macintyre AN, Finlay D, Preston G, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity. 2011;34:224-236.
-
(2011)
Immunity
, vol.34
, pp. 224-236
-
-
Macintyre, A.N.1
Finlay, D.2
Preston, G.3
-
60
-
-
84867099976
-
Expanding roles for SREBP in metabolism
-
Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab. 2012;16:414-419.
-
(2012)
Cell Metab
, vol.16
, pp. 414-419
-
-
Shao, W.1
Espenshade, P.J.2
-
61
-
-
84876684375
-
Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
-
Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14:489-499.
-
(2013)
Nat Immunol
, vol.14
, pp. 489-499
-
-
Kidani, Y.1
Elsaesser, H.2
Hock, M.B.3
-
62
-
-
84922080059
-
De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
-
Berod L, Friedrich C, Nandan A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327-1333.
-
(2014)
Nat Med
, vol.20
, pp. 1327-1333
-
-
Berod, L.1
Friedrich, C.2
Nandan, A.3
-
63
-
-
84897505811
-
Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity
-
Lee J, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-3199.
-
(2014)
J Immunol
, vol.192
, pp. 3190-3199
-
-
Lee, J.1
Walsh, M.C.2
Hoehn, K.L.3
James, D.E.4
Wherry, E.J.5
Choi, Y.6
-
64
-
-
84947017066
-
Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1
-
Endo Y, Asou HK, Matsugae N, et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 2015;12:1042-1055.
-
(2015)
Cell Rep
, vol.12
, pp. 1042-1055
-
-
Endo, Y.1
Asou, H.K.2
Matsugae, N.3
-
65
-
-
85045001662
-
De novo fatty acid synthesis during mycobacterial infection is a prerequisite for the function of highly proliferative T cells, but not for dendritic cells or macrophages
-
Stüve P, Minarrieta L, Erdmann H, et al. De novo fatty acid synthesis during mycobacterial infection is a prerequisite for the function of highly proliferative T cells, but not for dendritic cells or macrophages. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00495
-
(2018)
Front Immunol
-
-
Stüve, P.1
Minarrieta, L.2
Erdmann, H.3
-
66
-
-
84964267895
-
Fatty acid metabolism in the regulation of T cell function
-
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36:81-91.
-
(2015)
Trends Immunol
, vol.36
, pp. 81-91
-
-
Lochner, M.1
Berod, L.2
Sparwasser, T.3
-
67
-
-
66349099340
-
Fatty acid metabolism: target for metabolic syndrome
-
Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138-S143.
-
(2009)
J Lipid Res
, vol.50
, pp. S138-S143
-
-
Wakil, S.J.1
Abu-Elheiga, L.A.2
-
68
-
-
84985991676
-
Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease
-
Raha S, Raud B, Oberdorfer L, et al. Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease. Eur J Immunol. 2016;46:2233-2238.
-
(2016)
Eur J Immunol
, vol.46
, pp. 2233-2238
-
-
Raha, S.1
Raud, B.2
Oberdorfer, L.3
-
69
-
-
85015216648
-
Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism
-
Pan Y, Tian T, Park CO, et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 2017;543:252-256.
-
(2017)
Nature
, vol.543
, pp. 252-256
-
-
Pan, Y.1
Tian, T.2
Park, C.O.3
-
70
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of CD8 + T cell memory development
-
van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8 + T cell memory development. Immunity. 2012;36:68-78.
-
(2012)
Immunity
, vol.36
, pp. 68-78
-
-
van der Windt, G.J.1
Everts, B.2
Chang, C.H.3
-
71
-
-
84883423963
-
CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
-
van der Windt GJ, O'Sullivan D, Everts B, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci USA. 2013;110:14336-14341.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 14336-14341
-
-
van der Windt, G.J.1
O'Sullivan, D.2
Everts, B.3
-
72
-
-
67650074206
-
mTOR regulates memory CD8 T-cell differentiation
-
Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009;460:108-112.
-
(2009)
Nature
, vol.460
, pp. 108-112
-
-
Araki, K.1
Turner, A.P.2
Shaffer, V.O.3
-
73
-
-
84906221604
-
Serine-threonine kinases in TCR signaling
-
Navarro MN, Cantrell DA. Serine-threonine kinases in TCR signaling. Nat Immunol. 2014;15:808-814.
-
(2014)
Nat Immunol
, vol.15
, pp. 808-814
-
-
Navarro, M.N.1
Cantrell, D.A.2
-
74
-
-
79956142389
-
Characterization of the metabolic phenotype of rapamycin-treated CD8 + T cells with augmented ability to generate long-lasting memory cells
-
He S, Kato K, Jiang J, et al. Characterization of the metabolic phenotype of rapamycin-treated CD8 + T cells with augmented ability to generate long-lasting memory cells. PLoS ONE. 2011;6:e20107.
-
(2011)
PLoS ONE
, vol.6
-
-
He, S.1
Kato, K.2
Jiang, J.3
-
75
-
-
84907886513
-
Tsc1 promotes the differentiation of memory CD8 + T cells via orchestrating the transcriptional and metabolic programs
-
Shrestha S, Yang K, Wei J, Karmaus PW, Neale G, Chi H. Tsc1 promotes the differentiation of memory CD8 + T cells via orchestrating the transcriptional and metabolic programs. Proc Natl Acad Sci USA. 2014;111:14858-14863.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 14858-14863
-
-
Shrestha, S.1
Yang, K.2
Wei, J.3
Karmaus, P.W.4
Neale, G.5
Chi, H.6
-
76
-
-
33947730608
-
Asymmetric T lymphocyte division in the initiation of adaptive immune responses
-
Chang JT, Palanivel VR, Kinjyo I, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science. 2007;315:1687-1691.
-
(2007)
Science
, vol.315
, pp. 1687-1691
-
-
Chang, J.T.1
Palanivel, V.R.2
Kinjyo, I.3
-
77
-
-
84963525930
-
Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation
-
Pollizzi KN, Sun IH, Patel CH, et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat Immunol. 2016;17:704-711.
-
(2016)
Nat Immunol
, vol.17
, pp. 704-711
-
-
Pollizzi, K.N.1
Sun, I.H.2
Patel, C.H.3
-
78
-
-
84964527036
-
Metabolic maintenance of cell asymmetry following division in activated T lymphocytes
-
Verbist KC, Guy CS, Milasta S, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature. 2016;532:389-393.
-
(2016)
Nature
, vol.532
, pp. 389-393
-
-
Verbist, K.C.1
Guy, C.S.2
Milasta, S.3
-
79
-
-
84957963858
-
Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner
-
Zhang L, Tschumi BO, Lopez-Mejia IC, et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep. 2016;14:1206-1217.
-
(2016)
Cell Rep
, vol.14
, pp. 1206-1217
-
-
Zhang, L.1
Tschumi, B.O.2
Lopez-Mejia, I.C.3
-
80
-
-
79151486083
-
Metabolism, migration and memory in cytotoxic T cells
-
Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol. 2011;11:109-117.
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 109-117
-
-
Finlay, D.1
Cantrell, D.A.2
-
81
-
-
84863344634
-
Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation
-
Rao RR, Li Q, Gubbels Bupp MR, Shrikant PA. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity. 2012;36:374-387.
-
(2012)
Immunity
, vol.36
, pp. 374-387
-
-
Rao, R.R.1
Li, Q.2
Gubbels Bupp, M.R.3
Shrikant, P.A.4
-
82
-
-
84879610438
-
FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory
-
Tejera MM, Kim EH, Sullivan JA, Plisch EH, Suresh M. FoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory. J Immunol. 2013;191:187-199.
-
(2013)
J Immunol
, vol.191
, pp. 187-199
-
-
Tejera, M.M.1
Kim, E.H.2
Sullivan, J.A.3
Plisch, E.H.4
Suresh, M.5
-
83
-
-
85018350259
-
Wong AH-T, Jones RG. The role of AMPK in T cell metabolism and function
-
Ma EH, Poffenberger MC. Wong AH-T, Jones RG. The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 2017;46:45-52.
-
(2017)
Curr Opin Immunol
, vol.46
, pp. 45-52
-
-
Ma, E.H.1
Poffenberger, M.C.2
-
84
-
-
85041140494
-
AMPK: guardian of metabolism and mitochondrial homeostasis
-
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121-135.
-
(2018)
Nat Rev Mol Cell Biol
, vol.19
, pp. 121-135
-
-
Herzig, S.1
Shaw, R.J.2
-
85
-
-
10944247187
-
The AMP-activated protein kinase pathway–new players upstream and downstream
-
Hardie DG. The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci. 2004;117:5479-5487.
-
(2004)
J Cell Sci
, vol.117
, pp. 5479-5487
-
-
Hardie, D.G.1
-
86
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251-262.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
87
-
-
20844451123
-
AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1:15-25.
-
(2005)
Cell Metab
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
Alquier, T.2
Carling, D.3
Hardie, D.G.4
-
88
-
-
67749111502
-
The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9:563-575.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
89
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016-1023.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
90
-
-
80054726323
-
The liver kinase B1 is a central regulator of T cell development, activation, and metabolism
-
MacIver NJ, Blagih J, Saucillo DC, et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol. 2011;187:4187-4198.
-
(2011)
J Immunol
, vol.187
, pp. 4187-4198
-
-
MacIver, N.J.1
Blagih, J.2
Saucillo, D.C.3
-
91
-
-
73849112608
-
The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression
-
Cao Y, Li H, Liu H, Zheng C, Ji H, Liu X. The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res. 2010;20:99-108.
-
(2010)
Cell Res
, vol.20
, pp. 99-108
-
-
Cao, Y.1
Li, H.2
Liu, H.3
Zheng, C.4
Ji, H.5
Liu, X.6
-
92
-
-
74249122511
-
LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells
-
Tamas P, Macintyre A, Finlay D, et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol. 2010;40:242-253.
-
(2010)
Eur J Immunol
, vol.40
, pp. 242-253
-
-
Tamas, P.1
Macintyre, A.2
Finlay, D.3
-
93
-
-
84921309472
-
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
-
Blagih J, Coulombe F, Vincent EE, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41-54.
-
(2015)
Immunity
, vol.42
, pp. 41-54
-
-
Blagih, J.1
Coulombe, F.2
Vincent, E.E.3
-
94
-
-
44849141880
-
AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
-
Mayer A, Denanglaire S, Viollet B, Leo O, Andris F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol. 2008;38:948-956.
-
(2008)
Eur J Immunol
, vol.38
, pp. 948-956
-
-
Mayer, A.1
Denanglaire, S.2
Viollet, B.3
Leo, O.4
Andris, F.5
-
95
-
-
84876454059
-
AMPKalpha1: a glucose sensor that controls CD8 T-cell memory
-
Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol. 2013;43:889-896.
-
(2013)
Eur J Immunol
, vol.43
, pp. 889-896
-
-
Rolf, J.1
Zarrouk, M.2
Finlay, D.K.3
Foretz, M.4
Viollet, B.5
Cantrell, D.A.6
-
96
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91-99.
-
(2004)
Cancer Cell
, vol.6
, pp. 91-99
-
-
Shaw, R.J.1
Bardeesy, N.2
Manning, B.D.3
-
97
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214-226.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
98
-
-
0035970805
-
Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
-
Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001;291:2613-2616.
-
(2001)
Science
, vol.291
, pp. 2613-2616
-
-
Abu-Elheiga, L.1
Matzuk, M.M.2
Abo-Hashema, K.A.3
Wakil, S.J.4
-
99
-
-
0034652297
-
The subcellular localization of acetyl-CoA carboxylase 2
-
Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci USA. 2000;97:1444-1449.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 1444-1449
-
-
Abu-Elheiga, L.1
Brinkley, W.R.2
Zhong, L.3
Chirala, S.S.4
Woldegiorgis, G.5
Wakil, S.J.6
-
100
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132-141.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
101
-
-
84911103917
-
Autophagy is essential for effector CD8(+) T cell survival and memory formation
-
Xu X, Araki K, Li S, et al. Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol. 2014;15:1152-1161.
-
(2014)
Nat Immunol
, vol.15
, pp. 1152-1161
-
-
Xu, X.1
Araki, K.2
Li, S.3
-
102
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
-
103
-
-
84872667668
-
AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity
-
O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol. 2013;366:135-151.
-
(2013)
Mol Cell Endocrinol
, vol.366
, pp. 135-151
-
-
O'Neill, H.M.1
Holloway, G.P.2
Steinberg, G.R.3
-
104
-
-
84904764021
-
AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice
-
O'Neill HM, Lally JS, Galic S, et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia. 2014;57:1693-1702.
-
(2014)
Diabetologia
, vol.57
, pp. 1693-1702
-
-
O'Neill, H.M.1
Lally, J.S.2
Galic, S.3
-
105
-
-
84889887123
-
Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
-
Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19:1649-1654.
-
(2013)
Nat Med
, vol.19
, pp. 1649-1654
-
-
Fullerton, M.D.1
Galic, S.2
Marcinko, K.3
-
106
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460:103-107.
-
(2009)
Nature
, vol.460
, pp. 103-107
-
-
Pearce, E.L.1
Walsh, M.C.2
Cejas, P.J.3
-
107
-
-
84876758617
-
Metabolic pathways in immune cell activation and quiescence
-
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633-643.
-
(2013)
Immunity
, vol.38
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
109
-
-
84931030791
-
Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system
-
Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015;266:72-92.
-
(2015)
Immunol Rev
, vol.266
, pp. 72-92
-
-
Walsh, M.C.1
Lee, J.2
Choi, Y.3
-
110
-
-
0033561039
-
TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
-
Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015-1024.
-
(1999)
Genes Dev
, vol.13
, pp. 1015-1024
-
-
Lomaga, M.A.1
Yeh, W.C.2
Sarosi, I.3
-
111
-
-
33748460821
-
TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis
-
King CG, Kobayashi T, Cejas PJ, et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med. 2006;12:1088-1092.
-
(2006)
Nat Med
, vol.12
, pp. 1088-1092
-
-
King, C.G.1
Kobayashi, T.2
Cejas, P.J.3
-
112
-
-
84907495015
-
IL-18 synergizes with IL-7 to drive slow proliferation of naive CD8 T cells by costimulating self-peptide-mediated TCR signals
-
Walsh MC, Pearce EL, Cejas PJ, Lee J, Wang LS, Choi Y. IL-18 synergizes with IL-7 to drive slow proliferation of naive CD8 T cells by costimulating self-peptide-mediated TCR signals. J Immunol. 2014;193:3992-4001.
-
(2014)
J Immunol
, vol.193
, pp. 3992-4001
-
-
Walsh, M.C.1
Pearce, E.L.2
Cejas, P.J.3
Lee, J.4
Wang, L.S.5
Choi, Y.6
-
113
-
-
84919615360
-
Metformin: from mechanisms of action to therapies
-
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953-966.
-
(2014)
Cell Metab
, vol.20
, pp. 953-966
-
-
Foretz, M.1
Guigas, B.2
Bertrand, L.3
Pollak, M.4
Viollet, B.5
-
115
-
-
84939612531
-
Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
-
Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS ONE. 2014;9:e106710.
-
(2014)
PLoS ONE
, vol.9
-
-
Zarrouk, M.1
Finlay, D.K.2
Foretz, M.3
Viollet, B.4
Cantrell, D.A.5
-
116
-
-
0001105243
-
Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine
-
Fritz IB, Yue KT. Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J Lipid Res. 1963;4:279-288.
-
(1963)
J Lipid Res
, vol.4
, pp. 279-288
-
-
Fritz, I.B.1
Yue, K.T.2
-
117
-
-
4444307033
-
Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects
-
Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25:495-520.
-
(2004)
Mol Aspects Med
, vol.25
, pp. 495-520
-
-
Bonnefont, J.P.1
Djouadi, F.2
Prip-Buus, C.3
Gobin, S.4
Munnich, A.5
Bastin, J.6
-
118
-
-
79956326256
-
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
-
Zaugg K, Yao Y, Reilly PT, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25:1041-1051.
-
(2011)
Genes Dev
, vol.25
, pp. 1041-1051
-
-
Zaugg, K.1
Yao, Y.2
Reilly, P.T.3
-
119
-
-
84953850240
-
Carnitine palmitoyltransferase 1C: from cognition to cancer
-
Casals N, Zammit V, Herrero L, Fadó R, Rodríguez-Rodríguez R, Serra D. Carnitine palmitoyltransferase 1C: from cognition to cancer. Prog Lipid Res. 2016;61:134-148.
-
(2016)
Prog Lipid Res
, vol.61
, pp. 134-148
-
-
Casals, N.1
Zammit, V.2
Herrero, L.3
Fadó, R.4
Rodríguez-Rodríguez, R.5
Serra, D.6
-
120
-
-
43749088942
-
CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity
-
Sierra AY, Gratacos E, Carrasco P, et al. CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem. 2008;283:6878-6885.
-
(2008)
J Biol Chem
, vol.283
, pp. 6878-6885
-
-
Sierra, A.Y.1
Gratacos, E.2
Carrasco, P.3
-
121
-
-
85017166008
-
Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer
-
Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7:e2226.
-
(2016)
Cell Death Dis
, vol.7
-
-
Qu, Q.1
Zeng, F.2
Liu, X.3
Wang, Q.J.4
Deng, F.5
-
122
-
-
0842287450
-
Mitochondrial beta-oxidation
-
Bartlett K, Eaton S. Mitochondrial beta-oxidation. Eur J Biochem. 2004;271:462-469.
-
(2004)
Eur J Biochem
, vol.271
, pp. 462-469
-
-
Bartlett, K.1
Eaton, S.2
-
123
-
-
84875465199
-
Cancer metabolism: fatty acid oxidation in the limelight
-
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227-232.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 227-232
-
-
Carracedo, A.1
Cantley, L.C.2
Pandolfi, P.P.3
-
124
-
-
77957608608
-
A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation
-
Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33:469-477.
-
(2010)
J Inherit Metab Dis
, vol.33
, pp. 469-477
-
-
Houten, S.M.1
Wanders, R.J.2
-
125
-
-
0042337449
-
Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets
-
Abu-Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA. 2003;100:10207-10212.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 10207-10212
-
-
Abu-Elheiga, L.1
Oh, W.2
Kordari, P.3
Wakil, S.J.4
-
126
-
-
84947427657
-
Acetyl CoA carboxylase 2 is dispensable for CD8 + T cell responses
-
Lee JE, Walsh MC, Hoehn KL, James DE, Wherry EJ, Choi Y. Acetyl CoA carboxylase 2 is dispensable for CD8 + T cell responses. PLoS ONE. 2015;10:e0137776.
-
(2015)
PLoS ONE
, vol.10
-
-
Lee, J.E.1
Walsh, M.C.2
Hoehn, K.L.3
James, D.E.4
Wherry, E.J.5
Choi, Y.6
-
127
-
-
33846005164
-
Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth
-
Deberardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem. 2006;281:37372-37380.
-
(2006)
J Biol Chem
, vol.281
, pp. 37372-37380
-
-
Deberardinis, R.J.1
Lum, J.J.2
Thompson, C.B.3
-
128
-
-
84885055994
-
Inhibiting glycolytic metabolism enhances CD8 + T cell memory and antitumor function
-
Sukumar M, Liu J, Ji Y, et al. Inhibiting glycolytic metabolism enhances CD8 + T cell memory and antitumor function. J Clin Invest. 2013;123:4479-4488.
-
(2013)
J Clin Invest
, vol.123
, pp. 4479-4488
-
-
Sukumar, M.1
Liu, J.2
Ji, Y.3
-
129
-
-
2942623933
-
Initial antigen encounter programs CD8 + T cells competent to develop into memory cells that are activated in an antigen-free, IL-7- and IL-15-rich environment
-
Carrio R, Bathe OF, Malek TR. Initial antigen encounter programs CD8 + T cells competent to develop into memory cells that are activated in an antigen-free, IL-7- and IL-15-rich environment. J Immunol. 2004;172:7315-7323.
-
(2004)
J Immunol
, vol.172
, pp. 7315-7323
-
-
Carrio, R.1
Bathe, O.F.2
Malek, T.R.3
-
130
-
-
84904392273
-
Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
-
O'Sullivan D, van der Windt GJ, Huang SC, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41:75-88.
-
(2014)
Immunity
, vol.41
, pp. 75-88
-
-
O'Sullivan, D.1
van der Windt, G.J.2
Huang, S.C.3
-
134
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets
-
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J Immunol. 2011;186:3299-3303.
-
(2011)
J Immunol
, vol.186
, pp. 3299-3303
-
-
Michalek, R.D.1
Gerriets, V.A.2
Jacobs, S.R.3
-
135
-
-
13044277575
-
Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation
-
Kurtz DM, Rinaldo P, Rhead WJ, et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc Natl Acad Sci USA. 1998;95:15592-15597.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 15592-15597
-
-
Kurtz, D.M.1
Rinaldo, P.2
Rhead, W.J.3
-
136
-
-
0034782503
-
Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse
-
Cox KB, Hamm DA, Millington DS, et al. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum Mol Genet. 2001;10:2069-2077.
-
(2001)
Hum Mol Genet
, vol.10
, pp. 2069-2077
-
-
Cox, K.B.1
Hamm, D.A.2
Millington, D.S.3
-
137
-
-
85014013395
-
Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency–studies on treatment effects and long-term outcomes in mouse models
-
Tucci S. Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency–studies on treatment effects and long-term outcomes in mouse models. J Inherit Metab Dis. 2017;40:317-323.
-
(2017)
J Inherit Metab Dis
, vol.40
, pp. 317-323
-
-
Tucci, S.1
-
138
-
-
77957577200
-
Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models
-
Spiekerkoetter U, Wood PA. Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models. J Inherit Metab Dis. 2010;33:539-546.
-
(2010)
J Inherit Metab Dis
, vol.33
, pp. 539-546
-
-
Spiekerkoetter, U.1
Wood, P.A.2
-
139
-
-
26244431937
-
Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse
-
Nyman LR, Cox KB, Hoppel CL, et al. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse. Mol Genet Metab. 2005;86:179-187.
-
(2005)
Mol Genet Metab
, vol.86
, pp. 179-187
-
-
Nyman, L.R.1
Cox, K.B.2
Hoppel, C.L.3
-
140
-
-
33645655060
-
Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation
-
Bentebibel A, Sebastian D, Herrero L, et al. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation. Biochemistry. 2006;45:4339-4350.
-
(2006)
Biochemistry
, vol.45
, pp. 4339-4350
-
-
Bentebibel, A.1
Sebastian, D.2
Herrero, L.3
-
141
-
-
79955826359
-
Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research
-
Ceccarelli SM, Chomienne O, Gubler M, Arduini A. Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research. J Med Chem. 2011;54:3109-3152.
-
(2011)
J Med Chem
, vol.54
, pp. 3109-3152
-
-
Ceccarelli, S.M.1
Chomienne, O.2
Gubler, M.3
Arduini, A.4
-
142
-
-
0023655399
-
Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors
-
Declercq PE, Falck JR, Kuwajima M, Tyminski H, Foster DW, McGarry JD. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987;262:9812-9821.
-
(1987)
J Biol Chem
, vol.262
, pp. 9812-9821
-
-
Declercq, P.E.1
Falck, J.R.2
Kuwajima, M.3
Tyminski, H.4
Foster, D.W.5
McGarry, J.D.6
-
144
-
-
84976478216
-
Mitochondrial dynamics controls T cell fate through metabolic programming
-
Buck MD, O'Sullivan D, Klein Geltink RI, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63-76.
-
(2016)
Cell
, vol.166
, pp. 63-76
-
-
Buck, M.D.1
O'Sullivan, D.2
Klein Geltink, R.I.3
-
145
-
-
84906319549
-
Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
-
Huang SC, Everts B, Ivanova Y, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014;15:846-855.
-
(2014)
Nat Immunol
, vol.15
, pp. 846-855
-
-
Huang, S.C.1
Everts, B.2
Ivanova, Y.3
-
146
-
-
84962450023
-
Fatty acid oxidation in macrophage polarization
-
Nomura M, Liu J, Rovira II, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol. 2016;17:216-217.
-
(2016)
Nat Immunol
, vol.17
, pp. 216-217
-
-
Nomura, M.1
Liu, J.2
Rovira, I.I.3
-
147
-
-
0024262853
-
Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine
-
Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res. 1988;63:1036-1043.
-
(1988)
Circ Res
, vol.63
, pp. 1036-1043
-
-
Lopaschuk, G.D.1
Wall, S.R.2
Olley, P.M.3
Davies, N.J.4
-
148
-
-
0026530901
-
Effect of etomoxiryl-CoA on different carnitine acyltransferases
-
Lilly K, Chung C, Kerner J, VanRenterghem R, Bieber LL. Effect of etomoxiryl-CoA on different carnitine acyltransferases. Biochem Pharmacol. 1992;43:353-361.
-
(1992)
Biochem Pharmacol
, vol.43
, pp. 353-361
-
-
Lilly, K.1
Chung, C.2
Kerner, J.3
VanRenterghem, R.4
Bieber, L.L.5
-
149
-
-
84999751988
-
Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection
-
Phan AT, Doedens AL, Palazon A, et al. Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity. 2016;45:1024-1037.
-
(2016)
Immunity
, vol.45
, pp. 1024-1037
-
-
Phan, A.T.1
Doedens, A.L.2
Palazon, A.3
-
151
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155:160-171.
-
(2013)
Cell
, vol.155
, pp. 160-171
-
-
Cogliati, S.1
Frezza, C.2
Soriano, M.E.3
-
152
-
-
84999672289
-
VHL brings Warburg into the memory spotlight
-
Delgoffe GM. VHL brings Warburg into the memory spotlight. Immunity. 2016;45:953-955.
-
(2016)
Immunity
, vol.45
, pp. 953-955
-
-
Delgoffe, G.M.1
-
153
-
-
84971510696
-
Short- and medium-chain fatty acids in energy metabolism: the cellular perspective
-
Schonfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57:943-954.
-
(2016)
J Lipid Res
, vol.57
, pp. 943-954
-
-
Schonfeld, P.1
Wojtczak, L.2
-
154
-
-
0024439382
-
Effect of rectal infusion of short chain fatty acids in human subjects
-
Wolever TM, Brighenti F, Royall D, Jenkins AL, Jenkins DJ. Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterol. 1989;84:1027-1033.
-
(1989)
Am J Gastroenterol
, vol.84
, pp. 1027-1033
-
-
Wolever, T.M.1
Brighenti, F.2
Royall, D.3
Jenkins, A.L.4
Jenkins, D.J.5
-
155
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
-
156
-
-
84971268506
-
Memory CD8 + T cells require increased concentrations of acetate induced by stress for optimal function
-
Balmer ML, Ma EH, Bantug GR, et al. Memory CD8 + T cells require increased concentrations of acetate induced by stress for optimal function. Immunity. 2016;44:1312-1324.
-
(2016)
Immunity
, vol.44
, pp. 1312-1324
-
-
Balmer, M.L.1
Ma, E.H.2
Bantug, G.R.3
-
157
-
-
33745823168
-
Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2 + in T lymphocytes
-
Tamas P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2 + in T lymphocytes. J Exp Med. 2006;203:1665-1670.
-
(2006)
J Exp Med
, vol.203
, pp. 1665-1670
-
-
Tamas, P.1
Hawley, S.A.2
Clarke, R.G.3
-
158
-
-
84919496051
-
The role of fatty acid oxidation in the metabolic reprograming of activated T-cells
-
Byersdorfer CA. The role of fatty acid oxidation in the metabolic reprograming of activated T-cells. Front Immunol. 2014;5:641.
-
(2014)
Front Immunol
, vol.5
, pp. 641
-
-
Byersdorfer, C.A.1
-
159
-
-
85019417377
-
Biochemical underpinnings of immune cell metabolic phenotypes
-
Olenchock BA, Rathmell JC, Vander Heiden MG. Biochemical underpinnings of immune cell metabolic phenotypes. Immunity. 2017;46:703-713.
-
(2017)
Immunity
, vol.46
, pp. 703-713
-
-
Olenchock, B.A.1
Rathmell, J.C.2
Vander Heiden, M.G.3
-
160
-
-
84907200741
-
Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease
-
Glick GD, Rossignol R, Lyssiotis CA, et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J Pharmacol Exp Ther. 2014;351:298-307.
-
(2014)
J Pharmacol Exp Ther
, vol.351
, pp. 298-307
-
-
Glick, G.D.1
Rossignol, R.2
Lyssiotis, C.A.3
-
161
-
-
79251500689
-
Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease
-
Gatza E, Wahl DR, Opipari AW, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med. 2011;3:67ra68.
-
(2011)
Sci Transl Med
, vol.3
, pp. 67ra68
-
-
Gatza, E.1
Wahl, D.R.2
Opipari, A.W.3
-
162
-
-
84891607730
-
Effector T cells require fatty acid metabolism during murine graft-versus-host disease
-
Byersdorfer CA, Tkachev V, Opipari AW, et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood. 2013;122:3230-3237.
-
(2013)
Blood
, vol.122
, pp. 3230-3237
-
-
Byersdorfer, C.A.1
Tkachev, V.2
Opipari, A.W.3
-
163
-
-
79958244231
-
PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation
-
Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812:1007-1022.
-
(2011)
Biochim Biophys Acta
, vol.1812
, pp. 1007-1022
-
-
Varga, T.1
Czimmerer, Z.2
Nagy, L.3
-
164
-
-
84931431126
-
Programmed death-1 controls T cell survival by regulating oxidative metabolism
-
Tkachev V, Goodell S, Opipari AW, et al. Programmed death-1 controls T cell survival by regulating oxidative metabolism. J Immunol. 2015;194:5789-5800.
-
(2015)
J Immunol
, vol.194
, pp. 5789-5800
-
-
Tkachev, V.1
Goodell, S.2
Opipari, A.W.3
-
165
-
-
27144496045
-
CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
-
Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543-9553.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9543-9553
-
-
Parry, R.V.1
Chemnitz, J.M.2
Frauwirth, K.A.3
-
167
-
-
84925688346
-
PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
-
Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692.
-
(2015)
Nat Commun
, vol.6
, pp. 6692
-
-
Patsoukis, N.1
Bardhan, K.2
Chatterjee, P.3
-
168
-
-
84863448693
-
The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases
-
Choi JM, Bothwell AL. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells. 2012;33:217-222.
-
(2012)
Mol Cells
, vol.33
, pp. 217-222
-
-
Choi, J.M.1
Bothwell, A.L.2
-
169
-
-
74949089659
-
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
-
Samudio I, Harmancey R, Fiegl M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120:142-156.
-
(2010)
J Clin Invest
, vol.120
, pp. 142-156
-
-
Samudio, I.1
Harmancey, R.2
Fiegl, M.3
-
170
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661-665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
Chandel, N.S.2
Hay, N.3
-
171
-
-
79955601028
-
Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
-
Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta. 2011;1807:726-734.
-
(2011)
Biochim Biophys Acta
, vol.1807
, pp. 726-734
-
-
Pike, L.S.1
Smift, A.L.2
Croteau, N.J.3
Ferrick, D.A.4
Wu, M.5
-
172
-
-
84941876397
-
Metabolic functions of FABPs–mechanisms and therapeutic implications
-
Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11:592-605.
-
(2015)
Nat Rev Endocrinol
, vol.11
, pp. 592-605
-
-
Hotamisligil, G.S.1
Bernlohr, D.A.2
-
173
-
-
68349148211
-
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
-
Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15:930-939.
-
(2009)
Nat Med
, vol.15
, pp. 930-939
-
-
Feuerer, M.1
Herrero, L.2
Cipolletta, D.3
-
174
-
-
84862986986
-
PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells
-
Cipolletta D, Feuerer M, Li A, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486:549-553.
-
(2012)
Nature
, vol.486
, pp. 549-553
-
-
Cipolletta, D.1
Feuerer, M.2
Li, A.3
-
175
-
-
85018897784
-
Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries
-
Ho PC, Kaech SM. Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Curr Opin Immunol. 2017;46:38-44.
-
(2017)
Curr Opin Immunol
, vol.46
, pp. 38-44
-
-
Ho, P.C.1
Kaech, S.M.2
-
176
-
-
84961736633
-
Emerging concepts of T cell metabolism as a target of immunotherapy
-
Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol. 2016;17:364-368.
-
(2016)
Nat Immunol
, vol.17
, pp. 364-368
-
-
Chang, C.H.1
Pearce, E.L.2
-
177
-
-
84962506335
-
Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression
-
Zhang Y, Ertl HC. Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol. 2016;7:32.
-
(2016)
Front Immunol
, vol.7
, pp. 32
-
-
Zhang, Y.1
Ertl, H.C.2
-
178
-
-
84926514026
-
T cell metabolic fitness in antitumor immunity
-
Siska PJ, Rathmell JC. T cell metabolic fitness in antitumor immunity. Trends Immunol. 2015;36:257-264.
-
(2015)
Trends Immunol
, vol.36
, pp. 257-264
-
-
Siska, P.J.1
Rathmell, J.C.2
-
179
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
Chang CH, Qiu J, O'Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229-1241.
-
(2015)
Cell
, vol.162
, pp. 1229-1241
-
-
Chang, C.H.1
Qiu, J.2
O'Sullivan, D.3
-
180
-
-
34748912615
-
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
-
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763-777.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 763-777
-
-
Menendez, J.A.1
Lupu, R.2
-
181
-
-
85030419289
-
Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy
-
e379
-
Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32:377-391; e379.
-
(2017)
Cancer Cell
, vol.32
, pp. 377-391
-
-
Zhang, Y.1
Kurupati, R.2
Liu, L.3
-
182
-
-
85041491059
-
The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism
-
Kapnick SM, Pacheco SE, McGuire PJ. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabol Clin Exp. 2018;81:97-112.
-
(2018)
Metabol Clin Exp
, vol.81
, pp. 97-112
-
-
Kapnick, S.M.1
Pacheco, S.E.2
McGuire, P.J.3
-
183
-
-
0036216401
-
The otolaryngological manifestations of mitochondrial disease and the risk of neurodegeneration with infection
-
Edmonds JL, Kirse DJ, Kearns D, Deutsch R, Spruijt L, Naviaux RK. The otolaryngological manifestations of mitochondrial disease and the risk of neurodegeneration with infection. Arch Otolaryngol Head Neck Surg. 2002;128:355-362.
-
(2002)
Arch Otolaryngol Head Neck Surg
, vol.128
, pp. 355-362
-
-
Edmonds, J.L.1
Kirse, D.J.2
Kearns, D.3
Deutsch, R.4
Spruijt, L.5
Naviaux, R.K.6
-
184
-
-
33747606236
-
Fatal neonatal-onset mitochondrial respiratory chain disease with T cell immunodeficiency
-
Reichenbach J, Schubert R, Horvath R, et al. Fatal neonatal-onset mitochondrial respiratory chain disease with T cell immunodeficiency. Pediatr Res. 2006;60:321-326.
-
(2006)
Pediatr Res
, vol.60
, pp. 321-326
-
-
Reichenbach, J.1
Schubert, R.2
Horvath, R.3
-
185
-
-
84958618764
-
The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders
-
Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23-44.
-
(2016)
Annu Rev Physiol
, vol.78
, pp. 23-44
-
-
Houten, S.M.1
Violante, S.2
Ventura, F.V.3
Wanders, R.J.4
-
186
-
-
84888345135
-
Association of a genetic variant of carnitine palmitoyltransferase 1A with infections in Alaska Native children
-
Gessner BD, Gillingham MB, Wood T, Koeller DM. Association of a genetic variant of carnitine palmitoyltransferase 1A with infections in Alaska Native children. J Pediatr. 2013;163:1716-1721.
-
(2013)
J Pediatr
, vol.163
, pp. 1716-1721
-
-
Gessner, B.D.1
Gillingham, M.B.2
Wood, T.3
Koeller, D.M.4
-
187
-
-
85041289383
-
SIRT1 and HIF1alpha signaling in metabolism and immune responses
-
Yu Q, Dong L, Li Y, Liu G. SIRT1 and HIF1alpha signaling in metabolism and immune responses. Cancer Lett. 2018;418:20-26.
-
(2018)
Cancer Lett
, vol.418
, pp. 20-26
-
-
Yu, Q.1
Dong, L.2
Li, Y.3
Liu, G.4
-
188
-
-
85039962901
-
Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1
-
Jeng MY, Hull PA, Fei M, et al. Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1. J Exp Med. 2018;215:51-62.
-
(2018)
J Exp Med
, vol.215
, pp. 51-62
-
-
Jeng, M.Y.1
Hull, P.A.2
Fei, M.3
-
189
-
-
84930765209
-
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
-
Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581-590.
-
(2015)
Nat Med
, vol.21
, pp. 581-590
-
-
Long, A.H.1
Haso, W.M.2
Shern, J.F.3
-
190
-
-
85028732437
-
4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8(+) T cell proliferation
-
Choi BK, Lee DY, Lee DG, et al. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8(+) T cell proliferation. Cell Mol Immunol. 2017;14:748-757.
-
(2017)
Cell Mol Immunol
, vol.14
, pp. 748-757
-
-
Choi, B.K.1
Lee, D.Y.2
Lee, D.G.3
-
191
-
-
84958648353
-
Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells
-
Kawalekar OU, O'Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:380-390.
-
(2016)
Immunity
, vol.44
, pp. 380-390
-
-
Kawalekar, O.U.1
O'Connor, R.S.2
Fraietta, J.A.3
-
192
-
-
85034452613
-
Targeting immuno-metabolism to improve anti-cancer therapies
-
Beezhold K, Byersdorfer CA. Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Lett. 2018;414:127-135.
-
(2018)
Cancer Lett
, vol.414
, pp. 127-135
-
-
Beezhold, K.1
Byersdorfer, C.A.2
-
193
-
-
84904035279
-
Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential
-
Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142:517-525.
-
(2014)
Immunology
, vol.142
, pp. 517-525
-
-
Cipolletta, D.1
-
194
-
-
84892144705
-
Regulation of energy metabolism by long-chain fatty acids
-
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 2014;53:124-144.
-
(2014)
Prog Lipid Res
, vol.53
, pp. 124-144
-
-
Nakamura, M.T.1
Yudell, B.E.2
Loor, J.J.3
-
195
-
-
76449100708
-
PPARs: diverse regulators in energy metabolism and metabolic diseases
-
Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res. 2010;20:124-137.
-
(2010)
Cell Res
, vol.20
, pp. 124-137
-
-
Wang, Y.X.1
|