메뉴 건너뛰기




Volumn 41, Issue 8, 2016, Pages 712-730

Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription

Author keywords

epigenetic regulation; fuel and nutrient sensing; metabolic enzymes; nuclear translocation

Indexed keywords

6 PHOSPHOFRUCTOKINASE; ACETYL COENZYME A; ACONITATE HYDRATASE; ENOLASE; FRUCTOSE BISPHOSPHATE ALDOLASE; FUMARATE HYDRATASE; GLUCOSE 6 PHOSPHATE ISOMERASE; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROGENASE; HEXOKINASE; ISOCITRATE DEHYDROGENASE; LACTATE DEHYDROGENASE; MALATE DEHYDROGENASE; PHOSPHOGLYCERATE KINASE; PHOSPHOGLYCERATE MUTASE; PYRUVATE KINASE; SUCCINATE DEHYDROGENASE;

EID: 84992579961     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.05.013     Document Type: Review
Times cited : (214)

References (134)
  • 1
    • 0024095133 scopus 로고
    • Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical: a single-copy gene product with two distinct functions
    • 1 Hendriks, W., et al. Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical: a single-copy gene product with two distinct functions. Proc. Natl. Acad. Sci. U.S.A. 85 (1988), 7114–7118.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 7114-7118
    • Hendriks, W.1
  • 2
    • 77950369259 scopus 로고    scopus 로고
    • Moonlighting proteins: an intriguing mode of multitasking
    • 2 Huberts, D.H., van der Klei, I.J., Moonlighting proteins: an intriguing mode of multitasking. Biochim. Biophys. Acta. 1803 (2010), 520–525.
    • (2010) Biochim. Biophys. Acta. , vol.1803 , pp. 520-525
    • Huberts, D.H.1    van der Klei, I.J.2
  • 3
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • 3 Kaelin, W.G. Jr, McKnight, S.L., Influence of metabolism on epigenetics and disease. Cell 153 (2013), 56–69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 4
    • 0004026407 scopus 로고    scopus 로고
    • Lehninger: Principles of Biochemistry
    • W.H. Freeman and Company
    • 4 Nelson, D.L., Cox, M.M., Lehninger: Principles of Biochemistry. 2013, W.H. Freeman and Company.
    • (2013)
    • Nelson, D.L.1    Cox, M.M.2
  • 5
    • 84903954689 scopus 로고    scopus 로고
    • A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation
    • 5 Sutendra, G., et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158 (2014), 84–97.
    • (2014) Cell , vol.158 , pp. 84-97
    • Sutendra, G.1
  • 6
    • 84966264074 scopus 로고    scopus 로고
    • Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor
    • 6 Matsuda, S., et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 44 (2015), 636–647.
    • (2015) Nucleic Acids Res. , vol.44 , pp. 636-647
    • Matsuda, S.1
  • 7
    • 84865266173 scopus 로고    scopus 로고
    • PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis
    • 7 Yang, W., et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150 (2012), 685–696.
    • (2012) Cell , vol.150 , pp. 685-696
    • Yang, W.1
  • 8
    • 84908844389 scopus 로고
    • Studies on energy-yielding reactions in thymus nuclei. III. Participation of glycolysis and the citric acid cycle in nuclear adenosine triphosphate synthesis
    • 8 McEwen, B.S., et al. Studies on energy-yielding reactions in thymus nuclei. III. Participation of glycolysis and the citric acid cycle in nuclear adenosine triphosphate synthesis. J. Biol. Chem. 238 (1963), 2579–2586.
    • (1963) J. Biol. Chem. , vol.238 , pp. 2579-2586
    • McEwen, B.S.1
  • 9
    • 84948728359 scopus 로고
    • Bestimmung von Glykolyse-Metaboliten in isolierten Zellkernen
    • 9 Siebert, G., Bestimmung von Glykolyse-Metaboliten in isolierten Zellkernen. Experientia, 14, 1958, 449.
    • (1958) Experientia , vol.14 , pp. 449
    • Siebert, G.1
  • 11
    • 14744284637 scopus 로고    scopus 로고
    • Multifaceted roles of glycolytic enzymes
    • 11 Kim, J.W., Dang, C.V., Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 30 (2005), 142–150.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 142-150
    • Kim, J.W.1    Dang, C.V.2
  • 12
    • 0014679076 scopus 로고
    • Glucose oxidation in nuclei isolated from frat thymus
    • 12 Konings, A.W., Glucose oxidation in nuclei isolated from frat thymus. Life Sci. 8 (1969), 1009–1016.
    • (1969) Life Sci. , vol.8 , pp. 1009-1016
    • Konings, A.W.1
  • 13
    • 0014678684 scopus 로고
    • On the dependence of nuclear oxidative phosphorylation on glycolysis in isolated rat thymus nuclei
    • 13 Konings, A.W., On the dependence of nuclear oxidative phosphorylation on glycolysis in isolated rat thymus nuclei. Experientia 25 (1969), 809–811.
    • (1969) Experientia , vol.25 , pp. 809-811
    • Konings, A.W.1
  • 14
    • 0034024476 scopus 로고    scopus 로고
    • The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells
    • 14 Guillemain, G., et al. The large intracytoplasmic loop of the glucose transporter GLUT2 is involved in glucose signaling in hepatic cells. J. Cell Sci. 113 (2000), 841–847.
    • (2000) J. Cell Sci. , vol.113 , pp. 841-847
    • Guillemain, G.1
  • 15
    • 0035081718 scopus 로고    scopus 로고
    • An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos
    • 15 Pantaleon, M., et al. An unusual subcellular localization of GLUT1 and link with metabolism in oocytes and preimplantation mouse embryos. Biol. Reprod. 64 (2001), 1247–1254.
    • (2001) Biol. Reprod. , vol.64 , pp. 1247-1254
    • Pantaleon, M.1
  • 16
    • 0041923828 scopus 로고    scopus 로고
    • + and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor
    • + and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 9202–9207.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 9202-9207
    • Fjeld, C.C.1
  • 17
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • 17 Rutter, J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293 (2001), 510–514.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1
  • 18
    • 84974712601 scopus 로고
    • The role of ceoxyribonucleic acid and other polynucleotides in ATP synthesis by isolated cell nuclei
    • 18 Allfrey, V.G., Mirsky, A.E., The role of ceoxyribonucleic acid and other polynucleotides in ATP synthesis by isolated cell nuclei. Proc. Natl. Acad. Sci. U.S.A. 43 (1957), 589–598.
    • (1957) Proc. Natl. Acad. Sci. U.S.A. , vol.43 , pp. 589-598
    • Allfrey, V.G.1    Mirsky, A.E.2
  • 19
    • 84992640283 scopus 로고    scopus 로고
    • ADP-ribose derived nuclear ATP is required for chromatin remodeling and hormonal gene regulation
    • Published online June 25, 2014
    • 19 Wright, R.H.G., et al. ADP-ribose derived nuclear ATP is required for chromatin remodeling and hormonal gene regulation. bioRxiv, 2014, 10.1101/006593 Published online June 25, 2014.
    • (2014) bioRxiv
    • Wright, R.H.G.1
  • 20
    • 66149123308 scopus 로고    scopus 로고
    • The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages
    • 20 Wolf, Y.I., et al. The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 7273–7280.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 7273-7280
    • Wolf, Y.I.1
  • 21
    • 0038714272 scopus 로고    scopus 로고
    • Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function
    • 21 Wilson, J.E., Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 206 (2003), 2049–2057.
    • (2003) J. Exp. Biol. , vol.206 , pp. 2049-2057
    • Wilson, J.E.1
  • 22
    • 0030953106 scopus 로고    scopus 로고
    • Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus
    • 22 Brown, K.S., et al. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46 (1997), 179–186.
    • (1997) Diabetes , vol.46 , pp. 179-186
    • Brown, K.S.1
  • 23
    • 84878248618 scopus 로고    scopus 로고
    • Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells
    • 23 Neary, C.L., Pastorino, J.G., Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells. J. Cell. Physiol. 228 (2013), 1943–1948.
    • (2013) J. Cell. Physiol. , vol.228 , pp. 1943-1948
    • Neary, C.L.1    Pastorino, J.G.2
  • 24
    • 77950861581 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of hexokinase II in a cancer cell
    • 24 Neary, C.L., Pastorino, J.G., Nucleocytoplasmic shuttling of hexokinase II in a cancer cell. Biochem. Biophys. Res. Commun. 394 (2010), 1075–1081.
    • (2010) Biochem. Biophys. Res. Commun. , vol.394 , pp. 1075-1081
    • Neary, C.L.1    Pastorino, J.G.2
  • 25
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • 25 Gancedo, J.M., Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62 (1998), 334–361.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 26
    • 24644488689 scopus 로고    scopus 로고
    • Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia
    • 26 Funasaka, T., et al. Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J. 19 (2005), 1422–1430.
    • (2005) FASEB J. , vol.19 , pp. 1422-1430
    • Funasaka, T.1
  • 27
    • 0030012538 scopus 로고    scopus 로고
    • Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide
    • 27 Watanabe, H., et al. Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 56 (1996), 2960–2963.
    • (1996) Cancer Res. , vol.56 , pp. 2960-2963
    • Watanabe, H.1
  • 28
    • 84929191992 scopus 로고    scopus 로고
    • Aerobic glycolysis tunes YAP/TAZ transcriptional activity
    • 28 Enzo, E., et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 34 (2015), 1349–1370.
    • (2015) EMBO J. , vol.34 , pp. 1349-1370
    • Enzo, E.1
  • 29
    • 69949122828 scopus 로고    scopus 로고
    • Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases
    • 29 Yalcin, A., et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J. Biol. Chem. 284 (2009), 24223–24232.
    • (2009) J. Biol. Chem. , vol.284 , pp. 24223-24232
    • Yalcin, A.1
  • 30
    • 84867425035 scopus 로고    scopus 로고
    • Control of glycolysis through regulation of PFK1: old friends and recent additions
    • 30 Mor, I., et al. Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb. Symp. Quant. Biol. 76 (2011), 211–216.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 211-216
    • Mor, I.1
  • 31
    • 84895989405 scopus 로고    scopus 로고
    • Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription
    • 31 Ciesla, M., et al. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. Biochim. Biophys. Acta 1843 (2014), 1103–1110.
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 1103-1110
    • Ciesla, M.1
  • 32
    • 0026502616 scopus 로고
    • Aldolase–DNA interactions in a SEWA cell system
    • 32 Ronai, Z., et al. Aldolase–DNA interactions in a SEWA cell system. Biochim. Biophys. Acta 1130 (1992), 20–28.
    • (1992) Biochim. Biophys. Acta , vol.1130 , pp. 20-28
    • Ronai, Z.1
  • 33
    • 0342264393 scopus 로고    scopus 로고
    • Subcellular localization of aldolase B
    • 33 Saez, D.E., Slebe, J.C., Subcellular localization of aldolase B. J. Cell. Biochem. 78 (2000), 62–72.
    • (2000) J. Cell. Biochem. , vol.78 , pp. 62-72
    • Saez, D.E.1    Slebe, J.C.2
  • 34
    • 84882796491 scopus 로고    scopus 로고
    • Nuclear localization of aldolase A correlates with cell proliferation
    • 34 Mamczur, P., et al. Nuclear localization of aldolase A correlates with cell proliferation. Biochim. Biophys. Acta 1833 (2013), 2812–2822.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2812-2822
    • Mamczur, P.1
  • 35
    • 84907272714 scopus 로고    scopus 로고
    • Fructose-1,6-bisphosphatase opposes renal carcinoma progression
    • 35 Li, B., et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513 (2014), 251–255.
    • (2014) Nature , vol.513 , pp. 251-255
    • Li, B.1
  • 36
    • 22144477159 scopus 로고    scopus 로고
    • S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding
    • 36 Hara, M.R., et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7 (2005), 665–674.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 665-674
    • Hara, M.R.1
  • 37
    • 63249102297 scopus 로고    scopus 로고
    • Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy
    • 37 Kanwar, M., Kowluru, R.A., Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes 58 (2009), 227–234.
    • (2009) Diabetes , vol.58 , pp. 227-234
    • Kanwar, M.1    Kowluru, R.A.2
  • 38
    • 77449121531 scopus 로고    scopus 로고
    • Siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells
    • 38 Yego, E.C., Mohr, S., Siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J. Biol. Chem. 285 (2010), 3181–3190.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3181-3190
    • Yego, E.C.1    Mohr, S.2
  • 39
    • 0041352962 scopus 로고    scopus 로고
    • S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component
    • 39 Zheng, L., et al. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114 (2003), 255–266.
    • (2003) Cell , vol.114 , pp. 255-266
    • Zheng, L.1
  • 40
    • 1242294390 scopus 로고    scopus 로고
    • Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase
    • 40 Sundararaj, K.P., et al. Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 279 (2004), 6152–6162.
    • (2004) J. Biol. Chem. , vol.279 , pp. 6152-6162
    • Sundararaj, K.P.1
  • 41
    • 0025917329 scopus 로고
    • Immunoelectron microscopic analysis of the intracellular distribution of primer recognition proteins, annexin 2 and phosphoglycerate kinase, in normal and transformed cells
    • 41 Kumble, K.D., Vishwanatha, J.K., Immunoelectron microscopic analysis of the intracellular distribution of primer recognition proteins, annexin 2 and phosphoglycerate kinase, in normal and transformed cells. J. Cell. Sci. 99 (1991), 751–758.
    • (1991) J. Cell. Sci. , vol.99 , pp. 751-758
    • Kumble, K.D.1    Vishwanatha, J.K.2
  • 42
    • 0032053510 scopus 로고    scopus 로고
    • Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase
    • 42 Popanda, O., et al. Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim. Biophys. Acta 1397 (1998), 102–117.
    • (1998) Biochim. Biophys. Acta , vol.1397 , pp. 102-117
    • Popanda, O.1
  • 43
    • 0026569278 scopus 로고
    • Nuclear location of phosphoglycerate mutase BB isozyme in rat tissues
    • 43 Egea, G., et al. Nuclear location of phosphoglycerate mutase BB isozyme in rat tissues. Histochemistry 97 (1992), 269–275.
    • (1992) Histochemistry , vol.97 , pp. 269-275
    • Egea, G.1
  • 44
    • 43749108808 scopus 로고    scopus 로고
    • Assignment and expression patterns of porcine muscle-specific isoform of phosphoglycerate mutase gene
    • 44 Qiu, H., et al. Assignment and expression patterns of porcine muscle-specific isoform of phosphoglycerate mutase gene. J. Genet. Genomics 35 (2008), 257–260.
    • (2008) J. Genet. Genomics , vol.35 , pp. 257-260
    • Qiu, H.1
  • 45
    • 13444306212 scopus 로고    scopus 로고
    • Identification of alpha-enolase as a nuclear DNA-binding protein in the zona fasciculata but not the zona reticularis of the human adrenal cortex
    • 45 Wang, W., et al. Identification of alpha-enolase as a nuclear DNA-binding protein in the zona fasciculata but not the zona reticularis of the human adrenal cortex. J. Endocrinol. 184 (2005), 85–94.
    • (2005) J. Endocrinol. , vol.184 , pp. 85-94
    • Wang, W.1
  • 46
    • 0034604055 scopus 로고    scopus 로고
    • ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1)
    • 46 Feo, S., et al. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 473 (2000), 47–52.
    • (2000) FEBS Lett. , vol.473 , pp. 47-52
    • Feo, S.1
  • 47
    • 47949083496 scopus 로고    scopus 로고
    • The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity
    • 47 Hsu, K.W., et al. The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity. Mol. Cell Biol. 28 (2008), 4829–4842.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 4829-4842
    • Hsu, K.W.1
  • 48
    • 84862776933 scopus 로고    scopus 로고
    • Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase
    • 48 Gao, X., et al. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45 (2012), 598–609.
    • (2012) Mol. Cell , vol.45 , pp. 598-609
    • Gao, X.1
  • 49
    • 84892366115 scopus 로고    scopus 로고
    • PKM2 regulates chromosome segregation and mitosis progression of tumor cells
    • 49 Jiang, Y., et al. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol. Cell 53 (2014), 75–87.
    • (2014) Mol. Cell , vol.53 , pp. 75-87
    • Jiang, Y.1
  • 50
    • 84940900111 scopus 로고    scopus 로고
    • Lack of evidence for PKM2 protein kinase activity
    • 50 Hosios, A.M., et al. Lack of evidence for PKM2 protein kinase activity. Mol. Cell 59 (2015), 850–857.
    • (2015) Mol. Cell , vol.59 , pp. 850-857
    • Hosios, A.M.1
  • 51
    • 79957567239 scopus 로고    scopus 로고
    • Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
    • 51 Luo, W., et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145 (2011), 732–744.
    • (2011) Cell , vol.145 , pp. 732-744
    • Luo, W.1
  • 52
    • 84891953688 scopus 로고    scopus 로고
    • JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism
    • 52 Wang, H.J., et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 279–284.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 279-284
    • Wang, H.J.1
  • 53
    • 40149095758 scopus 로고    scopus 로고
    • Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription
    • 53 Lee, J., et al. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. Biochem. Cell Biol. 40 (2008), 1043–1054.
    • (2008) Int. J. Biochem. Cell Biol. , vol.40 , pp. 1043-1054
    • Lee, J.1
  • 54
    • 84947739751 scopus 로고    scopus 로고
    • Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism
    • 54 Li, S., et al. Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell 60 (2015), 408–421.
    • (2015) Mol. Cell , vol.60 , pp. 408-421
    • Li, S.1
  • 55
    • 0025174640 scopus 로고
    • Phosphotyrosine-containing lactate dehydrogenase is restricted to the nuclei of PC12 pheochromocytoma cells
    • 55 Zhong, X.H., Howard, B.D., Phosphotyrosine-containing lactate dehydrogenase is restricted to the nuclei of PC12 pheochromocytoma cells. Mol. Cell Biol. 10 (1990), 770–776.
    • (1990) Mol. Cell Biol. , vol.10 , pp. 770-776
    • Zhong, X.H.1    Howard, B.D.2
  • 56
    • 0022894808 scopus 로고
    • Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex
    • 56 Grosse, F., et al. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. Eur. J. Biochem. 160 (1986), 459–467.
    • (1986) Eur. J. Biochem. , vol.160 , pp. 459-467
    • Grosse, F.1
  • 57
    • 84910594329 scopus 로고    scopus 로고
    • Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes
    • 57 Castonguay, Z., et al. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochem. Biophys. Res. Commun. 454 (2014), 172–177.
    • (2014) Biochem. Biophys. Res. Commun. , vol.454 , pp. 172-177
    • Castonguay, Z.1
  • 58
    • 84975230076 scopus 로고
    • Studies on energy-yielding reactions in thymus nuclei. II. Pathways of aerobic carbohydrate catabolism
    • 58 McEwen, B.S., et al. Studies on energy-yielding reactions in thymus nuclei. II. Pathways of aerobic carbohydrate catabolism. J. Biol. Chem. 238 (1963), 2571–2578.
    • (1963) J. Biol. Chem. , vol.238 , pp. 2571-2578
    • McEwen, B.S.1
  • 59
    • 34250570582 scopus 로고
    • Nucleolar localization of succinic dehydrogenase in human malignant cells with MTT
    • 59 De, P., Chatterjee, R., Nucleolar localization of succinic dehydrogenase in human malignant cells with MTT. Experientia, 18, 1962, 562.
    • (1962) Experientia , vol.18 , pp. 562
    • De, P.1    Chatterjee, R.2
  • 60
    • 50549165048 scopus 로고
    • Evidence of nucleolar succinic dehydrogenase activity
    • 60 De, P., Chatterjee, R., Evidence of nucleolar succinic dehydrogenase activity. Exp. Cell Res. 27 (1962), 172–173.
    • (1962) Exp. Cell Res. , vol.27 , pp. 172-173
    • De, P.1    Chatterjee, R.2
  • 61
    • 77950553262 scopus 로고    scopus 로고
    • Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response
    • 61 Yogev, O., et al. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol., 8, 2010, e1000328.
    • (2010) PLoS Biol. , vol.8 , pp. e1000328
    • Yogev, O.1
  • 62
    • 84940478601 scopus 로고    scopus 로고
    • Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation
    • 62 Jiang, Y., et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat. Cell Biol. 17 (2015), 1158–1168.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1158-1168
    • Jiang, Y.1
  • 63
    • 84925844757 scopus 로고    scopus 로고
    • Mitochondrial proteomics with siRNA knockdown to reveal ACAT1 and MDH2 in the development of doxorubicin-resistant uterine cancer
    • 63 Lo, Y.W., et al. Mitochondrial proteomics with siRNA knockdown to reveal ACAT1 and MDH2 in the development of doxorubicin-resistant uterine cancer. J. Cell. Mol. Med. 19 (2015), 744–759.
    • (2015) J. Cell. Mol. Med. , vol.19 , pp. 744-759
    • Lo, Y.W.1
  • 64
    • 67349272249 scopus 로고    scopus 로고
    • A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress
    • 64 Lee, S.M., et al. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ. 16 (2009), 738–748.
    • (2009) Cell Death Differ. , vol.16 , pp. 738-748
    • Lee, S.M.1
  • 65
    • 84925496332 scopus 로고    scopus 로고
    • Essential function of Aco2, a fusion protein of aconitase and mitochondrial ribosomal protein bL21, in mitochondrial translation in fission yeast
    • 65 Jung, S.J., et al. Essential function of Aco2, a fusion protein of aconitase and mitochondrial ribosomal protein bL21, in mitochondrial translation in fission yeast. FEBS Lett. 589 (2015), 822–828.
    • (2015) FEBS Lett. , vol.589 , pp. 822-828
    • Jung, S.J.1
  • 66
    • 0037309860 scopus 로고    scopus 로고
    • Localization of a mitochondrial type of NADP-dependent isocitrate dehydrogenase in kidney and heart of rat: an immunocytochemical and biochemical study
    • 66 Haraguchi, C.M., et al. Localization of a mitochondrial type of NADP-dependent isocitrate dehydrogenase in kidney and heart of rat: an immunocytochemical and biochemical study. J. Histochem. Cytochem 51 (2003), 215–226.
    • (2003) J. Histochem. Cytochem , vol.51 , pp. 215-226
    • Haraguchi, C.M.1
  • 67
    • 84878321153 scopus 로고    scopus 로고
    • Comparative study of IDH1 mutations in gliomas by immunohistochemistry and DNA sequencing
    • 67 Agarwal, S., et al. Comparative study of IDH1 mutations in gliomas by immunohistochemistry and DNA sequencing. Neuro Oncol 15 (2013), 718–726.
    • (2013) Neuro Oncol , vol.15 , pp. 718-726
    • Agarwal, S.1
  • 68
    • 84867186480 scopus 로고    scopus 로고
    • Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways
    • 68 Chen, Y., et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol. Cell. Proteomics 11 (2012), 1048–1062.
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 1048-1062
    • Chen, Y.1
  • 69
    • 84916889857 scopus 로고    scopus 로고
    • SnapShot: histone modifications
    • 69 Huang, H., et al. SnapShot: histone modifications. Cell, 159, 2014, 458.
    • (2014) Cell , vol.159 , pp. 458
    • Huang, H.1
  • 70
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • 70 Wellen, K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324 (2009), 1076–1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 71
    • 73449116731 scopus 로고    scopus 로고
    • Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation
    • 71 Madiraju, P., et al. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4 (2009), 399–403.
    • (2009) Epigenetics , vol.4 , pp. 399-403
    • Madiraju, P.1
  • 72
    • 84908323382 scopus 로고    scopus 로고
    • An acetate switch regulates stress erythropoiesis
    • 72 Xu, M., et al. An acetate switch regulates stress erythropoiesis. Nat. Med. 20 (2014), 1018–1026.
    • (2014) Nat. Med. , vol.20 , pp. 1018-1026
    • Xu, M.1
  • 73
    • 79954414352 scopus 로고    scopus 로고
    • Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription
    • 73 Chueh, F.Y., et al. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription. Cell. Signal. 23 (2011), 1170–1178.
    • (2011) Cell. Signal. , vol.23 , pp. 1170-1178
    • Chueh, F.Y.1
  • 74
    • 84862229806 scopus 로고    scopus 로고
    • Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression
    • 74 Latham, T., et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40 (2012), 4794–4803.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4794-4803
    • Latham, T.1
  • 75
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • 75 Shimazu, T., et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339 (2013), 211–214.
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1
  • 76
    • 79951974172 scopus 로고    scopus 로고
    • Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein
    • 76 Katoh, Y., et al. Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol. Cell 41 (2011), 554–566.
    • (2011) Mol. Cell , vol.41 , pp. 554-566
    • Katoh, Y.1
  • 77
    • 84877695106 scopus 로고    scopus 로고
    • Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus
    • 77 Kera, Y., et al. Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J. Biol. Chem. 288 (2013), 13592–13601.
    • (2013) J. Biol. Chem. , vol.288 , pp. 13592-13601
    • Kera, Y.1
  • 78
    • 79955547561 scopus 로고    scopus 로고
    • The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases
    • 78 Chowdhury, R., et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12 (2011), 463–469.
    • (2011) EMBO Rep. , vol.12 , pp. 463-469
    • Chowdhury, R.1
  • 79
    • 84862632865 scopus 로고    scopus 로고
    • Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
    • 79 Xiao, M., et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26 (2012), 1326–1338.
    • (2012) Genes Dev. , vol.26 , pp. 1326-1338
    • Xiao, M.1
  • 80
    • 78651463452 scopus 로고    scopus 로고
    • Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
    • 80 Xu, W., et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19 (2011), 17–30.
    • (2011) Cancer Cell , vol.19 , pp. 17-30
    • Xu, W.1
  • 81
    • 33947513027 scopus 로고    scopus 로고
    • Regulation of histone methylation by demethylimination and demethylation
    • 81 Klose, R.J., Zhang, Y., Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8 (2007), 307–318.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 307-318
    • Klose, R.J.1    Zhang, Y.2
  • 82
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • 82 Lu, C., Thompson, C.B., Metabolic regulation of epigenetics. Cell Metab. 16 (2012), 9–17.
    • (2012) Cell Metab. , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 83
    • 84952871257 scopus 로고    scopus 로고
    • Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents
    • 83 Wang, P., et al. Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents. Cell Rep. 13 (2015), 2353–2361.
    • (2015) Cell Rep. , vol.13 , pp. 2353-2361
    • Wang, P.1
  • 84
    • 67349190247 scopus 로고    scopus 로고
    • Linking DNA methylation and histone modification: patterns and paradigms
    • 84 Cedar, H., Bergman, Y., Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10 (2009), 295–304.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 295-304
    • Cedar, H.1    Bergman, Y.2
  • 85
    • 84904872156 scopus 로고    scopus 로고
    • The growing landscape of lysine acetylation links metabolism and cell signalling
    • 85 Choudhary, C., et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15 (2014), 536–550.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 536-550
    • Choudhary, C.1
  • 86
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • 86 Cai, L., et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42 (2011), 426–437.
    • (2011) Mol. Cell , vol.42 , pp. 426-437
    • Cai, L.1
  • 87
    • 84876891033 scopus 로고    scopus 로고
    • Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae
    • 87 Shi, L., Tu, B.P., Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 7318–7323.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 7318-7323
    • Shi, L.1    Tu, B.P.2
  • 88
    • 84924369505 scopus 로고    scopus 로고
    • Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
    • 88 Moussaieff, A., et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21 (2015), 392–402.
    • (2015) Cell Metab. , vol.21 , pp. 392-402
    • Moussaieff, A.1
  • 89
    • 67749140110 scopus 로고    scopus 로고
    • Dependence of mouse embryonic stem cells on threonine catabolism
    • 89 Wang, J., et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325 (2009), 435–439.
    • (2009) Science , vol.325 , pp. 435-439
    • Wang, J.1
  • 90
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • 90 Hardie, D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13 (2012), 251–262.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1
  • 91
    • 77956294919 scopus 로고    scopus 로고
    • Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
    • 91 Bungard, D., et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329 (2010), 1201–1205.
    • (2010) Science , vol.329 , pp. 1201-1205
    • Bungard, D.1
  • 92
    • 0037072780 scopus 로고    scopus 로고
    • The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes
    • 92 Berwick, D.C., et al. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277 (2002), 33895–33900.
    • (2002) J. Biol. Chem. , vol.277 , pp. 33895-33900
    • Berwick, D.C.1
  • 93
    • 0034620591 scopus 로고    scopus 로고
    • Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars
    • 93 Potapova, I.A., et al. Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars. Biochemistry 39 (2000), 1169–1179.
    • (2000) Biochemistry , vol.39 , pp. 1169-1179
    • Potapova, I.A.1
  • 94
    • 84905816638 scopus 로고    scopus 로고
    • Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation
    • 94 Lee, J.V., et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20 (2014), 306–319.
    • (2014) Cell Metab. , vol.20 , pp. 306-319
    • Lee, J.V.1
  • 95
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • 95 Cohen, H.Y., et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305 (2004), 390–392.
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1
  • 96
    • 79955894911 scopus 로고    scopus 로고
    • Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells
    • 96 Newman, R.H., et al. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem. Rev. 111 (2011), 3614–3666.
    • (2011) Chem. Rev. , vol.111 , pp. 3614-3666
    • Newman, R.H.1
  • 97
    • 84858030373 scopus 로고    scopus 로고
    • Fluorescence imaging of cellular metabolites with RNA
    • 97 Paige, J.S., et al. Fluorescence imaging of cellular metabolites with RNA. Science, 335, 2012, 1194.
    • (2012) Science , vol.335 , pp. 1194
    • Paige, J.S.1
  • 98
    • 79960959180 scopus 로고    scopus 로고
    • RNA mimics of green fluorescent protein
    • 98 Paige, J.S., et al. RNA mimics of green fluorescent protein. Science 333 (2011), 642–646.
    • (2011) Science , vol.333 , pp. 642-646
    • Paige, J.S.1
  • 99
    • 84893694995 scopus 로고    scopus 로고
    • Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal
    • 99 Li, T., et al. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J. Biol. Chem. 289 (2014), 3775–3785.
    • (2014) J. Biol. Chem. , vol.289 , pp. 3775-3785
    • Li, T.1
  • 100
    • 77956186852 scopus 로고    scopus 로고
    • Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation
    • 100 Ventura, M., et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int. J. Biochem. Cell Biol. 42 (2010), 1672–1680.
    • (2010) Int. J. Biochem. Cell Biol. , vol.42 , pp. 1672-1680
    • Ventura, M.1
  • 101
    • 84887206685 scopus 로고    scopus 로고
    • Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization
    • 101 Lv, L., et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell 52 (2013), 340–352.
    • (2013) Mol. Cell , vol.52 , pp. 340-352
    • Lv, L.1
  • 102
    • 0038110044 scopus 로고    scopus 로고
    • Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP
    • 102 Vervoorts, J., et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep. 4 (2003), 484–490.
    • (2003) EMBO Rep. , vol.4 , pp. 484-490
    • Vervoorts, J.1
  • 103
    • 27944448727 scopus 로고    scopus 로고
    • Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription
    • 103 Faiola, F., et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol. Cell Biol. 25 (2005), 10220–10234.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 10220-10234
    • Faiola, F.1
  • 104
    • 10044262126 scopus 로고    scopus 로고
    • The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60
    • 104 Patel, J.H., et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell Biol. 24 (2004), 10826–10834.
    • (2004) Mol. Cell Biol. , vol.24 , pp. 10826-10834
    • Patel, J.H.1
  • 105
    • 84870598190 scopus 로고    scopus 로고
    • ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
    • 105 Yang, W., et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14 (2012), 1295–1304.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1295-1304
    • Yang, W.1
  • 106
    • 0022555843 scopus 로고
    • The heat-shock response
    • 106 Lindquist, S., The heat-shock response. Annu. Rev. Biochem. 55 (1986), 1151–1191.
    • (1986) Annu. Rev. Biochem. , vol.55 , pp. 1151-1191
    • Lindquist, S.1
  • 107
    • 33847176295 scopus 로고    scopus 로고
    • Molecular mechanism of the nuclear protein import cycle
    • 107 Stewart, M., Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8 (2007), 195–208.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 195-208
    • Stewart, M.1
  • 108
    • 84856291939 scopus 로고    scopus 로고
    • Nuclear import of the yeast hexokinase 2 protein requires alpha/beta-importin-dependent pathway
    • 108 Pelaez, R., et al. Nuclear import of the yeast hexokinase 2 protein requires alpha/beta-importin-dependent pathway. J. Biol. Chem. 287 (2012), 3518–3529.
    • (2012) J. Biol. Chem. , vol.287 , pp. 3518-3529
    • Pelaez, R.1
  • 109
    • 38349023008 scopus 로고    scopus 로고
    • Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
    • 109 Neuspiel, M., et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18 (2008), 102–108.
    • (2008) Curr. Biol. , vol.18 , pp. 102-108
    • Neuspiel, M.1
  • 110
    • 84856221632 scopus 로고    scopus 로고
    • A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
    • 110 Soubannier, V., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22 (2012), 135–141.
    • (2012) Curr. Biol. , vol.22 , pp. 135-141
    • Soubannier, V.1
  • 111
    • 0019422042 scopus 로고
    • An immunocytochemical investigation of non-neuronal enolase in cerebellum: a new astrocyte marker
    • 111 Langley, O.K., Ghandour, M.S., An immunocytochemical investigation of non-neuronal enolase in cerebellum: a new astrocyte marker. Histochem. J. 13 (1981), 137–148.
    • (1981) Histochem. J. , vol.13 , pp. 137-148
    • Langley, O.K.1    Ghandour, M.S.2
  • 112
    • 84876889621 scopus 로고    scopus 로고
    • What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer
    • 112 Losman, J.A., Kaelin, W.G. Jr, What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27 (2013), 836–852.
    • (2013) Genes Dev. , vol.27 , pp. 836-852
    • Losman, J.A.1    Kaelin, W.G.2
  • 113
    • 84878152241 scopus 로고    scopus 로고
    • Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor
    • 113 Killian, J.K., et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3 (2013), 648–657.
    • (2013) Cancer Discov. , vol.3 , pp. 648-657
    • Killian, J.K.1
  • 114
    • 84908388856 scopus 로고    scopus 로고
    • Inhibition of cancer-associated mutant isocitrate dehydrogenases: synthesis, structure–activity relationship, and selective antitumor activity
    • 114 Liu, Z., et al. Inhibition of cancer-associated mutant isocitrate dehydrogenases: synthesis, structure–activity relationship, and selective antitumor activity. J. Med. Chem. 57 (2014), 8307–8318.
    • (2014) J. Med. Chem. , vol.57 , pp. 8307-8318
    • Liu, Z.1
  • 115
    • 84909592475 scopus 로고    scopus 로고
    • Action at a distance: allostery and the development of drugs to target cancer cell metabolism
    • 115 DeLaBarre, B., et al. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem. Biol. 21 (2014), 1143–1161.
    • (2014) Chem. Biol. , vol.21 , pp. 1143-1161
    • DeLaBarre, B.1
  • 116
    • 84919936304 scopus 로고    scopus 로고
    • Acetate dependence of tumors
    • 116 Comerford, S.A., et al. Acetate dependence of tumors. Cell 159 (2014), 1591–1602.
    • (2014) Cell , vol.159 , pp. 1591-1602
    • Comerford, S.A.1
  • 117
    • 0000203136 scopus 로고
    • The citrate cleavage enzyme. I. Distribution and purification
    • 117 Srere, P.A., The citrate cleavage enzyme. I. Distribution and purification. J. Biol. Chem. 234 (1959), 2544–2547.
    • (1959) J. Biol. Chem. , vol.234 , pp. 2544-2547
    • Srere, P.A.1
  • 118
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • 118 Metallo, C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481 (2012), 380–384.
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1
  • 119
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • 119 Mullen, A.R., et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481 (2012), 385–388.
    • (2012) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1
  • 120
    • 84921798595 scopus 로고    scopus 로고
    • Caloric restriction mimetics: towards a molecular definition
    • 120 Madeo, F., et al. Caloric restriction mimetics: towards a molecular definition. Nat. Rev. Drug Discov. 13 (2014), 727–740.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 727-740
    • Madeo, F.1
  • 121
    • 26644441651 scopus 로고    scopus 로고
    • ATP citrate lyase inhibition can suppress tumor cell growth
    • 121 Hatzivassiliou, G., et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8 (2005), 311–321.
    • (2005) Cancer Cell , vol.8 , pp. 311-321
    • Hatzivassiliou, G.1
  • 122
    • 0036701588 scopus 로고    scopus 로고
    • Mildronate: cardioprotective action through carnitine-lowering effect
    • 122 Dambrova, M., et al. Mildronate: cardioprotective action through carnitine-lowering effect. Trends Cardiovasc. Med. 12 (2002), 275–279.
    • (2002) Trends Cardiovasc. Med. , vol.12 , pp. 275-279
    • Dambrova, M.1
  • 123
    • 84890817398 scopus 로고    scopus 로고
    • Mildronate, the inhibitor of L-carnitine transport, induces brain mitochondrial uncoupling and protects against anoxia-reoxygenation
    • 123 Makrecka, M., et al. Mildronate, the inhibitor of L-carnitine transport, induces brain mitochondrial uncoupling and protects against anoxia-reoxygenation. Eur. J. Pharmacol. 723 (2014), 55–61.
    • (2014) Eur. J. Pharmacol. , vol.723 , pp. 55-61
    • Makrecka, M.1
  • 124
    • 84885144701 scopus 로고    scopus 로고
    • Efficacy and safety of mildronate for acute ischemic stroke: a randomized, double-blind, active-controlled phase II multicenter trial
    • 124 Zhu, Y., et al. Efficacy and safety of mildronate for acute ischemic stroke: a randomized, double-blind, active-controlled phase II multicenter trial. Clin. Drug Investig. 33 (2013), 755–760.
    • (2013) Clin. Drug Investig. , vol.33 , pp. 755-760
    • Zhu, Y.1
  • 125
    • 84930932850 scopus 로고    scopus 로고
    • AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a Phase I study in patients with IDH2 mutation positive advanced hematologic malignancies
    • 125 Stein, E.M., et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a Phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. Blood, 124, 2014, 115.
    • (2014) Blood , vol.124 , pp. 115
    • Stein, E.M.1
  • 126
    • 84883514161 scopus 로고    scopus 로고
    • Targeting lactate metabolism for cancer therapeutics
    • 126 Doherty, J.R., Cleveland, J.L., Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123 (2013), 3685–3692.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3685-3692
    • Doherty, J.R.1    Cleveland, J.L.2
  • 127
    • 33846002728 scopus 로고    scopus 로고
    • + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
    • + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11 (2007), 37–51.
    • (2007) Cancer Cell , vol.11 , pp. 37-51
    • Bonnet, S.1
  • 128
    • 77952995998 scopus 로고    scopus 로고
    • Metabolic modulation of glioblastoma with dichloroacetate
    • 128 Michelakis, E.D., et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med., 2, 2010, 31ra34.
    • (2010) Sci. Transl. Med. , vol.2 , pp. 31ra34
    • Michelakis, E.D.1
  • 129
    • 84939994601 scopus 로고    scopus 로고
    • A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors
    • 129 Chu, Q.S., et al. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest. New Drugs 33 (2015), 603–610.
    • (2015) Invest. New Drugs , vol.33 , pp. 603-610
    • Chu, Q.S.1
  • 130
    • 84904631827 scopus 로고    scopus 로고
    • Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors
    • 130 Dunbar, E.M., et al. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest. New Drugs 32 (2014), 452–464.
    • (2014) Invest. New Drugs , vol.32 , pp. 452-464
    • Dunbar, E.M.1
  • 131
    • 84907218413 scopus 로고    scopus 로고
    • Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect
    • 131 Fan, J., et al. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect. J. Biol. Chem. 289 (2014), 26533–26541.
    • (2014) J. Biol. Chem. , vol.289 , pp. 26533-26541
    • Fan, J.1
  • 132
    • 77249154640 scopus 로고    scopus 로고
    • Evaluation of substituted N,N’-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase
    • 132 Boxer, M.B., et al. Evaluation of substituted N,N’-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53 (2010), 1048–1055.
    • (2010) J. Med. Chem. , vol.53 , pp. 1048-1055
    • Boxer, M.B.1
  • 133
    • 77953286130 scopus 로고    scopus 로고
    • Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase
    • 133 Jiang, J.K., et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett. 20 (2010), 3387–3393.
    • (2010) Bioorg. Med. Chem. Lett. , vol.20 , pp. 3387-3393
    • Jiang, J.K.1
  • 134
    • 84866842363 scopus 로고    scopus 로고
    • Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
    • 134 Anastasiou, D., et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8 (2012), 839–847.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 839-847
    • Anastasiou, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.