-
1
-
-
34250175093
-
Initial t cell receptor transgenic cell precursor frequency dictates critical aspects of the cd8(1) t cell response to infection
-
Badovinac VP, Haring JS, Harty JT. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(1) T cell response to infection. Immunity. 2007;26(6):827-841.
-
(2007)
Immunity
, vol.26
, Issue.6
, pp. 827-841
-
-
Badovinac, V.P.1
Haring, J.S.2
Harty, J.T.3
-
2
-
-
78149490549
-
The cell cycle time of cd81 t cells responding in vivo is controlled by the type of antigenic stimulus
-
Yoon H, Kim TS, Braciale TJ. The cell cycle time of CD81 T cells responding in vivo is controlled by the type of antigenic stimulus. PLoS ONE. 2010; 5(11):e15423.
-
(2010)
Plos ONE
, vol.5
, Issue.11
-
-
Yoon, H.1
Kim, T.S.2
Braciale, T.J.3
-
3
-
-
84867896903
-
Transcriptional control of effector and memory cd81 t cell differentiation
-
Kaech SM, Cui W. Transcriptional control of effector and memory CD81 T cell differentiation. Nat Rev Immunol. 2012;12(11):749-761.
-
(2012)
Nat Rev Immunol
, vol.12
, Issue.11
, pp. 749-761
-
-
Kaech, S.M.1
Cui, W.2
-
4
-
-
80051873375
-
Cd8(1) t cells: Foot soldiers of the immune system
-
Zhang N, Bevan MJ. CD8(1) T cells: foot soldiers of the immune system. Immunity. 2011;35(2):161-168.
-
(2011)
Immunity
, vol.35
, Issue.2
, pp. 161-168
-
-
Zhang, N.1
Bevan, M.J.2
-
5
-
-
0036884742
-
Progressive differentiation and selection of the fittest in the immune response
-
Lanzavecchia A, Sallusto F. Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol. 2002;2(12): 982-987.
-
(2002)
Nat Rev Immunol
, vol.2
, Issue.12
, pp. 982-987
-
-
Lanzavecchia, A.1
Sallusto, F.2
-
6
-
-
44449165597
-
Glucose uptake is limiting in t cell activation and requires cd28-mediated akt-dependent and independent pathways
-
Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol. 2008;180(7): 4476-4486.
-
(2008)
J Immunol
, vol.180
, Issue.7
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
Maciver, N.J.3
-
7
-
-
79953172571
-
Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory cd41 t cell subsets
-
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD41 T cell subsets. J Immunol. 2011; 186(6):3299-3303.
-
(2011)
J Immunol
, vol.186
, Issue.6
, pp. 3299-3303
-
-
Michalek, R.D.1
Gerriets, V.A.2
Jacobs, S.R.3
-
8
-
-
27744519400
-
Fuel feeds function: Energy metabolism and the t-cell response
-
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844-852.
-
(2005)
Nat Rev Immunol
, vol.5
, Issue.11
, pp. 844-852
-
-
Fox, C.J.1
Hammerman, P.S.2
Thompson, C.B.3
-
9
-
-
77953534607
-
Metabolism in t cell activation and differentiation
-
Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol. 2010;22(3): 314-320.
-
(2010)
Curr Opin Immunol
, vol.22
, Issue.3
, pp. 314-320
-
-
Pearce, E.L.1
-
10
-
-
0036069699
-
The cd28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, Riley JL, Harris MH, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769-777.
-
(2002)
Immunity
, vol.16
, Issue.6
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
-
11
-
-
67650096912
-
Enhancing cd8 t-cell memory by modulating fatty acid metabolism
-
Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103-107.
-
(2009)
Nature
, vol.460
, Issue.7251
, pp. 103-107
-
-
Pearce, E.L.1
Walsh, M.C.2
Cejas, P.J.3
-
12
-
-
84874242919
-
Mitochondria are required for antigen-specific t cell activation through reactive oxygen species signaling
-
Sena LA, Li S, Jairaman A, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225-236.
-
(2013)
Immunity
, vol.38
, Issue.2
, pp. 225-236
-
-
Sena, L.A.1
Li, S.2
Jairaman, A.3
-
13
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of cd81 t cell memory development
-
van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD81 T cell memory development. Immunity. 2012;36(1):68-78.
-
(2012)
Immunity
, vol.36
, Issue.1
, pp. 68-78
-
-
Van Der Windt, G.J.1
Everts, B.2
Chang, C.H.3
-
14
-
-
84255199079
-
The transcription factor myc controls metabolic reprogramming upon t lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011; 35(6):871-882.
-
(2011)
Immunity
, vol.35
, Issue.6
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
-
15
-
-
65349171937
-
Graft-versus-host disease
-
Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674): 1550-1561.
-
(2009)
Lancet
, vol.373
, Issue.9674
, pp. 1550-1561
-
-
Ferrara, J.L.1
Levine, J.E.2
Reddy, P.3
Holler, E.4
-
16
-
-
79251500689
-
Manipulating the bioenergetics of alloreactive t cells causes their selective apoptosis and arrests graft-versus-host disease
-
Gatza E, Wahl DR, Opipari AW, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med. 2011;3(67):67ra8.
-
(2011)
Sci Transl Med
, vol.3
, Issue.67
, pp. 67ra8
-
-
Gatza, E.1
Wahl, D.R.2
Opipari, A.W.3
-
17
-
-
0029909099
-
An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor h antigens and endotoxin
-
Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88(8):3230-3239.
-
(1996)
Blood
, vol.88
, Issue.8
, pp. 3230-3239
-
-
Cooke, K.R.1
Kobzik, L.2
Martin, T.R.3
-
18
-
-
84866064701
-
Temporal changes in pten and mtorc2 regulation of hematopoietic stem cell self-renewal and leukemia suppression
-
Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell. 2012;11(3):415-428.
-
(2012)
Cell Stem Cell
, vol.11
, Issue.3
, pp. 415-428
-
-
Magee, J.A.1
Ikenoue, T.2
Nakada, D.3
Lee, J.Y.4
Guan, K.L.5
Morrison, S.J.6
-
19
-
-
44949130214
-
Fat-specific protein 27 regulates storage of triacylglycerol
-
Keller P, Petrie JT, De Rose P, et al. Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem. 2008;283(21):14355-14365.
-
(2008)
J Biol Chem.
, vol.283
, Issue.21
, pp. 14355-14365
-
-
Keller, P.1
Petrie, J.T.2
De Rose, P.3
-
20
-
-
84857782245
-
Diverse mechanisms of growth inhibition by luteolin, resveratrol, and quercetin in mia paca-2 cells: A comparative glucose tracer study with the fatty acid synthase inhibitor c75
-
Harris DM, Li L, Chen M, Lagunero FT, Go VL, Boros LG. Diverse mechanisms of growth inhibition by luteolin, resveratrol, and quercetin in MIA PaCa-2 cells: a comparative glucose tracer study with the fatty acid synthase inhibitor C75. Metabolomics. 2012;8(2):201-210.
-
(2012)
Metabolomics
, vol.8
, Issue.2
, pp. 201-210
-
-
Harris, D.M.1
Li, L.2
Chen, M.3
Lagunero, F.T.4
Go, V.L.5
Boros, L.G.6
-
21
-
-
81155159789
-
13c isotopomer distribution analysis of lactate, glutamate and glucose
-
13C isotopomer distribution analysis of lactate, glutamate and glucose. Food Chem Toxicol. 2011;49(11):2968-2974.
-
(2011)
Food Chem Toxicol
, vol.49
, Issue.11
, pp. 2968-2974
-
-
Sonko, B.J.1
Schmitt, T.C.2
Guo, L.3
-
22
-
-
77955475969
-
Glutamine uptake and metabolism are coordinately regulated by Erk/mapk during t lymphocyte activation
-
Carr EL, Kelman A, Wu GS, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185(2):1037-1044.
-
(2010)
J Immunol
, vol.185
, Issue.2
, pp. 1037-1044
-
-
Carr, E.L.1
Kelman, A.2
Wu, G.S.3
-
23
-
-
84855303466
-
Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2h2o quantification
-
Jensen KK, Previs SF, Zhu L, et al. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification. Am J Physiol Endocrinol Metab. 2012;302(2):E209-E217.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.302
, Issue.2
, pp. E209-E217
-
-
Jensen, K.K.1
Previs, S.F.2
Zhu, L.3
-
24
-
-
49849085702
-
The transcriptional coactivator pgc-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis
-
Lehman JJ, Boudina S, Banke NH, et al. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol. 2008;295(1):H185-H196.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.295
, Issue.1
, pp. H185-H196
-
-
Lehman, J.J.1
Boudina, S.2
Banke, N.H.3
-
25
-
-
21144446106
-
Pgc-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC, Lehman JJ, Finck BN, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101.
-
(2005)
Plos Biol.
, vol.3
, Issue.4
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
-
26
-
-
0033977890
-
The coactivator pgc-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20(5):1868-1876.
-
(2000)
Mol Cell Biol
, vol.20
, Issue.5
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
27
-
-
34548014737
-
Revving the engine: Signal transduction fuels t cell activation
-
Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27(2):173-178.
-
(2007)
Immunity
, vol.27
, Issue.2
, pp. 173-178
-
-
Jones, R.G.1
Thompson, C.B.2
-
28
-
-
74949089659
-
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
-
Samudio I, Harmancey R, Fiegl M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120(1):142-156.
-
(2010)
J Clin Invest
, vol.120
, Issue.1
, pp. 142-156
-
-
Samudio, I.1
Harmancey, R.2
Fiegl, M.3
-
29
-
-
84859140799
-
Metabolic pathways in t cell fate and function
-
Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol. 2012; 33(4):168-173.
-
(2012)
Trends Immunol
, vol.33
, Issue.4
, pp. 168-173
-
-
Gerriets, V.A.1
Rathmell, J.C.2
-
30
-
-
0026728223
-
Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic t lymphocyte-defined non-mhc antigens
-
de Bueger M, Bakker A, Van Rood JJ, Van der Woude F, Goulmy E. Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol. 1992;149(5):1788-1794.
-
(1992)
J Immunol.
, vol.149
, Issue.5
, pp. 1788-1794
-
-
De Bueger, M.1
Bakker, A.2
Van Rood, J.J.3
Van Der Woude, F.4
Goulmy, E.5
-
31
-
-
0033561667
-
Biochemical and immunogenetic analysis of an immunodominant peptide (b6dom1) encoded by the classical h7 minor histocompatibility locus
-
Eden PA, Christianson GJ, Fontaine P, Wettstein PJ, Perreault C, Roopenian DC. Biochemical and immunogenetic analysis of an immunodominant peptide (B6dom1) encoded by the classical H7 minor histocompatibility locus. J Immunol. 1999; 162(8):4502-4510.
-
(1999)
J Immunol
, vol.162
, Issue.8
, pp. 4502-4510
-
-
Eden, P.A.1
Christianson, G.J.2
Fontaine, P.3
Wettstein, P.J.4
Perreault, C.5
Roopenian, D.C.6
|