-
1
-
-
27844539406
-
The role of apoptosis in the development and function of T lymphocytes
-
[1] Zhang, N., et al. The role of apoptosis in the development and function of T lymphocytes. Cell Res. 15:10 (2005), 749–769.
-
(2005)
Cell Res.
, vol.15
, Issue.10
, pp. 749-769
-
-
Zhang, N.1
-
2
-
-
84866562625
-
Metabolic checkpoints in activated T cells
-
[2] Wang, R., Green, D.R., Metabolic checkpoints in activated T cells. Nat. Immunol. 13:10 (2012), 907–915.
-
(2012)
Nat. Immunol.
, vol.13
, Issue.10
, pp. 907-915
-
-
Wang, R.1
Green, D.R.2
-
3
-
-
77956176530
-
Mapping the life histories of T cells
-
[3] Schumacher, T.N., Gerlach, C., van Heijst, J.W., Mapping the life histories of T cells. Nat. Rev. Immunol. 10:9 (2010), 621–631.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, Issue.9
, pp. 621-631
-
-
Schumacher, T.N.1
Gerlach, C.2
van Heijst, J.W.3
-
4
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
[4] Lunt, S.Y., Vander Heiden, M.G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27 (2011), 441–464.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
5
-
-
84959451365
-
The warburg effect: how does it benefit cancer cells?
-
[5] Liberti, M.V., Locasale, J.W., The warburg effect: how does it benefit cancer cells?. Trends Biochem. Sci. 41:3 (2016), 211–218.
-
(2016)
Trends Biochem. Sci.
, vol.41
, Issue.3
, pp. 211-218
-
-
Liberti, M.V.1
Locasale, J.W.2
-
6
-
-
84878831880
-
Posttranscriptional control of T cell effector function by aerobic glycolysis
-
[6] Chang, C.H., et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:6 (2013), 1239–1251.
-
(2013)
Cell
, vol.153
, Issue.6
, pp. 1239-1251
-
-
Chang, C.H.1
-
7
-
-
84987620524
-
Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism
-
[7] Otto, A.M., Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metabol. 4:1 (2016), 1–8.
-
(2016)
Cancer Metabol.
, vol.4
, Issue.1
, pp. 1-8
-
-
Otto, A.M.1
-
8
-
-
84939862815
-
5 – respiratory chains
-
fourth edition Academic Press Boston
-
[8] Nicholls, D.G., Ferguson, S.J., 5 – respiratory chains. Bioenergetics, fourth edition, 2013, Academic Press, Boston, 91–157.
-
(2013)
Bioenergetics
, pp. 91-157
-
-
Nicholls, D.G.1
Ferguson, S.J.2
-
9
-
-
0141584882
-
Molecular biology of the cell
-
4th edition N.Y.G. Science
-
[9] Alberts, B., Johnson, A., Lewis, J., Molecular biology of the cell. The Mitochondrion, 4th edition, 2002, N.Y.G. Science.
-
(2002)
The Mitochondrion
-
-
Alberts, B.1
Johnson, A.2
Lewis, J.3
-
10
-
-
84964267895
-
Fatty acid metabolism in the regulation of T cell function
-
[10] Lochner, M., Berod, L., Sparwasser, T., Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36:2 (2015), 81–91.
-
(2015)
Trends Immunol.
, vol.36
, Issue.2
, pp. 81-91
-
-
Lochner, M.1
Berod, L.2
Sparwasser, T.3
-
11
-
-
0004026407
-
Lehninger Principles of Biochemistry
-
W.H Freeman New York
-
[11] Nelson, D.L., Lehninger, A.L., Cox, M.M., Lehninger Principles of Biochemistry. 2008, W.H Freeman, New York.
-
(2008)
-
-
Nelson, D.L.1
Lehninger, A.L.2
Cox, M.M.3
-
12
-
-
0034332403
-
Interleukin-7 mediates the homeostasis of naive and memory CD8T cells in vivo
-
[12] Schluns, K.S., et al. Interleukin-7 mediates the homeostasis of naive and memory CD8T cells in vivo. Nat. Immunol. 1:5 (2000), 426–432.
-
(2000)
Nat. Immunol.
, vol.1
, Issue.5
, pp. 426-432
-
-
Schluns, K.S.1
-
13
-
-
0034992146
-
T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo
-
[13] Vivien, L., Benoist, C., Mathis, D., T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int. Immunol. 13:6 (2001), 763–768.
-
(2001)
Int. Immunol.
, vol.13
, Issue.6
, pp. 763-768
-
-
Vivien, L.1
Benoist, C.2
Mathis, D.3
-
14
-
-
84865285455
-
Metabolic switching and fuel choice during T-cell differentiation and memory development
-
[14] van der Windt, G.J., Pearce, E.L., Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249:1 (2012), 27–42.
-
(2012)
Immunol. Rev.
, vol.249
, Issue.1
, pp. 27-42
-
-
van der Windt, G.J.1
Pearce, E.L.2
-
15
-
-
84255199079
-
The transcription factor myc controls metabolic reprogramming upon t lymphocyte activation
-
[15] Wang, R., et al. The transcription factor myc controls metabolic reprogramming upon t lymphocyte activation. Immunity 35:6 (2011), 871–882.
-
(2011)
Immunity
, vol.35
, Issue.6
, pp. 871-882
-
-
Wang, R.1
-
16
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
[16] Frauwirth, K.A., et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16:6 (2002), 769–777.
-
(2002)
Immunity
, vol.16
, Issue.6
, pp. 769-777
-
-
Frauwirth, K.A.1
-
17
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
[17] Sinclair, L.V., et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14:5 (2013), 500–508.
-
(2013)
Nat. Immunol.
, vol.14
, Issue.5
, pp. 500-508
-
-
Sinclair, L.V.1
-
18
-
-
84904057246
-
The glucose transporter Glut1 is selectively essential for CD4T cell activation and effector function
-
[18] Macintyre, A.N., et al. The glucose transporter Glut1 is selectively essential for CD4T cell activation and effector function. Cell Metab. 20:1 (2014), 61–72.
-
(2014)
Cell Metab.
, vol.20
, Issue.1
, pp. 61-72
-
-
Macintyre, A.N.1
-
19
-
-
84941072886
-
Regulation of mammalian nucleotide metabolism and biosynthesis
-
[19] Lane, A.N., Fan, T.W., Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43:4 (2015), 2466–2485.
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.4
, pp. 2466-2485
-
-
Lane, A.N.1
Fan, T.W.2
-
20
-
-
84964265506
-
Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy
-
[20] Swamy, M., et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17:6 (2016), 712–720.
-
(2016)
Nat. Immunol.
, vol.17
, Issue.6
, pp. 712-720
-
-
Swamy, M.1
-
21
-
-
44449165597
-
Glucose uptake is limiting in t cell activation and requires CD28-Mediated akt-Dependent and independent pathways
-
[21] Jacobs, S.R., et al. Glucose uptake is limiting in t cell activation and requires CD28-Mediated akt-Dependent and independent pathways. J. Immunol. 180:7 (2008), 4476–4486.
-
(2008)
J. Immunol.
, vol.180
, Issue.7
, pp. 4476-4486
-
-
Jacobs, S.R.1
-
22
-
-
84951276483
-
The cytotoxic T cell proteome and its shaping by mammalian Target of Rapamycin
-
[22] Hukelmann, J.L., et al. The cytotoxic T cell proteome and its shaping by mammalian Target of Rapamycin. Nat. Immunol. 17:1 (2016), 104–112.
-
(2016)
Nat. Immunol.
, vol.17
, Issue.1
, pp. 104-112
-
-
Hukelmann, J.L.1
-
23
-
-
78649737749
-
Induction of glucose metabolism in stimulated t lymphocytes is regulated by mitogen-Activated protein kinase signaling
-
[23] Marko, A.J., et al. Induction of glucose metabolism in stimulated t lymphocytes is regulated by mitogen-Activated protein kinase signaling. PLoS One, 5(11), 2010.
-
(2010)
PLoS One
, vol.5
, Issue.11
-
-
Marko, A.J.1
-
24
-
-
1642387020
-
Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions
-
[24] Lee, J.W., et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp. Mol. Med. 36:1 (2004), 1–12.
-
(2004)
Exp. Mol. Med.
, vol.36
, Issue.1
, pp. 1-12
-
-
Lee, J.W.1
-
25
-
-
79960369458
-
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
[25] Shi, L.Z., et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208:7 (2011), 1367–1376.
-
(2011)
J. Exp. Med.
, vol.208
, Issue.7
, pp. 1367-1376
-
-
Shi, L.Z.1
-
26
-
-
84871861969
-
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8(+) T cells
-
[26] Finlay, D.K., et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8(+) T cells. J. Exp. Med. 209:13 (2012), 2441–2453.
-
(2012)
J. Exp. Med.
, vol.209
, Issue.13
, pp. 2441-2453
-
-
Finlay, D.K.1
-
27
-
-
84878423346
-
Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response
-
[27] Babcock, J.T., et al. Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response. J. Biol. Chem. 288:22 (2013), 15687–15698.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.22
, pp. 15687-15698
-
-
Babcock, J.T.1
-
28
-
-
84879463383
-
miRNAs link metabolic reprogramming to oncogenesis
-
[28] Hatziapostolou, M., Polytarchou, C., Iliopoulos, D., miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol. Metab. 24:7 (2013), 361–373.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, Issue.7
, pp. 361-373
-
-
Hatziapostolou, M.1
Polytarchou, C.2
Iliopoulos, D.3
-
29
-
-
84865301337
-
mTOR, metabolism, and the regulation of T-cell differentiation and function
-
[29] Waickman, A.T., Powell, J.D., mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249:1 (2012), 43–58.
-
(2012)
Immunol. Rev.
, vol.249
, Issue.1
, pp. 43-58
-
-
Waickman, A.T.1
Powell, J.D.2
-
30
-
-
84959880781
-
The CASTOR proteins are arginine sensors for the mTORC1 pathway
-
[30] Chantranupong, L., et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:1 (2016), 153–164.
-
(2016)
Cell
, vol.165
, Issue.1
, pp. 153-164
-
-
Chantranupong, L.1
-
31
-
-
77951834544
-
Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells
-
[31] Chen, L., et al. Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab. Invest. 90:5 (2010), 762–773.
-
(2010)
Lab. Invest.
, vol.90
, Issue.5
, pp. 762-773
-
-
Chen, L.1
-
32
-
-
84861157343
-
Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells
-
[32] Waickman, A.T., Powell, J.D., Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. J. Immunol. 188:10 (2012), 4721–4729.
-
(2012)
J. Immunol.
, vol.188
, Issue.10
, pp. 4721-4729
-
-
Waickman, A.T.1
Powell, J.D.2
-
33
-
-
84894486696
-
Nutrient regulation of the mTOR complex 1 signaling pathway
-
[33] Kim, S.G., Buel, G.R., Blenis, J., Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 35:6 (2013), 463–473.
-
(2013)
Mol. Cells
, vol.35
, Issue.6
, pp. 463-473
-
-
Kim, S.G.1
Buel, G.R.2
Blenis, J.3
-
34
-
-
84919872308
-
Regulation of T cells by mTOR: the known knowns and the known unknowns
-
[34] Pollizzi, K.N., Powell, J.D., Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36:1 (2015), 13–20.
-
(2015)
Trends Immunol.
, vol.36
, Issue.1
, pp. 13-20
-
-
Pollizzi, K.N.1
Powell, J.D.2
-
35
-
-
84862908818
-
AMPK and mTOR in cellular energy homeostasis and drug targets
-
[35] Inoki, K., Kim, J., Guan, K.L., AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52 (2012), 381–400.
-
(2012)
Annu. Rev. Pharmacol. Toxicol.
, vol.52
, pp. 381-400
-
-
Inoki, K.1
Kim, J.2
Guan, K.L.3
-
36
-
-
84975885917
-
The effect of immunosuppressive molecules on T-cell metabolic reprogramming
-
[36] Fernandez-Ramos, A.A., et al. The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie 127 (2016), 23–36.
-
(2016)
Biochimie
, vol.127
, pp. 23-36
-
-
Fernandez-Ramos, A.A.1
-
37
-
-
0023865621
-
Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes
-
[37] Brand, K., et al. Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes. Eur. J. Biochem. 172:3 (1988), 695–702.
-
(1988)
Eur. J. Biochem.
, vol.172
, Issue.3
, pp. 695-702
-
-
Brand, K.1
-
38
-
-
27744519400
-
Fuel feeds function: energy metabolism and the T-cell response
-
[38] Fox, C.J., Hammerman, P.S., Thompson, C.B., Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5:11 (2005), 844–852.
-
(2005)
Nat. Rev. Immunol.
, vol.5
, Issue.11
, pp. 844-852
-
-
Fox, C.J.1
Hammerman, P.S.2
Thompson, C.B.3
-
39
-
-
0018077453
-
Aerobic glycolysis and lymphocyte transformation
-
[39] Hume, D.A., et al. Aerobic glycolysis and lymphocyte transformation. Biochem. J. 174:3 (1978), 703–709.
-
(1978)
Biochem. J.
, vol.174
, Issue.3
, pp. 703-709
-
-
Hume, D.A.1
-
40
-
-
84952902890
-
Immunometabolism: cellular metabolism turns immune regulator
-
[40] Loftus, R.M., Finlay, D.K., Immunometabolism: cellular metabolism turns immune regulator. J. Biol. Chem. 291:1 (2016), 1–10.
-
(2016)
J. Biol. Chem.
, vol.291
, Issue.1
, pp. 1-10
-
-
Loftus, R.M.1
Finlay, D.K.2
-
41
-
-
84947591002
-
T cell metabolism drives immunity
-
[41] Buck, M.D., O'Sullivan, D., Pearce, E.L., T cell metabolism drives immunity. J. Exp. Med. 212:9 (2015), 1345–1360.
-
(2015)
J. Exp. Med.
, vol.212
, Issue.9
, pp. 1345-1360
-
-
Buck, M.D.1
O'Sullivan, D.2
Pearce, E.L.3
-
42
-
-
84926640592
-
Glucose metabolism regulates cell activation differentiation, and functions
-
[42] Palmer, C.S., et al. Glucose metabolism regulates cell activation differentiation, and functions. Front. Immunol., 6, 2015.
-
(2015)
Front. Immunol.
, vol.6
-
-
Palmer, C.S.1
-
43
-
-
84920828240
-
The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems
-
[43] Barcia-Vieitez, R., Ramos-Martinez, J.I., The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems. IUBMB Life 66:11 (2014), 775–779.
-
(2014)
IUBMB Life
, vol.66
, Issue.11
, pp. 775-779
-
-
Barcia-Vieitez, R.1
Ramos-Martinez, J.I.2
-
44
-
-
84881177291
-
Serine, glycine and one-carbon units: cancer metabolism in full circle
-
[44] Locasale, J.W., Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:8 (2013), 572–583.
-
(2013)
Nat. Rev. Cancer
, vol.13
, Issue.8
, pp. 572-583
-
-
Locasale, J.W.1
-
45
-
-
84922080059
-
De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
-
[45] Berod, L., et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20:11 (2014), 1327–1333.
-
(2014)
Nat. Med.
, vol.20
, Issue.11
, pp. 1327-1333
-
-
Berod, L.1
-
46
-
-
84905510173
-
Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4T cells
-
[46] Cao, Y., Rathmell, J.C., Macintyre, A.N., Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4T cells. PLoS One, 9(8), 2014, e104104.
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e104104
-
-
Cao, Y.1
Rathmell, J.C.2
Macintyre, A.N.3
-
47
-
-
0027474296
-
Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes
-
[47] Bental, M., Deutsch, C., Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn. Reson. Med. 29:3 (1993), 317–326.
-
(1993)
Magn. Reson. Med.
, vol.29
, Issue.3
, pp. 317-326
-
-
Bental, M.1
Deutsch, C.2
-
48
-
-
84907200741
-
Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease
-
[48] Glick, G.D., et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J. Pharmacol. Exp. Ther. 351:2 (2014), 298–307.
-
(2014)
J. Pharmacol. Exp. Ther.
, vol.351
, Issue.2
, pp. 298-307
-
-
Glick, G.D.1
-
49
-
-
84992579961
-
Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription
-
[49] Boukouris, A.E., Zervopoulos, S.D., Michelakis, E.D., Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. Sci. 41:8 (2016), 712–730.
-
(2016)
Trends Biochem. Sci.
, vol.41
, Issue.8
, pp. 712-730
-
-
Boukouris, A.E.1
Zervopoulos, S.D.2
Michelakis, E.D.3
-
50
-
-
84947017066
-
Obesity drives th17 cell differentiation by inducing the lipid metabolic kinase: ACC1
-
[50] Endo, Y., et al. Obesity drives th17 cell differentiation by inducing the lipid metabolic kinase: ACC1. Cell Rep. 12:6 (2015), 1042–1055.
-
(2015)
Cell Rep.
, vol.12
, Issue.6
, pp. 1042-1055
-
-
Endo, Y.1
-
51
-
-
84985991676
-
Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease
-
[51] Raha, S., et al. Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease. Eur. J. Immunol. 46:9 (2016), 2233–2238.
-
(2016)
Eur. J. Immunol.
, vol.46
, Issue.9
, pp. 2233-2238
-
-
Raha, S.1
-
52
-
-
84897505811
-
Regulator of fatty acid metabolism: acetyl coenzyme a carboxylase 1, controls T cell immunity
-
[52] Lee, J., et al. Regulator of fatty acid metabolism: acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192:7 (2014), 3190–3199.
-
(2014)
J. Immunol.
, vol.192
, Issue.7
, pp. 3190-3199
-
-
Lee, J.1
-
53
-
-
84877972355
-
Covalent lipid modifications of proteins
-
[53] Resh, M.D., Covalent lipid modifications of proteins. Curr. Biol. 23:10 (2013), R431–R435.
-
(2013)
Curr. Biol.
, vol.23
, Issue.10
, pp. R431-R435
-
-
Resh, M.D.1
-
54
-
-
78649862797
-
TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras
-
[54] Rubio, I., et al. TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. J. Immunol. 185:6 (2010), 3536–3543.
-
(2010)
J. Immunol.
, vol.185
, Issue.6
, pp. 3536-3543
-
-
Rubio, I.1
-
55
-
-
84945151577
-
Immunosuppression and aberrant t cell development in the absence of N-Myristoylation
-
[55] Rampoldi, F., et al. Immunosuppression and aberrant t cell development in the absence of N-Myristoylation. J. Immunol. 195:9 (2015), 4228–4243.
-
(2015)
J. Immunol.
, vol.195
, Issue.9
, pp. 4228-4243
-
-
Rampoldi, F.1
-
56
-
-
0032819133
-
CD69 and regulation of the immune function
-
[56] Marzio, R., Mauel, J., Betz-Corradin, S., CD69 and regulation of the immune function. Immunopharmacol. Immunotoxicol. 21:3 (1999), 565–582.
-
(1999)
Immunopharmacol. Immunotoxicol.
, vol.21
, Issue.3
, pp. 565-582
-
-
Marzio, R.1
Mauel, J.2
Betz-Corradin, S.3
-
57
-
-
0347505003
-
CD28-mediated co-stimulation: a quantitative support for TCR signalling
-
[57] Acuto, O., Michel, F., CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3:12 (2003), 939–951.
-
(2003)
Nat. Rev. Immunol.
, vol.3
, Issue.12
, pp. 939-951
-
-
Acuto, O.1
Michel, F.2
-
58
-
-
0037881900
-
Regulation of fyn through translocation of activated lck into lipid rafts
-
[58] Filipp, D., et al. Regulation of fyn through translocation of activated lck into lipid rafts. J. Exp. Med. 197:9 (2003), 1221–1227.
-
(2003)
J. Exp. Med.
, vol.197
, Issue.9
, pp. 1221-1227
-
-
Filipp, D.1
-
59
-
-
0036247432
-
T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse
-
[59] Nel, A.E., T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J. Allergy Clin. Immunol. 109:5 (2002), 758–770.
-
(2002)
J. Allergy Clin. Immunol.
, vol.109
, Issue.5
, pp. 758-770
-
-
Nel, A.E.1
-
60
-
-
84874242919
-
Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
-
[60] Sena, L.A., et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:2 (2013), 225–236.
-
(2013)
Immunity
, vol.38
, Issue.2
, pp. 225-236
-
-
Sena, L.A.1
-
61
-
-
0141815741
-
Production of reactive oxygen species by mitochondria: central role of complex III
-
[61] Chen, Q., et al. Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 278:38 (2003), 36027–36031.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.38
, pp. 36027-36031
-
-
Chen, Q.1
-
62
-
-
0032980432
-
Requirement for transcription factor NFAT in interleukin-2 expression
-
[62] Chow, C.W., Rincon, M., Davis, R.J., Requirement for transcription factor NFAT in interleukin-2 expression. Mol. Cell. Biol. 19:3 (1999), 2300–2307.
-
(1999)
Mol. Cell. Biol.
, vol.19
, Issue.3
, pp. 2300-2307
-
-
Chow, C.W.1
Rincon, M.2
Davis, R.J.3
-
63
-
-
0024598444
-
Polyamine oxidation down-regulates IL-2 production by human peripheral blood mononuclear cells
-
[63] Flescher, E., Bowlin, T.L., Talal, N., Polyamine oxidation down-regulates IL-2 production by human peripheral blood mononuclear cells. J. Immunol. 142:3 (1989), 907–912.
-
(1989)
J. Immunol.
, vol.142
, Issue.3
, pp. 907-912
-
-
Flescher, E.1
Bowlin, T.L.2
Talal, N.3
-
64
-
-
0028150839
-
Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction
-
[64] Flescher, E., et al. Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction. J. Immunol. 153:11 (1994), 4880–4889.
-
(1994)
J. Immunol.
, vol.153
, Issue.11
, pp. 4880-4889
-
-
Flescher, E.1
-
65
-
-
84990990534
-
Immunometabolism and autoimmunity
-
[In press]
-
[65] Freitag, J., et al. Immunometabolism and autoimmunity. Immunol. Cell Biol., 2016 [In press].
-
(2016)
Immunol. Cell Biol.
-
-
Freitag, J.1
-
66
-
-
34848913375
-
T cell activation requires mitochondrial translocation to the immunological synapse
-
[66] Quintana, A., et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl. Acad. Sci. U. S. A. 104:36 (2007), 14418–14423.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, Issue.36
, pp. 14418-14423
-
-
Quintana, A.1
-
67
-
-
77953758827
-
Calcium uptake mechanisms of mitochondria
-
[67] Santo-Domingo, J., Demaurex, N., Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797:6-7 (2010), 907–912.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, Issue.6-7
, pp. 907-912
-
-
Santo-Domingo, J.1
Demaurex, N.2
-
68
-
-
84907168821
-
Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling
-
[68] Ledderose, C., et al. Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J. Biol. Chem. 289:37 (2014), 25936–25945.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.37
, pp. 25936-25945
-
-
Ledderose, C.1
-
69
-
-
84892187011
-
Modulation of t cell metabolism and function through calcium signaling
-
[69] Fracchia, K.M., Pai, C.Y., Walsh, C.M., Modulation of t cell metabolism and function through calcium signaling. Front. Immunol., 4(324), 2013.
-
(2013)
Front. Immunol.
, vol.4
, Issue.324
-
-
Fracchia, K.M.1
Pai, C.Y.2
Walsh, C.M.3
-
70
-
-
73949151977
-
Mitochondria positioning controls local calcium influx in T cells
-
[70] Schwindling, C., et al. Mitochondria positioning controls local calcium influx in T cells. J. Immunol. 184:1 (2010), 184–190.
-
(2010)
J. Immunol.
, vol.184
, Issue.1
, pp. 184-190
-
-
Schwindling, C.1
-
71
-
-
79952192382
-
Immune cell regulation by autocrine purinergic signalling
-
[71] Junger, W.G., Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11:3 (2011), 201–212.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, Issue.3
, pp. 201-212
-
-
Junger, W.G.1
-
72
-
-
84992389978
-
Mitochondrial biogenesis and proteome remodeling promote one-Carbon metabolism for t cell activation
-
[72] Ron-Harel, N., et al. Mitochondrial biogenesis and proteome remodeling promote one-Carbon metabolism for t cell activation. Cell Metab. 24:1 (2016), 104–117.
-
(2016)
Cell Metab.
, vol.24
, Issue.1
, pp. 104-117
-
-
Ron-Harel, N.1
-
73
-
-
72249114913
-
One-Carbon Metabolism–Genome interactions in folate-Associated pathologies
-
[73] Stover, P.J., One-Carbon Metabolism–Genome interactions in folate-Associated pathologies. J. Nutr. 139:12 (2009), 2402–2405.
-
(2009)
J. Nutr.
, vol.139
, Issue.12
, pp. 2402-2405
-
-
Stover, P.J.1
-
74
-
-
84915746768
-
Serine catabolism regulates mitochondrial redox control during hypoxia
-
[74] Ye, J., et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4:12 (2014), 1406–1417.
-
(2014)
Cancer Discov.
, vol.4
, Issue.12
, pp. 1406-1417
-
-
Ye, J.1
-
75
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
[75] Birsoy, K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162:3 (2015), 540–551.
-
(2015)
Cell
, vol.162
, Issue.3
, pp. 540-551
-
-
Birsoy, K.1
-
76
-
-
84938234308
-
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
-
[76] Sullivan, L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162:3 (2015), 552–563.
-
(2015)
Cell
, vol.162
, Issue.3
, pp. 552-563
-
-
Sullivan, L.B.1
-
77
-
-
0038644122
-
Regulation of quiescence in lymphocytes
-
[77] Yusuf, I., Fruman, D.A., Regulation of quiescence in lymphocytes. Trends Immunol. 24:7 (2003), 380–386.
-
(2003)
Trends Immunol.
, vol.24
, Issue.7
, pp. 380-386
-
-
Yusuf, I.1
Fruman, D.A.2
-
78
-
-
84953264064
-
The immune-Metabolic basis of effector memory CD4+ t cell function under hypoxic conditions
-
[78] Dimeloe, S., et al. The immune-Metabolic basis of effector memory CD4+ t cell function under hypoxic conditions. J. Immunol. 196:1 (2016), 106–114.
-
(2016)
J. Immunol.
, vol.196
, Issue.1
, pp. 106-114
-
-
Dimeloe, S.1
-
79
-
-
84976478216
-
Mitochondrial dynamics controls t cell fate through metabolic programming
-
[79] Buck, M.D., et al. Mitochondrial dynamics controls t cell fate through metabolic programming. Cell 166:1 (2016), 63–76.
-
(2016)
Cell
, vol.166
, Issue.1
, pp. 63-76
-
-
Buck, M.D.1
-
80
-
-
34548313688
-
OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing: membrane potential, and Yme1L
-
[80] Song, Z., et al. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing: membrane potential, and Yme1L. J. Cell Biol. 178:5 (2007), 749–755.
-
(2007)
J. Cell Biol.
, vol.178
, Issue.5
, pp. 749-755
-
-
Song, Z.1
-
81
-
-
84904392273
-
Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
-
[81] O'Sullivan, D., et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:1 (2014), 75–88.
-
(2014)
Immunity
, vol.41
, Issue.1
, pp. 75-88
-
-
O'Sullivan, D.1
-
82
-
-
84883423963
-
CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
-
[82] van der Windt, G.J., et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. U. S. A. 110:35 (2013), 14336–14341.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.35
, pp. 14336-14341
-
-
van der Windt, G.J.1
-
83
-
-
84866040786
-
Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity
-
[83] Mayer, C.T., Berod, L., Sparwasser, T., Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity. Front. Immunol., 3, 2012, 183.
-
(2012)
Front. Immunol.
, vol.3
, pp. 183
-
-
Mayer, C.T.1
Berod, L.2
Sparwasser, T.3
-
84
-
-
79951772860
-
Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria
-
[84] Hadis, U., et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:2 (2011), 237–246.
-
(2011)
Immunity
, vol.34
, Issue.2
, pp. 237-246
-
-
Hadis, U.1
-
85
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
[85] Michalek, R.D., et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186:6 (2011), 3299–3303.
-
(2011)
J. Immunol.
, vol.186
, Issue.6
, pp. 3299-3303
-
-
Michalek, R.D.1
-
86
-
-
84933532719
-
Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival
-
[86] Beier, U.H., et al. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J. 29:6 (2015), 2315–2326.
-
(2015)
FASEB J.
, vol.29
, Issue.6
, pp. 2315-2326
-
-
Beier, U.H.1
-
87
-
-
84941106659
-
Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance
-
[87] Zeng, H., et al. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol. Immunol. 12:5 (2015), 566–571.
-
(2015)
Cell Mol. Immunol.
, vol.12
, Issue.5
, pp. 566-571
-
-
Zeng, H.1
-
88
-
-
84930576092
-
Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α
-
[88] Mascanfroni, I.D., et al. Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α. Nat. Med. 21:6 (2015), 638–646.
-
(2015)
Nat. Med.
, vol.21
, Issue.6
, pp. 638-646
-
-
Mascanfroni, I.D.1
-
89
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycin-receptor complex
-
[89] Brown, E.J., et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:6483 (1994), 756–758.
-
(1994)
Nature
, vol.369
, Issue.6483
, pp. 756-758
-
-
Brown, E.J.1
-
90
-
-
77957659746
-
Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology
-
[90] Gabardi, S., Baroletti, S.A., Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy 30:10 (2010), 1044–1056.
-
(2010)
Pharmacotherapy
, vol.30
, Issue.10
, pp. 1044-1056
-
-
Gabardi, S.1
Baroletti, S.A.2
-
91
-
-
85002236608
-
Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation
-
[91] Baroja-Mazo, A., et al. Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation. World J. Transplant. 6:1 (2016), 183–192.
-
(2016)
World J. Transplant.
, vol.6
, Issue.1
, pp. 183-192
-
-
Baroja-Mazo, A.1
-
92
-
-
84897380695
-
Oedema: solid organ transplantation and mammalian target of rapamycin inhibitor/proliferation signal inhibitors (mTOR-I/PSIs)
-
[92] Gharbi, C., Gueutin, V., Izzedine, H., Oedema: solid organ transplantation and mammalian target of rapamycin inhibitor/proliferation signal inhibitors (mTOR-I/PSIs). Clin. Kidney J. 7:2 (2014), 115–120.
-
(2014)
Clin. Kidney J.
, vol.7
, Issue.2
, pp. 115-120
-
-
Gharbi, C.1
Gueutin, V.2
Izzedine, H.3
-
93
-
-
84859778293
-
mTOR signaling in growth control and disease
-
[93] Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149:2 (2012), 274–293.
-
(2012)
Cell
, vol.149
, Issue.2
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
94
-
-
66949173728
-
mTOR differentially regulates effector and regulatory T cell lineage commitment
-
[94] Delgoffe, G.M., et al. mTOR differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:6 (2009), 832–844.
-
(2009)
Immunity
, vol.30
, Issue.6
, pp. 832-844
-
-
Delgoffe, G.M.1
-
95
-
-
33845379986
-
Rapamycin promotes expansion of functional CD4 + CD25 + FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients
-
[95] Battaglia, M., et al. Rapamycin promotes expansion of functional CD4 + CD25 + FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177:12 (2006), 8338–8347.
-
(2006)
J. Immunol.
, vol.177
, Issue.12
, pp. 8338-8347
-
-
Battaglia, M.1
-
96
-
-
20444373376
-
Rapamycin selectively expands CD4 + CD25 + FoxP3+ regulatory T cells
-
[96] Battaglia, M., Stabilini, A., Roncarolo, M.-G., Rapamycin selectively expands CD4 + CD25 + FoxP3+ regulatory T cells. Blood 105:12 (2005), 4743–4748.
-
(2005)
Blood
, vol.105
, Issue.12
, pp. 4743-4748
-
-
Battaglia, M.1
Stabilini, A.2
Roncarolo, M.-G.3
-
97
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
[97] Delgoffe, G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12:4 (2011), 295–303.
-
(2011)
Nat. Immunol.
, vol.12
, Issue.4
, pp. 295-303
-
-
Delgoffe, G.M.1
-
98
-
-
84861134382
-
PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma
-
[98] Kurebayashi, Y., et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep. 1:4 (2012), 360–373.
-
(2012)
Cell Rep.
, vol.1
, Issue.4
, pp. 360-373
-
-
Kurebayashi, Y.1
-
99
-
-
84953837891
-
p((7)(0)S(6)K(1)) in the TORC1 pathway is essential for the differentiation of Th17Cells: but not Th1, Th2, or Treg cells in mice
-
[99] Sasaki, C.Y., et al. p((7)(0)S(6)K(1)) in the TORC1 pathway is essential for the differentiation of Th17Cells: but not Th1, Th2, or Treg cells in mice. Eur. J. Immunol. 46:1 (2016), 212–222.
-
(2016)
Eur. J. Immunol.
, vol.46
, Issue.1
, pp. 212-222
-
-
Sasaki, C.Y.1
-
100
-
-
84938294113
-
Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway
-
[100] Wu, X., et al. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem. Pharmacol. 96:4 (2015), 323–336.
-
(2015)
Biochem. Pharmacol.
, vol.96
, Issue.4
, pp. 323-336
-
-
Wu, X.1
-
101
-
-
84890137621
-
T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
-
[101] Yang, K., et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39:6 (2013), 1043–1056.
-
(2013)
Immunity
, vol.39
, Issue.6
, pp. 1043-1056
-
-
Yang, K.1
-
102
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
[102] Lee, K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:6 (2010), 743–753.
-
(2010)
Immunity
, vol.32
, Issue.6
, pp. 743-753
-
-
Lee, K.1
-
103
-
-
84881192927
-
mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function
-
[103] Zeng, H., et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499:7459 (2013), 485–490.
-
(2013)
Nature
, vol.499
, Issue.7459
, pp. 485-490
-
-
Zeng, H.1
-
104
-
-
78650188983
-
An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
-
[104] Procaccini, C., et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33:6 (2010), 929–941.
-
(2010)
Immunity
, vol.33
, Issue.6
, pp. 929-941
-
-
Procaccini, C.1
-
105
-
-
33847312289
-
A key role of leptin in the control of regulatory T cell proliferation
-
[105] De Rosa, V., et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26:2 (2007), 241–255.
-
(2007)
Immunity
, vol.26
, Issue.2
, pp. 241-255
-
-
De Rosa, V.1
-
106
-
-
84960342626
-
The proteomic landscape of human ex vivo regulatory and conventional t cells reveals specific metabolic requirements
-
[106] Procaccini, C., et al. The proteomic landscape of human ex vivo regulatory and conventional t cells reveals specific metabolic requirements. Immunity 44:2 (2016), 406–421.
-
(2016)
Immunity
, vol.44
, Issue.2
, pp. 406-421
-
-
Procaccini, C.1
-
107
-
-
84955590563
-
Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
-
[107] Wei, J., et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17:3 (2016), 277–285.
-
(2016)
Nat. Immunol.
, vol.17
, Issue.3
, pp. 277-285
-
-
Wei, J.1
-
108
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
[108] Yu, L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:7300 (2010), 942–946.
-
(2010)
Nature
, vol.465
, Issue.7300
, pp. 942-946
-
-
Yu, L.1
-
109
-
-
84928790557
-
Cellular size as a means of tracking mTOR activity and cell fate of CD4+ t cells upon antigen recognition
-
[109] Pollizzi, K.N., et al. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ t cells upon antigen recognition. PLoS One, 10(4), 2015.
-
(2015)
PLoS One
, vol.10
, Issue.4
-
-
Pollizzi, K.N.1
-
110
-
-
84963525930
-
Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation
-
[110] Pollizzi, K.N., et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat. Immunol. 17:6 (2016), 704–711.
-
(2016)
Nat. Immunol.
, vol.17
, Issue.6
, pp. 704-711
-
-
Pollizzi, K.N.1
-
111
-
-
0038199737
-
Management of cellular energy by the AMP-activated protein kinase system
-
[111] Hardie, D.G., et al. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546:1 (2003), 113–120.
-
(2003)
FEBS Lett.
, vol.546
, Issue.1
, pp. 113-120
-
-
Hardie, D.G.1
-
112
-
-
0344081177
-
Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status
-
[112] Hardie, D.G., Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:12 (2003), 5179–5183.
-
(2003)
Endocrinology
, vol.144
, Issue.12
, pp. 5179-5183
-
-
Hardie, D.G.1
-
113
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
[113] Gwinn, D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:2 (2008), 214–226.
-
(2008)
Mol. Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
-
114
-
-
84862083354
-
Cross-talk between AMPK and mTOR in regulating energy balance
-
[114] Xu, J., Ji, J., Yan, X.H., Cross-talk between AMPK and mTOR in regulating energy balance. Crit. Rev. Food Sci. Nutr. 52:5 (2012), 373–381.
-
(2012)
Crit. Rev. Food Sci. Nutr.
, vol.52
, Issue.5
, pp. 373-381
-
-
Xu, J.1
Ji, J.2
Yan, X.H.3
-
115
-
-
84924873032
-
Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma
-
[115] Zhao, D., et al. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer 136:11 (2015), 2556–2565.
-
(2015)
Int. J. Cancer
, vol.136
, Issue.11
, pp. 2556-2565
-
-
Zhao, D.1
-
116
-
-
84875999344
-
Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis
-
[116] Kang, K.Y., et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16:1 (2013), 85–92.
-
(2013)
Int. Immunopharmacol.
, vol.16
, Issue.1
, pp. 85-92
-
-
Kang, K.Y.1
-
117
-
-
77952359802
-
Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis
-
[117] Bai, A., et al. Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J. Pharmacol. Exp. Ther. 333:3 (2010), 717–725.
-
(2010)
J. Pharmacol. Exp. Ther.
, vol.333
, Issue.3
, pp. 717-725
-
-
Bai, A.1
-
118
-
-
84907228811
-
Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis
-
(p. 973986)
-
[118] Son, H.J., Lee, J., Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediat. Inflamm., 2014, 2014 (p. 973986).
-
(2014)
Mediat. Inflamm.
, vol.2014
-
-
Son, H.J.1
Lee, J.2
-
119
-
-
84959432961
-
Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance
-
[119] Lee, S.Y., et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS One, 10(9), 2015, e0135858.
-
(2015)
PLoS One
, vol.10
, Issue.9
, pp. e0135858
-
-
Lee, S.Y.1
-
120
-
-
77957913650
-
AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis
-
[120] Bai, A., et al. AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem. Pharmacol. 80:11 (2010), 1708–1717.
-
(2010)
Biochem. Pharmacol.
, vol.80
, Issue.11
, pp. 1708-1717
-
-
Bai, A.1
-
121
-
-
21244437079
-
5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis
-
[121] Nath, N., et al. 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175:1 (2005), 566–574.
-
(2005)
J. Immunol.
, vol.175
, Issue.1
, pp. 566-574
-
-
Nath, N.1
-
122
-
-
84995554140
-
The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation
-
[122] Gualdoni, G.A., et al. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J., 2016.
-
(2016)
FASEB J.
-
-
Gualdoni, G.A.1
-
123
-
-
84918583229
-
Metformin directly acts on mitochondria to alter cellular bioenergetics
-
[123] Andrzejewski, S., et al. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab., 2, 2014, 12.
-
(2014)
Cancer Metab.
, vol.2
, pp. 12
-
-
Andrzejewski, S.1
-
124
-
-
84900468450
-
Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
-
[124] Wheaton, W.W., et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife, 3, 2014, p. e02242.
-
(2014)
Elife
, vol.3
, pp. p. e02242
-
-
Wheaton, W.W.1
-
125
-
-
33745823168
-
Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes
-
[125] Tamas, P., et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203:7 (2006), 1665–1670.
-
(2006)
J. Exp. Med.
, vol.203
, Issue.7
, pp. 1665-1670
-
-
Tamas, P.1
-
126
-
-
84921279945
-
AMPK in lymphocyte metabolism and function
-
[126] Andris, F., Leo, O., AMPK in lymphocyte metabolism and function. Int. Rev. Immunol. 34:1 (2015), 67–81.
-
(2015)
Int. Rev. Immunol.
, vol.34
, Issue.1
, pp. 67-81
-
-
Andris, F.1
Leo, O.2
-
127
-
-
23044437445
-
Ca2+/calmodulin-dependent protein kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
-
[127] Woods, A., et al. Ca2+/calmodulin-dependent protein kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:1 (2005), 21–33.
-
(2005)
Cell Metab.
, vol.2
, Issue.1
, pp. 21-33
-
-
Woods, A.1
-
128
-
-
44849141880
-
AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
-
[128] Mayer, A., et al. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur. J. Immunol. 38:4 (2008), 948–956.
-
(2008)
Eur. J. Immunol.
, vol.38
, Issue.4
, pp. 948-956
-
-
Mayer, A.1
-
129
-
-
84921309472
-
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
-
[129] Blagih, J., et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:1 (2015), 41–54.
-
(2015)
Immunity
, vol.42
, Issue.1
, pp. 41-54
-
-
Blagih, J.1
-
130
-
-
68349133231
-
Hypoxic tumor microenvironment and cancer cell differentiation
-
[130] Kim, Y., et al. Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med. 9:4 (2009), 425–434.
-
(2009)
Curr. Mol. Med.
, vol.9
, Issue.4
, pp. 425-434
-
-
Kim, Y.1
-
131
-
-
84880399893
-
Low-glucose conditions of tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuroblastoma cells
-
[131] Navratilova, J., et al. Low-glucose conditions of tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuroblastoma cells. Nutr. Cancer 65:5 (2013), 702–710.
-
(2013)
Nutr. Cancer
, vol.65
, Issue.5
, pp. 702-710
-
-
Navratilova, J.1
-
132
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
[132] Chang, C.H., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:6 (2015), 1229–1241.
-
(2015)
Cell
, vol.162
, Issue.6
, pp. 1229-1241
-
-
Chang, C.H.1
-
133
-
-
84949196321
-
CD5L/AIM regulates lipid biosynthesis and restrains th17 cell pathogenicity
-
[133] Wang, C., et al. CD5L/AIM regulates lipid biosynthesis and restrains th17 cell pathogenicity. Cell 163:6 (2015), 1413–1427.
-
(2015)
Cell
, vol.163
, Issue.6
, pp. 1413-1427
-
-
Wang, C.1
-
134
-
-
84928057028
-
Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists
-
[134] Hu, X., et al. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists. Nat. Chem. Biol. 11:2 (2015), 141–147.
-
(2015)
Nat. Chem. Biol.
, vol.11
, Issue.2
, pp. 141-147
-
-
Hu, X.1
-
135
-
-
82555204246
-
Kinetic mechanisms of cholesterol synthesis: a review
-
[135] Panda, T., et al. Kinetic mechanisms of cholesterol synthesis: a review. Ind. Eng. Chem. Res. 50:23 (2011), 12847–12864.
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, Issue.23
, pp. 12847-12864
-
-
Panda, T.1
-
136
-
-
84920481006
-
Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation
-
[136] Gerriets, V.A., et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation. J. Clin. Invest. 125:1 (2015), 194–207.
-
(2015)
J. Clin. Invest.
, vol.125
, Issue.1
, pp. 194-207
-
-
Gerriets, V.A.1
-
137
-
-
84906319549
-
Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation
-
[137] Huang, S.C.C., et al. Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation. Nat. Immunol. 15:9 (2014), 846–855.
-
(2014)
Nat. Immunol.
, vol.15
, Issue.9
, pp. 846-855
-
-
Huang, S.C.C.1
-
138
-
-
84962450023
-
Fatty acid oxidation in macrophage polarization
-
[138] Nomura, M., et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17:3 (2016), 216–217.
-
(2016)
Nat. Immunol.
, vol.17
, Issue.3
, pp. 216-217
-
-
Nomura, M.1
-
139
-
-
84891607730
-
T Effector cells require fatty acid metabolism during murine graft-versus-host disease
-
[139] Byersdorfer, C.A., et al. T Effector cells require fatty acid metabolism during murine graft-versus-host disease. Blood 122:18 (2013), 3230–3237.
-
(2013)
Blood
, vol.122
, Issue.18
, pp. 3230-3237
-
-
Byersdorfer, C.A.1
-
140
-
-
84946476393
-
Real-time metabolome profiling of the metabolic switch between starvation and growth
-
[140] Link, H., et al. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12:11 (2015), 1091–1097.
-
(2015)
Nat. Methods
, vol.12
, Issue.11
, pp. 1091-1097
-
-
Link, H.1
-
141
-
-
84978148203
-
A guide to immunometabolism for immunologists
-
[141] O'Neill, L.A.J., Kishton, R.J., Rathmell, J., A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16:9 (2016), 553–565.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, Issue.9
, pp. 553-565
-
-
O'Neill, L.A.J.1
Kishton, R.J.2
Rathmell, J.3
|