메뉴 건너뛰기




Volumn 28, Issue 5, 2016, Pages 514-524

Metabolic pathways in T cell activation and lineage differentiation

Author keywords

ACC; AMPK; Fatty acid metabolism; Glycolysis; Metabolism; mTOR; T cells

Indexed keywords

ACETYL COENZYME A; GLUCOSE TRANSPORTER 1; GLUCOSE TRANSPORTER 3; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROGENASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; MYC PROTEIN; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; TRANSCRIPTION FACTOR FOXP3; FATTY ACID;

EID: 85003681016     PISSN: 10445323     EISSN: 10963618     Source Type: Journal    
DOI: 10.1016/j.smim.2016.10.009     Document Type: Review
Times cited : (333)

References (141)
  • 1
    • 27844539406 scopus 로고    scopus 로고
    • The role of apoptosis in the development and function of T lymphocytes
    • [1] Zhang, N., et al. The role of apoptosis in the development and function of T lymphocytes. Cell Res. 15:10 (2005), 749–769.
    • (2005) Cell Res. , vol.15 , Issue.10 , pp. 749-769
    • Zhang, N.1
  • 2
    • 84866562625 scopus 로고    scopus 로고
    • Metabolic checkpoints in activated T cells
    • [2] Wang, R., Green, D.R., Metabolic checkpoints in activated T cells. Nat. Immunol. 13:10 (2012), 907–915.
    • (2012) Nat. Immunol. , vol.13 , Issue.10 , pp. 907-915
    • Wang, R.1    Green, D.R.2
  • 4
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • [4] Lunt, S.Y., Vander Heiden, M.G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27 (2011), 441–464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 5
    • 84959451365 scopus 로고    scopus 로고
    • The warburg effect: how does it benefit cancer cells?
    • [5] Liberti, M.V., Locasale, J.W., The warburg effect: how does it benefit cancer cells?. Trends Biochem. Sci. 41:3 (2016), 211–218.
    • (2016) Trends Biochem. Sci. , vol.41 , Issue.3 , pp. 211-218
    • Liberti, M.V.1    Locasale, J.W.2
  • 6
    • 84878831880 scopus 로고    scopus 로고
    • Posttranscriptional control of T cell effector function by aerobic glycolysis
    • [6] Chang, C.H., et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:6 (2013), 1239–1251.
    • (2013) Cell , vol.153 , Issue.6 , pp. 1239-1251
    • Chang, C.H.1
  • 7
    • 84987620524 scopus 로고    scopus 로고
    • Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism
    • [7] Otto, A.M., Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metabol. 4:1 (2016), 1–8.
    • (2016) Cancer Metabol. , vol.4 , Issue.1 , pp. 1-8
    • Otto, A.M.1
  • 8
    • 84939862815 scopus 로고    scopus 로고
    • 5 – respiratory chains
    • fourth edition Academic Press Boston
    • [8] Nicholls, D.G., Ferguson, S.J., 5 – respiratory chains. Bioenergetics, fourth edition, 2013, Academic Press, Boston, 91–157.
    • (2013) Bioenergetics , pp. 91-157
    • Nicholls, D.G.1    Ferguson, S.J.2
  • 9
    • 0141584882 scopus 로고    scopus 로고
    • Molecular biology of the cell
    • 4th edition N.Y.G. Science
    • [9] Alberts, B., Johnson, A., Lewis, J., Molecular biology of the cell. The Mitochondrion, 4th edition, 2002, N.Y.G. Science.
    • (2002) The Mitochondrion
    • Alberts, B.1    Johnson, A.2    Lewis, J.3
  • 10
    • 84964267895 scopus 로고    scopus 로고
    • Fatty acid metabolism in the regulation of T cell function
    • [10] Lochner, M., Berod, L., Sparwasser, T., Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36:2 (2015), 81–91.
    • (2015) Trends Immunol. , vol.36 , Issue.2 , pp. 81-91
    • Lochner, M.1    Berod, L.2    Sparwasser, T.3
  • 11
    • 0004026407 scopus 로고    scopus 로고
    • Lehninger Principles of Biochemistry
    • W.H Freeman New York
    • [11] Nelson, D.L., Lehninger, A.L., Cox, M.M., Lehninger Principles of Biochemistry. 2008, W.H Freeman, New York.
    • (2008)
    • Nelson, D.L.1    Lehninger, A.L.2    Cox, M.M.3
  • 12
    • 0034332403 scopus 로고    scopus 로고
    • Interleukin-7 mediates the homeostasis of naive and memory CD8T cells in vivo
    • [12] Schluns, K.S., et al. Interleukin-7 mediates the homeostasis of naive and memory CD8T cells in vivo. Nat. Immunol. 1:5 (2000), 426–432.
    • (2000) Nat. Immunol. , vol.1 , Issue.5 , pp. 426-432
    • Schluns, K.S.1
  • 13
    • 0034992146 scopus 로고    scopus 로고
    • T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo
    • [13] Vivien, L., Benoist, C., Mathis, D., T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int. Immunol. 13:6 (2001), 763–768.
    • (2001) Int. Immunol. , vol.13 , Issue.6 , pp. 763-768
    • Vivien, L.1    Benoist, C.2    Mathis, D.3
  • 14
    • 84865285455 scopus 로고    scopus 로고
    • Metabolic switching and fuel choice during T-cell differentiation and memory development
    • [14] van der Windt, G.J., Pearce, E.L., Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249:1 (2012), 27–42.
    • (2012) Immunol. Rev. , vol.249 , Issue.1 , pp. 27-42
    • van der Windt, G.J.1    Pearce, E.L.2
  • 15
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor myc controls metabolic reprogramming upon t lymphocyte activation
    • [15] Wang, R., et al. The transcription factor myc controls metabolic reprogramming upon t lymphocyte activation. Immunity 35:6 (2011), 871–882.
    • (2011) Immunity , vol.35 , Issue.6 , pp. 871-882
    • Wang, R.1
  • 16
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • [16] Frauwirth, K.A., et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16:6 (2002), 769–777.
    • (2002) Immunity , vol.16 , Issue.6 , pp. 769-777
    • Frauwirth, K.A.1
  • 17
    • 84876514626 scopus 로고    scopus 로고
    • Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
    • [17] Sinclair, L.V., et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14:5 (2013), 500–508.
    • (2013) Nat. Immunol. , vol.14 , Issue.5 , pp. 500-508
    • Sinclair, L.V.1
  • 18
    • 84904057246 scopus 로고    scopus 로고
    • The glucose transporter Glut1 is selectively essential for CD4T cell activation and effector function
    • [18] Macintyre, A.N., et al. The glucose transporter Glut1 is selectively essential for CD4T cell activation and effector function. Cell Metab. 20:1 (2014), 61–72.
    • (2014) Cell Metab. , vol.20 , Issue.1 , pp. 61-72
    • Macintyre, A.N.1
  • 19
    • 84941072886 scopus 로고    scopus 로고
    • Regulation of mammalian nucleotide metabolism and biosynthesis
    • [19] Lane, A.N., Fan, T.W., Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43:4 (2015), 2466–2485.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.4 , pp. 2466-2485
    • Lane, A.N.1    Fan, T.W.2
  • 20
    • 84964265506 scopus 로고    scopus 로고
    • Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy
    • [20] Swamy, M., et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17:6 (2016), 712–720.
    • (2016) Nat. Immunol. , vol.17 , Issue.6 , pp. 712-720
    • Swamy, M.1
  • 21
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in t cell activation and requires CD28-Mediated akt-Dependent and independent pathways
    • [21] Jacobs, S.R., et al. Glucose uptake is limiting in t cell activation and requires CD28-Mediated akt-Dependent and independent pathways. J. Immunol. 180:7 (2008), 4476–4486.
    • (2008) J. Immunol. , vol.180 , Issue.7 , pp. 4476-4486
    • Jacobs, S.R.1
  • 22
    • 84951276483 scopus 로고    scopus 로고
    • The cytotoxic T cell proteome and its shaping by mammalian Target of Rapamycin
    • [22] Hukelmann, J.L., et al. The cytotoxic T cell proteome and its shaping by mammalian Target of Rapamycin. Nat. Immunol. 17:1 (2016), 104–112.
    • (2016) Nat. Immunol. , vol.17 , Issue.1 , pp. 104-112
    • Hukelmann, J.L.1
  • 23
    • 78649737749 scopus 로고    scopus 로고
    • Induction of glucose metabolism in stimulated t lymphocytes is regulated by mitogen-Activated protein kinase signaling
    • [23] Marko, A.J., et al. Induction of glucose metabolism in stimulated t lymphocytes is regulated by mitogen-Activated protein kinase signaling. PLoS One, 5(11), 2010.
    • (2010) PLoS One , vol.5 , Issue.11
    • Marko, A.J.1
  • 24
    • 1642387020 scopus 로고    scopus 로고
    • Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions
    • [24] Lee, J.W., et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp. Mol. Med. 36:1 (2004), 1–12.
    • (2004) Exp. Mol. Med. , vol.36 , Issue.1 , pp. 1-12
    • Lee, J.W.1
  • 25
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • [25] Shi, L.Z., et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208:7 (2011), 1367–1376.
    • (2011) J. Exp. Med. , vol.208 , Issue.7 , pp. 1367-1376
    • Shi, L.Z.1
  • 26
    • 84871861969 scopus 로고    scopus 로고
    • PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8(+) T cells
    • [26] Finlay, D.K., et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8(+) T cells. J. Exp. Med. 209:13 (2012), 2441–2453.
    • (2012) J. Exp. Med. , vol.209 , Issue.13 , pp. 2441-2453
    • Finlay, D.K.1
  • 27
    • 84878423346 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response
    • [27] Babcock, J.T., et al. Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response. J. Biol. Chem. 288:22 (2013), 15687–15698.
    • (2013) J. Biol. Chem. , vol.288 , Issue.22 , pp. 15687-15698
    • Babcock, J.T.1
  • 29
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T-cell differentiation and function
    • [29] Waickman, A.T., Powell, J.D., mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249:1 (2012), 43–58.
    • (2012) Immunol. Rev. , vol.249 , Issue.1 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 30
    • 84959880781 scopus 로고    scopus 로고
    • The CASTOR proteins are arginine sensors for the mTORC1 pathway
    • [30] Chantranupong, L., et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:1 (2016), 153–164.
    • (2016) Cell , vol.165 , Issue.1 , pp. 153-164
    • Chantranupong, L.1
  • 31
    • 77951834544 scopus 로고    scopus 로고
    • Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells
    • [31] Chen, L., et al. Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab. Invest. 90:5 (2010), 762–773.
    • (2010) Lab. Invest. , vol.90 , Issue.5 , pp. 762-773
    • Chen, L.1
  • 32
    • 84861157343 scopus 로고    scopus 로고
    • Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells
    • [32] Waickman, A.T., Powell, J.D., Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. J. Immunol. 188:10 (2012), 4721–4729.
    • (2012) J. Immunol. , vol.188 , Issue.10 , pp. 4721-4729
    • Waickman, A.T.1    Powell, J.D.2
  • 33
    • 84894486696 scopus 로고    scopus 로고
    • Nutrient regulation of the mTOR complex 1 signaling pathway
    • [33] Kim, S.G., Buel, G.R., Blenis, J., Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 35:6 (2013), 463–473.
    • (2013) Mol. Cells , vol.35 , Issue.6 , pp. 463-473
    • Kim, S.G.1    Buel, G.R.2    Blenis, J.3
  • 34
    • 84919872308 scopus 로고    scopus 로고
    • Regulation of T cells by mTOR: the known knowns and the known unknowns
    • [34] Pollizzi, K.N., Powell, J.D., Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36:1 (2015), 13–20.
    • (2015) Trends Immunol. , vol.36 , Issue.1 , pp. 13-20
    • Pollizzi, K.N.1    Powell, J.D.2
  • 35
    • 84862908818 scopus 로고    scopus 로고
    • AMPK and mTOR in cellular energy homeostasis and drug targets
    • [35] Inoki, K., Kim, J., Guan, K.L., AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52 (2012), 381–400.
    • (2012) Annu. Rev. Pharmacol. Toxicol. , vol.52 , pp. 381-400
    • Inoki, K.1    Kim, J.2    Guan, K.L.3
  • 36
    • 84975885917 scopus 로고    scopus 로고
    • The effect of immunosuppressive molecules on T-cell metabolic reprogramming
    • [36] Fernandez-Ramos, A.A., et al. The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie 127 (2016), 23–36.
    • (2016) Biochimie , vol.127 , pp. 23-36
    • Fernandez-Ramos, A.A.1
  • 37
    • 0023865621 scopus 로고
    • Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes
    • [37] Brand, K., et al. Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes. Eur. J. Biochem. 172:3 (1988), 695–702.
    • (1988) Eur. J. Biochem. , vol.172 , Issue.3 , pp. 695-702
    • Brand, K.1
  • 38
    • 27744519400 scopus 로고    scopus 로고
    • Fuel feeds function: energy metabolism and the T-cell response
    • [38] Fox, C.J., Hammerman, P.S., Thompson, C.B., Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5:11 (2005), 844–852.
    • (2005) Nat. Rev. Immunol. , vol.5 , Issue.11 , pp. 844-852
    • Fox, C.J.1    Hammerman, P.S.2    Thompson, C.B.3
  • 39
    • 0018077453 scopus 로고
    • Aerobic glycolysis and lymphocyte transformation
    • [39] Hume, D.A., et al. Aerobic glycolysis and lymphocyte transformation. Biochem. J. 174:3 (1978), 703–709.
    • (1978) Biochem. J. , vol.174 , Issue.3 , pp. 703-709
    • Hume, D.A.1
  • 40
    • 84952902890 scopus 로고    scopus 로고
    • Immunometabolism: cellular metabolism turns immune regulator
    • [40] Loftus, R.M., Finlay, D.K., Immunometabolism: cellular metabolism turns immune regulator. J. Biol. Chem. 291:1 (2016), 1–10.
    • (2016) J. Biol. Chem. , vol.291 , Issue.1 , pp. 1-10
    • Loftus, R.M.1    Finlay, D.K.2
  • 41
    • 84947591002 scopus 로고    scopus 로고
    • T cell metabolism drives immunity
    • [41] Buck, M.D., O'Sullivan, D., Pearce, E.L., T cell metabolism drives immunity. J. Exp. Med. 212:9 (2015), 1345–1360.
    • (2015) J. Exp. Med. , vol.212 , Issue.9 , pp. 1345-1360
    • Buck, M.D.1    O'Sullivan, D.2    Pearce, E.L.3
  • 42
    • 84926640592 scopus 로고    scopus 로고
    • Glucose metabolism regulates cell activation differentiation, and functions
    • [42] Palmer, C.S., et al. Glucose metabolism regulates cell activation differentiation, and functions. Front. Immunol., 6, 2015.
    • (2015) Front. Immunol. , vol.6
    • Palmer, C.S.1
  • 43
    • 84920828240 scopus 로고    scopus 로고
    • The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems
    • [43] Barcia-Vieitez, R., Ramos-Martinez, J.I., The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems. IUBMB Life 66:11 (2014), 775–779.
    • (2014) IUBMB Life , vol.66 , Issue.11 , pp. 775-779
    • Barcia-Vieitez, R.1    Ramos-Martinez, J.I.2
  • 44
    • 84881177291 scopus 로고    scopus 로고
    • Serine, glycine and one-carbon units: cancer metabolism in full circle
    • [44] Locasale, J.W., Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:8 (2013), 572–583.
    • (2013) Nat. Rev. Cancer , vol.13 , Issue.8 , pp. 572-583
    • Locasale, J.W.1
  • 45
    • 84922080059 scopus 로고    scopus 로고
    • De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
    • [45] Berod, L., et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20:11 (2014), 1327–1333.
    • (2014) Nat. Med. , vol.20 , Issue.11 , pp. 1327-1333
    • Berod, L.1
  • 46
    • 84905510173 scopus 로고    scopus 로고
    • Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4T cells
    • [46] Cao, Y., Rathmell, J.C., Macintyre, A.N., Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4T cells. PLoS One, 9(8), 2014, e104104.
    • (2014) PLoS One , vol.9 , Issue.8 , pp. e104104
    • Cao, Y.1    Rathmell, J.C.2    Macintyre, A.N.3
  • 47
    • 0027474296 scopus 로고
    • Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes
    • [47] Bental, M., Deutsch, C., Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn. Reson. Med. 29:3 (1993), 317–326.
    • (1993) Magn. Reson. Med. , vol.29 , Issue.3 , pp. 317-326
    • Bental, M.1    Deutsch, C.2
  • 48
    • 84907200741 scopus 로고    scopus 로고
    • Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease
    • [48] Glick, G.D., et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J. Pharmacol. Exp. Ther. 351:2 (2014), 298–307.
    • (2014) J. Pharmacol. Exp. Ther. , vol.351 , Issue.2 , pp. 298-307
    • Glick, G.D.1
  • 49
    • 84992579961 scopus 로고    scopus 로고
    • Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription
    • [49] Boukouris, A.E., Zervopoulos, S.D., Michelakis, E.D., Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. Sci. 41:8 (2016), 712–730.
    • (2016) Trends Biochem. Sci. , vol.41 , Issue.8 , pp. 712-730
    • Boukouris, A.E.1    Zervopoulos, S.D.2    Michelakis, E.D.3
  • 50
    • 84947017066 scopus 로고    scopus 로고
    • Obesity drives th17 cell differentiation by inducing the lipid metabolic kinase: ACC1
    • [50] Endo, Y., et al. Obesity drives th17 cell differentiation by inducing the lipid metabolic kinase: ACC1. Cell Rep. 12:6 (2015), 1042–1055.
    • (2015) Cell Rep. , vol.12 , Issue.6 , pp. 1042-1055
    • Endo, Y.1
  • 51
    • 84985991676 scopus 로고    scopus 로고
    • Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease
    • [51] Raha, S., et al. Disruption of de novo fatty acid synthesis via acetyl-CoA carboxylase 1 inhibition prevents acute graft-versus-host disease. Eur. J. Immunol. 46:9 (2016), 2233–2238.
    • (2016) Eur. J. Immunol. , vol.46 , Issue.9 , pp. 2233-2238
    • Raha, S.1
  • 52
    • 84897505811 scopus 로고    scopus 로고
    • Regulator of fatty acid metabolism: acetyl coenzyme a carboxylase 1, controls T cell immunity
    • [52] Lee, J., et al. Regulator of fatty acid metabolism: acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192:7 (2014), 3190–3199.
    • (2014) J. Immunol. , vol.192 , Issue.7 , pp. 3190-3199
    • Lee, J.1
  • 53
    • 84877972355 scopus 로고    scopus 로고
    • Covalent lipid modifications of proteins
    • [53] Resh, M.D., Covalent lipid modifications of proteins. Curr. Biol. 23:10 (2013), R431–R435.
    • (2013) Curr. Biol. , vol.23 , Issue.10 , pp. R431-R435
    • Resh, M.D.1
  • 54
    • 78649862797 scopus 로고    scopus 로고
    • TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras
    • [54] Rubio, I., et al. TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. J. Immunol. 185:6 (2010), 3536–3543.
    • (2010) J. Immunol. , vol.185 , Issue.6 , pp. 3536-3543
    • Rubio, I.1
  • 55
    • 84945151577 scopus 로고    scopus 로고
    • Immunosuppression and aberrant t cell development in the absence of N-Myristoylation
    • [55] Rampoldi, F., et al. Immunosuppression and aberrant t cell development in the absence of N-Myristoylation. J. Immunol. 195:9 (2015), 4228–4243.
    • (2015) J. Immunol. , vol.195 , Issue.9 , pp. 4228-4243
    • Rampoldi, F.1
  • 57
    • 0347505003 scopus 로고    scopus 로고
    • CD28-mediated co-stimulation: a quantitative support for TCR signalling
    • [57] Acuto, O., Michel, F., CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3:12 (2003), 939–951.
    • (2003) Nat. Rev. Immunol. , vol.3 , Issue.12 , pp. 939-951
    • Acuto, O.1    Michel, F.2
  • 58
    • 0037881900 scopus 로고    scopus 로고
    • Regulation of fyn through translocation of activated lck into lipid rafts
    • [58] Filipp, D., et al. Regulation of fyn through translocation of activated lck into lipid rafts. J. Exp. Med. 197:9 (2003), 1221–1227.
    • (2003) J. Exp. Med. , vol.197 , Issue.9 , pp. 1221-1227
    • Filipp, D.1
  • 59
    • 0036247432 scopus 로고    scopus 로고
    • T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse
    • [59] Nel, A.E., T-cell activation through the antigen receptor. Part 1: Signaling components, signaling pathways, and signal integration at the T-cell antigen receptor synapse. J. Allergy Clin. Immunol. 109:5 (2002), 758–770.
    • (2002) J. Allergy Clin. Immunol. , vol.109 , Issue.5 , pp. 758-770
    • Nel, A.E.1
  • 60
    • 84874242919 scopus 로고    scopus 로고
    • Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
    • [60] Sena, L.A., et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:2 (2013), 225–236.
    • (2013) Immunity , vol.38 , Issue.2 , pp. 225-236
    • Sena, L.A.1
  • 61
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: central role of complex III
    • [61] Chen, Q., et al. Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 278:38 (2003), 36027–36031.
    • (2003) J. Biol. Chem. , vol.278 , Issue.38 , pp. 36027-36031
    • Chen, Q.1
  • 62
    • 0032980432 scopus 로고    scopus 로고
    • Requirement for transcription factor NFAT in interleukin-2 expression
    • [62] Chow, C.W., Rincon, M., Davis, R.J., Requirement for transcription factor NFAT in interleukin-2 expression. Mol. Cell. Biol. 19:3 (1999), 2300–2307.
    • (1999) Mol. Cell. Biol. , vol.19 , Issue.3 , pp. 2300-2307
    • Chow, C.W.1    Rincon, M.2    Davis, R.J.3
  • 63
    • 0024598444 scopus 로고
    • Polyamine oxidation down-regulates IL-2 production by human peripheral blood mononuclear cells
    • [63] Flescher, E., Bowlin, T.L., Talal, N., Polyamine oxidation down-regulates IL-2 production by human peripheral blood mononuclear cells. J. Immunol. 142:3 (1989), 907–912.
    • (1989) J. Immunol. , vol.142 , Issue.3 , pp. 907-912
    • Flescher, E.1    Bowlin, T.L.2    Talal, N.3
  • 64
    • 0028150839 scopus 로고
    • Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction
    • [64] Flescher, E., et al. Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction. J. Immunol. 153:11 (1994), 4880–4889.
    • (1994) J. Immunol. , vol.153 , Issue.11 , pp. 4880-4889
    • Flescher, E.1
  • 65
    • 84990990534 scopus 로고    scopus 로고
    • Immunometabolism and autoimmunity
    • [In press]
    • [65] Freitag, J., et al. Immunometabolism and autoimmunity. Immunol. Cell Biol., 2016 [In press].
    • (2016) Immunol. Cell Biol.
    • Freitag, J.1
  • 66
    • 34848913375 scopus 로고    scopus 로고
    • T cell activation requires mitochondrial translocation to the immunological synapse
    • [66] Quintana, A., et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl. Acad. Sci. U. S. A. 104:36 (2007), 14418–14423.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , Issue.36 , pp. 14418-14423
    • Quintana, A.1
  • 67
    • 77953758827 scopus 로고    scopus 로고
    • Calcium uptake mechanisms of mitochondria
    • [67] Santo-Domingo, J., Demaurex, N., Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797:6-7 (2010), 907–912.
    • (2010) Biochim. Biophys. Acta , vol.1797 , Issue.6-7 , pp. 907-912
    • Santo-Domingo, J.1    Demaurex, N.2
  • 68
    • 84907168821 scopus 로고    scopus 로고
    • Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling
    • [68] Ledderose, C., et al. Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J. Biol. Chem. 289:37 (2014), 25936–25945.
    • (2014) J. Biol. Chem. , vol.289 , Issue.37 , pp. 25936-25945
    • Ledderose, C.1
  • 69
    • 84892187011 scopus 로고    scopus 로고
    • Modulation of t cell metabolism and function through calcium signaling
    • [69] Fracchia, K.M., Pai, C.Y., Walsh, C.M., Modulation of t cell metabolism and function through calcium signaling. Front. Immunol., 4(324), 2013.
    • (2013) Front. Immunol. , vol.4 , Issue.324
    • Fracchia, K.M.1    Pai, C.Y.2    Walsh, C.M.3
  • 70
    • 73949151977 scopus 로고    scopus 로고
    • Mitochondria positioning controls local calcium influx in T cells
    • [70] Schwindling, C., et al. Mitochondria positioning controls local calcium influx in T cells. J. Immunol. 184:1 (2010), 184–190.
    • (2010) J. Immunol. , vol.184 , Issue.1 , pp. 184-190
    • Schwindling, C.1
  • 71
    • 79952192382 scopus 로고    scopus 로고
    • Immune cell regulation by autocrine purinergic signalling
    • [71] Junger, W.G., Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11:3 (2011), 201–212.
    • (2011) Nat. Rev. Immunol. , vol.11 , Issue.3 , pp. 201-212
    • Junger, W.G.1
  • 72
    • 84992389978 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and proteome remodeling promote one-Carbon metabolism for t cell activation
    • [72] Ron-Harel, N., et al. Mitochondrial biogenesis and proteome remodeling promote one-Carbon metabolism for t cell activation. Cell Metab. 24:1 (2016), 104–117.
    • (2016) Cell Metab. , vol.24 , Issue.1 , pp. 104-117
    • Ron-Harel, N.1
  • 73
    • 72249114913 scopus 로고    scopus 로고
    • One-Carbon Metabolism–Genome interactions in folate-Associated pathologies
    • [73] Stover, P.J., One-Carbon Metabolism–Genome interactions in folate-Associated pathologies. J. Nutr. 139:12 (2009), 2402–2405.
    • (2009) J. Nutr. , vol.139 , Issue.12 , pp. 2402-2405
    • Stover, P.J.1
  • 74
    • 84915746768 scopus 로고    scopus 로고
    • Serine catabolism regulates mitochondrial redox control during hypoxia
    • [74] Ye, J., et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4:12 (2014), 1406–1417.
    • (2014) Cancer Discov. , vol.4 , Issue.12 , pp. 1406-1417
    • Ye, J.1
  • 75
    • 84938232611 scopus 로고    scopus 로고
    • An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
    • [75] Birsoy, K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162:3 (2015), 540–551.
    • (2015) Cell , vol.162 , Issue.3 , pp. 540-551
    • Birsoy, K.1
  • 76
    • 84938234308 scopus 로고    scopus 로고
    • Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
    • [76] Sullivan, L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162:3 (2015), 552–563.
    • (2015) Cell , vol.162 , Issue.3 , pp. 552-563
    • Sullivan, L.B.1
  • 77
    • 0038644122 scopus 로고    scopus 로고
    • Regulation of quiescence in lymphocytes
    • [77] Yusuf, I., Fruman, D.A., Regulation of quiescence in lymphocytes. Trends Immunol. 24:7 (2003), 380–386.
    • (2003) Trends Immunol. , vol.24 , Issue.7 , pp. 380-386
    • Yusuf, I.1    Fruman, D.A.2
  • 78
    • 84953264064 scopus 로고    scopus 로고
    • The immune-Metabolic basis of effector memory CD4+ t cell function under hypoxic conditions
    • [78] Dimeloe, S., et al. The immune-Metabolic basis of effector memory CD4+ t cell function under hypoxic conditions. J. Immunol. 196:1 (2016), 106–114.
    • (2016) J. Immunol. , vol.196 , Issue.1 , pp. 106-114
    • Dimeloe, S.1
  • 79
    • 84976478216 scopus 로고    scopus 로고
    • Mitochondrial dynamics controls t cell fate through metabolic programming
    • [79] Buck, M.D., et al. Mitochondrial dynamics controls t cell fate through metabolic programming. Cell 166:1 (2016), 63–76.
    • (2016) Cell , vol.166 , Issue.1 , pp. 63-76
    • Buck, M.D.1
  • 80
    • 34548313688 scopus 로고    scopus 로고
    • OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing: membrane potential, and Yme1L
    • [80] Song, Z., et al. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing: membrane potential, and Yme1L. J. Cell Biol. 178:5 (2007), 749–755.
    • (2007) J. Cell Biol. , vol.178 , Issue.5 , pp. 749-755
    • Song, Z.1
  • 81
    • 84904392273 scopus 로고    scopus 로고
    • Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
    • [81] O'Sullivan, D., et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:1 (2014), 75–88.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 75-88
    • O'Sullivan, D.1
  • 82
    • 84883423963 scopus 로고    scopus 로고
    • CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
    • [82] van der Windt, G.J., et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. U. S. A. 110:35 (2013), 14336–14341.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , Issue.35 , pp. 14336-14341
    • van der Windt, G.J.1
  • 83
    • 84866040786 scopus 로고    scopus 로고
    • Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity
    • [83] Mayer, C.T., Berod, L., Sparwasser, T., Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity. Front. Immunol., 3, 2012, 183.
    • (2012) Front. Immunol. , vol.3 , pp. 183
    • Mayer, C.T.1    Berod, L.2    Sparwasser, T.3
  • 84
    • 79951772860 scopus 로고    scopus 로고
    • Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria
    • [84] Hadis, U., et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:2 (2011), 237–246.
    • (2011) Immunity , vol.34 , Issue.2 , pp. 237-246
    • Hadis, U.1
  • 85
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • [85] Michalek, R.D., et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186:6 (2011), 3299–3303.
    • (2011) J. Immunol. , vol.186 , Issue.6 , pp. 3299-3303
    • Michalek, R.D.1
  • 86
    • 84933532719 scopus 로고    scopus 로고
    • Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival
    • [86] Beier, U.H., et al. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J. 29:6 (2015), 2315–2326.
    • (2015) FASEB J. , vol.29 , Issue.6 , pp. 2315-2326
    • Beier, U.H.1
  • 87
    • 84941106659 scopus 로고    scopus 로고
    • Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance
    • [87] Zeng, H., et al. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol. Immunol. 12:5 (2015), 566–571.
    • (2015) Cell Mol. Immunol. , vol.12 , Issue.5 , pp. 566-571
    • Zeng, H.1
  • 88
    • 84930576092 scopus 로고    scopus 로고
    • Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α
    • [88] Mascanfroni, I.D., et al. Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α. Nat. Med. 21:6 (2015), 638–646.
    • (2015) Nat. Med. , vol.21 , Issue.6 , pp. 638-646
    • Mascanfroni, I.D.1
  • 89
    • 0028360374 scopus 로고
    • A mammalian protein targeted by G1-arresting rapamycin-receptor complex
    • [89] Brown, E.J., et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:6483 (1994), 756–758.
    • (1994) Nature , vol.369 , Issue.6483 , pp. 756-758
    • Brown, E.J.1
  • 90
    • 77957659746 scopus 로고    scopus 로고
    • Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology
    • [90] Gabardi, S., Baroletti, S.A., Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy 30:10 (2010), 1044–1056.
    • (2010) Pharmacotherapy , vol.30 , Issue.10 , pp. 1044-1056
    • Gabardi, S.1    Baroletti, S.A.2
  • 91
    • 85002236608 scopus 로고    scopus 로고
    • Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation
    • [91] Baroja-Mazo, A., et al. Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation. World J. Transplant. 6:1 (2016), 183–192.
    • (2016) World J. Transplant. , vol.6 , Issue.1 , pp. 183-192
    • Baroja-Mazo, A.1
  • 92
    • 84897380695 scopus 로고    scopus 로고
    • Oedema: solid organ transplantation and mammalian target of rapamycin inhibitor/proliferation signal inhibitors (mTOR-I/PSIs)
    • [92] Gharbi, C., Gueutin, V., Izzedine, H., Oedema: solid organ transplantation and mammalian target of rapamycin inhibitor/proliferation signal inhibitors (mTOR-I/PSIs). Clin. Kidney J. 7:2 (2014), 115–120.
    • (2014) Clin. Kidney J. , vol.7 , Issue.2 , pp. 115-120
    • Gharbi, C.1    Gueutin, V.2    Izzedine, H.3
  • 93
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • [93] Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149:2 (2012), 274–293.
    • (2012) Cell , vol.149 , Issue.2 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 94
    • 66949173728 scopus 로고    scopus 로고
    • mTOR differentially regulates effector and regulatory T cell lineage commitment
    • [94] Delgoffe, G.M., et al. mTOR differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:6 (2009), 832–844.
    • (2009) Immunity , vol.30 , Issue.6 , pp. 832-844
    • Delgoffe, G.M.1
  • 95
    • 33845379986 scopus 로고    scopus 로고
    • Rapamycin promotes expansion of functional CD4 + CD25 + FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients
    • [95] Battaglia, M., et al. Rapamycin promotes expansion of functional CD4 + CD25 + FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177:12 (2006), 8338–8347.
    • (2006) J. Immunol. , vol.177 , Issue.12 , pp. 8338-8347
    • Battaglia, M.1
  • 96
    • 20444373376 scopus 로고    scopus 로고
    • Rapamycin selectively expands CD4 + CD25 + FoxP3+ regulatory T cells
    • [96] Battaglia, M., Stabilini, A., Roncarolo, M.-G., Rapamycin selectively expands CD4 + CD25 + FoxP3+ regulatory T cells. Blood 105:12 (2005), 4743–4748.
    • (2005) Blood , vol.105 , Issue.12 , pp. 4743-4748
    • Battaglia, M.1    Stabilini, A.2    Roncarolo, M.-G.3
  • 97
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • [97] Delgoffe, G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12:4 (2011), 295–303.
    • (2011) Nat. Immunol. , vol.12 , Issue.4 , pp. 295-303
    • Delgoffe, G.M.1
  • 98
    • 84861134382 scopus 로고    scopus 로고
    • PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma
    • [98] Kurebayashi, Y., et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep. 1:4 (2012), 360–373.
    • (2012) Cell Rep. , vol.1 , Issue.4 , pp. 360-373
    • Kurebayashi, Y.1
  • 99
    • 84953837891 scopus 로고    scopus 로고
    • p((7)(0)S(6)K(1)) in the TORC1 pathway is essential for the differentiation of Th17Cells: but not Th1, Th2, or Treg cells in mice
    • [99] Sasaki, C.Y., et al. p((7)(0)S(6)K(1)) in the TORC1 pathway is essential for the differentiation of Th17Cells: but not Th1, Th2, or Treg cells in mice. Eur. J. Immunol. 46:1 (2016), 212–222.
    • (2016) Eur. J. Immunol. , vol.46 , Issue.1 , pp. 212-222
    • Sasaki, C.Y.1
  • 100
    • 84938294113 scopus 로고    scopus 로고
    • Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway
    • [100] Wu, X., et al. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem. Pharmacol. 96:4 (2015), 323–336.
    • (2015) Biochem. Pharmacol. , vol.96 , Issue.4 , pp. 323-336
    • Wu, X.1
  • 101
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
    • [101] Yang, K., et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39:6 (2013), 1043–1056.
    • (2013) Immunity , vol.39 , Issue.6 , pp. 1043-1056
    • Yang, K.1
  • 102
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • [102] Lee, K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32:6 (2010), 743–753.
    • (2010) Immunity , vol.32 , Issue.6 , pp. 743-753
    • Lee, K.1
  • 103
    • 84881192927 scopus 로고    scopus 로고
    • mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function
    • [103] Zeng, H., et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499:7459 (2013), 485–490.
    • (2013) Nature , vol.499 , Issue.7459 , pp. 485-490
    • Zeng, H.1
  • 104
    • 78650188983 scopus 로고    scopus 로고
    • An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
    • [104] Procaccini, C., et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33:6 (2010), 929–941.
    • (2010) Immunity , vol.33 , Issue.6 , pp. 929-941
    • Procaccini, C.1
  • 105
    • 33847312289 scopus 로고    scopus 로고
    • A key role of leptin in the control of regulatory T cell proliferation
    • [105] De Rosa, V., et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26:2 (2007), 241–255.
    • (2007) Immunity , vol.26 , Issue.2 , pp. 241-255
    • De Rosa, V.1
  • 106
    • 84960342626 scopus 로고    scopus 로고
    • The proteomic landscape of human ex vivo regulatory and conventional t cells reveals specific metabolic requirements
    • [106] Procaccini, C., et al. The proteomic landscape of human ex vivo regulatory and conventional t cells reveals specific metabolic requirements. Immunity 44:2 (2016), 406–421.
    • (2016) Immunity , vol.44 , Issue.2 , pp. 406-421
    • Procaccini, C.1
  • 107
    • 84955590563 scopus 로고    scopus 로고
    • Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
    • [107] Wei, J., et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17:3 (2016), 277–285.
    • (2016) Nat. Immunol. , vol.17 , Issue.3 , pp. 277-285
    • Wei, J.1
  • 108
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • [108] Yu, L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:7300 (2010), 942–946.
    • (2010) Nature , vol.465 , Issue.7300 , pp. 942-946
    • Yu, L.1
  • 109
    • 84928790557 scopus 로고    scopus 로고
    • Cellular size as a means of tracking mTOR activity and cell fate of CD4+ t cells upon antigen recognition
    • [109] Pollizzi, K.N., et al. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ t cells upon antigen recognition. PLoS One, 10(4), 2015.
    • (2015) PLoS One , vol.10 , Issue.4
    • Pollizzi, K.N.1
  • 110
    • 84963525930 scopus 로고    scopus 로고
    • Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation
    • [110] Pollizzi, K.N., et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8(+) T cell differentiation. Nat. Immunol. 17:6 (2016), 704–711.
    • (2016) Nat. Immunol. , vol.17 , Issue.6 , pp. 704-711
    • Pollizzi, K.N.1
  • 111
    • 0038199737 scopus 로고    scopus 로고
    • Management of cellular energy by the AMP-activated protein kinase system
    • [111] Hardie, D.G., et al. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546:1 (2003), 113–120.
    • (2003) FEBS Lett. , vol.546 , Issue.1 , pp. 113-120
    • Hardie, D.G.1
  • 112
    • 0344081177 scopus 로고    scopus 로고
    • Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status
    • [112] Hardie, D.G., Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:12 (2003), 5179–5183.
    • (2003) Endocrinology , vol.144 , Issue.12 , pp. 5179-5183
    • Hardie, D.G.1
  • 113
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • [113] Gwinn, D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:2 (2008), 214–226.
    • (2008) Mol. Cell , vol.30 , Issue.2 , pp. 214-226
    • Gwinn, D.M.1
  • 114
    • 84862083354 scopus 로고    scopus 로고
    • Cross-talk between AMPK and mTOR in regulating energy balance
    • [114] Xu, J., Ji, J., Yan, X.H., Cross-talk between AMPK and mTOR in regulating energy balance. Crit. Rev. Food Sci. Nutr. 52:5 (2012), 373–381.
    • (2012) Crit. Rev. Food Sci. Nutr. , vol.52 , Issue.5 , pp. 373-381
    • Xu, J.1    Ji, J.2    Yan, X.H.3
  • 115
    • 84924873032 scopus 로고    scopus 로고
    • Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma
    • [115] Zhao, D., et al. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer 136:11 (2015), 2556–2565.
    • (2015) Int. J. Cancer , vol.136 , Issue.11 , pp. 2556-2565
    • Zhao, D.1
  • 116
    • 84875999344 scopus 로고    scopus 로고
    • Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis
    • [116] Kang, K.Y., et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16:1 (2013), 85–92.
    • (2013) Int. Immunopharmacol. , vol.16 , Issue.1 , pp. 85-92
    • Kang, K.Y.1
  • 117
    • 77952359802 scopus 로고    scopus 로고
    • Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis
    • [117] Bai, A., et al. Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J. Pharmacol. Exp. Ther. 333:3 (2010), 717–725.
    • (2010) J. Pharmacol. Exp. Ther. , vol.333 , Issue.3 , pp. 717-725
    • Bai, A.1
  • 118
    • 84907228811 scopus 로고    scopus 로고
    • Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis
    • (p. 973986)
    • [118] Son, H.J., Lee, J., Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediat. Inflamm., 2014, 2014 (p. 973986).
    • (2014) Mediat. Inflamm. , vol.2014
    • Son, H.J.1    Lee, J.2
  • 119
    • 84959432961 scopus 로고    scopus 로고
    • Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance
    • [119] Lee, S.Y., et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS One, 10(9), 2015, e0135858.
    • (2015) PLoS One , vol.10 , Issue.9 , pp. e0135858
    • Lee, S.Y.1
  • 120
    • 77957913650 scopus 로고    scopus 로고
    • AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis
    • [120] Bai, A., et al. AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem. Pharmacol. 80:11 (2010), 1708–1717.
    • (2010) Biochem. Pharmacol. , vol.80 , Issue.11 , pp. 1708-1717
    • Bai, A.1
  • 121
    • 21244437079 scopus 로고    scopus 로고
    • 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis
    • [121] Nath, N., et al. 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175:1 (2005), 566–574.
    • (2005) J. Immunol. , vol.175 , Issue.1 , pp. 566-574
    • Nath, N.1
  • 122
    • 84995554140 scopus 로고    scopus 로고
    • The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation
    • [122] Gualdoni, G.A., et al. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J., 2016.
    • (2016) FASEB J.
    • Gualdoni, G.A.1
  • 123
    • 84918583229 scopus 로고    scopus 로고
    • Metformin directly acts on mitochondria to alter cellular bioenergetics
    • [123] Andrzejewski, S., et al. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab., 2, 2014, 12.
    • (2014) Cancer Metab. , vol.2 , pp. 12
    • Andrzejewski, S.1
  • 124
    • 84900468450 scopus 로고    scopus 로고
    • Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
    • [124] Wheaton, W.W., et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife, 3, 2014, p. e02242.
    • (2014) Elife , vol.3 , pp. p. e02242
    • Wheaton, W.W.1
  • 125
    • 33745823168 scopus 로고    scopus 로고
    • Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes
    • [125] Tamas, P., et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203:7 (2006), 1665–1670.
    • (2006) J. Exp. Med. , vol.203 , Issue.7 , pp. 1665-1670
    • Tamas, P.1
  • 126
    • 84921279945 scopus 로고    scopus 로고
    • AMPK in lymphocyte metabolism and function
    • [126] Andris, F., Leo, O., AMPK in lymphocyte metabolism and function. Int. Rev. Immunol. 34:1 (2015), 67–81.
    • (2015) Int. Rev. Immunol. , vol.34 , Issue.1 , pp. 67-81
    • Andris, F.1    Leo, O.2
  • 127
    • 23044437445 scopus 로고    scopus 로고
    • Ca2+/calmodulin-dependent protein kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
    • [127] Woods, A., et al. Ca2+/calmodulin-dependent protein kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:1 (2005), 21–33.
    • (2005) Cell Metab. , vol.2 , Issue.1 , pp. 21-33
    • Woods, A.1
  • 128
    • 44849141880 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
    • [128] Mayer, A., et al. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur. J. Immunol. 38:4 (2008), 948–956.
    • (2008) Eur. J. Immunol. , vol.38 , Issue.4 , pp. 948-956
    • Mayer, A.1
  • 129
    • 84921309472 scopus 로고    scopus 로고
    • The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
    • [129] Blagih, J., et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:1 (2015), 41–54.
    • (2015) Immunity , vol.42 , Issue.1 , pp. 41-54
    • Blagih, J.1
  • 130
    • 68349133231 scopus 로고    scopus 로고
    • Hypoxic tumor microenvironment and cancer cell differentiation
    • [130] Kim, Y., et al. Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med. 9:4 (2009), 425–434.
    • (2009) Curr. Mol. Med. , vol.9 , Issue.4 , pp. 425-434
    • Kim, Y.1
  • 131
    • 84880399893 scopus 로고    scopus 로고
    • Low-glucose conditions of tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuroblastoma cells
    • [131] Navratilova, J., et al. Low-glucose conditions of tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuroblastoma cells. Nutr. Cancer 65:5 (2013), 702–710.
    • (2013) Nutr. Cancer , vol.65 , Issue.5 , pp. 702-710
    • Navratilova, J.1
  • 132
    • 84941344937 scopus 로고    scopus 로고
    • Metabolic competition in the tumor microenvironment is a driver of cancer progression
    • [132] Chang, C.H., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:6 (2015), 1229–1241.
    • (2015) Cell , vol.162 , Issue.6 , pp. 1229-1241
    • Chang, C.H.1
  • 133
    • 84949196321 scopus 로고    scopus 로고
    • CD5L/AIM regulates lipid biosynthesis and restrains th17 cell pathogenicity
    • [133] Wang, C., et al. CD5L/AIM regulates lipid biosynthesis and restrains th17 cell pathogenicity. Cell 163:6 (2015), 1413–1427.
    • (2015) Cell , vol.163 , Issue.6 , pp. 1413-1427
    • Wang, C.1
  • 134
    • 84928057028 scopus 로고    scopus 로고
    • Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists
    • [134] Hu, X., et al. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists. Nat. Chem. Biol. 11:2 (2015), 141–147.
    • (2015) Nat. Chem. Biol. , vol.11 , Issue.2 , pp. 141-147
    • Hu, X.1
  • 135
    • 82555204246 scopus 로고    scopus 로고
    • Kinetic mechanisms of cholesterol synthesis: a review
    • [135] Panda, T., et al. Kinetic mechanisms of cholesterol synthesis: a review. Ind. Eng. Chem. Res. 50:23 (2011), 12847–12864.
    • (2011) Ind. Eng. Chem. Res. , vol.50 , Issue.23 , pp. 12847-12864
    • Panda, T.1
  • 136
    • 84920481006 scopus 로고    scopus 로고
    • Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation
    • [136] Gerriets, V.A., et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation. J. Clin. Invest. 125:1 (2015), 194–207.
    • (2015) J. Clin. Invest. , vol.125 , Issue.1 , pp. 194-207
    • Gerriets, V.A.1
  • 137
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation
    • [137] Huang, S.C.C., et al. Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation. Nat. Immunol. 15:9 (2014), 846–855.
    • (2014) Nat. Immunol. , vol.15 , Issue.9 , pp. 846-855
    • Huang, S.C.C.1
  • 138
    • 84962450023 scopus 로고    scopus 로고
    • Fatty acid oxidation in macrophage polarization
    • [138] Nomura, M., et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17:3 (2016), 216–217.
    • (2016) Nat. Immunol. , vol.17 , Issue.3 , pp. 216-217
    • Nomura, M.1
  • 139
    • 84891607730 scopus 로고    scopus 로고
    • T Effector cells require fatty acid metabolism during murine graft-versus-host disease
    • [139] Byersdorfer, C.A., et al. T Effector cells require fatty acid metabolism during murine graft-versus-host disease. Blood 122:18 (2013), 3230–3237.
    • (2013) Blood , vol.122 , Issue.18 , pp. 3230-3237
    • Byersdorfer, C.A.1
  • 140
    • 84946476393 scopus 로고    scopus 로고
    • Real-time metabolome profiling of the metabolic switch between starvation and growth
    • [140] Link, H., et al. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12:11 (2015), 1091–1097.
    • (2015) Nat. Methods , vol.12 , Issue.11 , pp. 1091-1097
    • Link, H.1
  • 141
    • 84978148203 scopus 로고    scopus 로고
    • A guide to immunometabolism for immunologists
    • [141] O'Neill, L.A.J., Kishton, R.J., Rathmell, J., A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16:9 (2016), 553–565.
    • (2016) Nat. Rev. Immunol. , vol.16 , Issue.9 , pp. 553-565
    • O'Neill, L.A.J.1    Kishton, R.J.2    Rathmell, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.