-
1
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27:433-446.
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
-
2
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes L.C., et al. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13:589-598.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
-
3
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10190-10195.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
-
4
-
-
67049089786
-
SLP-2 is required for stress-induced mitochondrial hyperfusion
-
Tondera D., et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO. J. 2009, 28:1589-1600.
-
(2009)
EMBO. J.
, vol.28
, pp. 1589-1600
-
-
Tondera, D.1
-
5
-
-
53049099984
-
Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress
-
Jendrach M., et al. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008, 8:293-304.
-
(2008)
Mitochondrion
, vol.8
, pp. 293-304
-
-
Jendrach, M.1
-
6
-
-
70349650451
-
Mitochondrial networking protects beta-cells from nutrient-induced apoptosis
-
Molina A.J., et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 2009, 58:2303-2315.
-
(2009)
Diabetes
, vol.58
, pp. 2303-2315
-
-
Molina, A.J.1
-
7
-
-
33645840444
-
Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia
-
Zanelli S.A., et al. Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia. J. Neurochem. 2006, 97:724-736.
-
(2006)
J. Neurochem.
, vol.97
, pp. 724-736
-
-
Zanelli, S.A.1
-
8
-
-
0013936320
-
Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria
-
Hackenbrock C.R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 1966, 30:269-297.
-
(1966)
J. Cell Biol.
, vol.30
, pp. 269-297
-
-
Hackenbrock, C.R.1
-
9
-
-
0036007116
-
A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis
-
Scorrano L., et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2002, 2:55-67.
-
(2002)
Dev. Cell
, vol.2
, pp. 55-67
-
-
Scorrano, L.1
-
10
-
-
33745699393
-
OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion
-
Frezza C., et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 2006, 126:177-189.
-
(2006)
Cell
, vol.126
, pp. 177-189
-
-
Frezza, C.1
-
11
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati S., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013, 155:160-171.
-
(2013)
Cell
, vol.155
, pp. 160-171
-
-
Cogliati, S.1
-
12
-
-
4644266043
-
Activation of endogenous Cdc42 visualized in living cells
-
Nalbant P., et al. Activation of endogenous Cdc42 visualized in living cells. Science 2004, 305:1615-1619.
-
(2004)
Science
, vol.305
, pp. 1615-1619
-
-
Nalbant, P.1
-
13
-
-
41949138471
-
Controlling the rates of biochemical reactions and signaling networks by shape and volume changes
-
Lizana L., et al. Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:4099-4104.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 4099-4104
-
-
Lizana, L.1
-
14
-
-
0035990298
-
Fasting induces cyanide-resistant respiration and oxidative stress in the amoeba Chaos carolinensis: implications for the cubic structural transition in mitochondrial membranes
-
Deng Y., et al. Fasting induces cyanide-resistant respiration and oxidative stress in the amoeba Chaos carolinensis: implications for the cubic structural transition in mitochondrial membranes. Protoplasma 2002, 219:160-167.
-
(2002)
Protoplasma
, vol.219
, pp. 160-167
-
-
Deng, Y.1
-
15
-
-
0034709621
-
Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources
-
Li Q.T., et al. Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources. Biochem. Biophys. Res. Commun. 2000, 273:72-76.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 72-76
-
-
Li, Q.T.1
-
16
-
-
84923357261
-
Trans-mitochondrial coordination of cristae at regulated membrane junctions
-
Picard M., et al. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 2015, 6:6259.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6259
-
-
Picard, M.1
-
17
-
-
0037494885
-
The cristal membrane of mitochondria is the principal site of oxidative phosphorylation
-
Gilkerson R.W., et al. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 2003, 546:355-358.
-
(2003)
FEBS Lett.
, vol.546
, pp. 355-358
-
-
Gilkerson, R.W.1
-
18
-
-
84930926530
-
Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae
-
Munoz-Gomez S.A., et al. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr. Biol. 2015, 25:1489-1495.
-
(2015)
Curr. Biol.
, vol.25
, pp. 1489-1495
-
-
Munoz-Gomez, S.A.1
-
19
-
-
41949123425
-
Dimer ribbons of ATP synthase shape the inner mitochondrial membrane
-
Strauss M., et al. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 2008, 27:1154-1160.
-
(2008)
EMBO J.
, vol.27
, pp. 1154-1160
-
-
Strauss, M.1
-
20
-
-
80052177663
-
Macromolecular organization of ATP synthase and complex I in whole mitochondria
-
Davies K.M., et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14121-14126.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14121-14126
-
-
Davies, K.M.1
-
21
-
-
26844548023
-
Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane
-
Dudkina N.V., et al. Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS. Lett. 2005, 579:5769-5772.
-
(2005)
FEBS. Lett.
, vol.579
, pp. 5769-5772
-
-
Dudkina, N.V.1
-
22
-
-
84875601992
-
Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution
-
Wilkens V., et al. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J. Cell Sci. 2013, 126:103-116.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 103-116
-
-
Wilkens, V.1
-
23
-
-
84920407372
-
Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes
-
Rieger B., et al. Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes. Nat. Commun. 2014, 5:3103.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3103
-
-
Rieger, B.1
-
24
-
-
58149308564
-
Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics
-
Khalifat N., et al. Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys. J. 2008, 95:4924-4933.
-
(2008)
Biophys. J.
, vol.95
, pp. 4924-4933
-
-
Khalifat, N.1
-
25
-
-
84925949899
-
Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals
-
Jiko C., et al. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 2015, 4:e06119.
-
(2015)
eLife
, vol.4
, pp. e06119
-
-
Jiko, C.1
-
26
-
-
84923685347
-
Mitochondria: from cell death executioners to regulators of cell differentiation
-
Kasahara A., Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014, 24:761-770.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 761-770
-
-
Kasahara, A.1
Scorrano, L.2
-
27
-
-
84897518469
-
Uniform nomenclature for the mitochondrial contact site and cristae organizing system
-
Pfanner N., et al. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell Biol. 2014, 204:1083-1086.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 1083-1086
-
-
Pfanner, N.1
-
28
-
-
84878437545
-
STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria
-
Jans D.C., et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:8936-8941.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 8936-8941
-
-
Jans, D.C.1
-
29
-
-
84929154199
-
MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture
-
Friedman J.R., et al. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 2015, 4:07739.
-
(2015)
eLife
, vol.4
, pp. 07739
-
-
Friedman, J.R.1
-
30
-
-
78951493639
-
ChChd3, an inner mitochondrial membrane protein, is essential for maintaining cristae integrity and mitochondrial function
-
Darshi M., et al. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining cristae integrity and mitochondrial function. J. Biol. Chem. 2010, 288:2918-2932.
-
(2010)
J. Biol. Chem.
, vol.288
, pp. 2918-2932
-
-
Darshi, M.1
-
31
-
-
84857869559
-
Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes
-
Ott C., et al. Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol. Cell. Biol. 2012, 32:1173-1188.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1173-1188
-
-
Ott, C.1
-
32
-
-
84893650998
-
C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly
-
Kozjak-Pavlovic V., et al. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly. J. Mol. Biol. 2014, 426:908-920.
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 908-920
-
-
Kozjak-Pavlovic, V.1
-
33
-
-
84861627801
-
Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration
-
Perciavalle R.M., et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 2012, 14:575-583.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 575-583
-
-
Perciavalle, R.M.1
-
34
-
-
8644270474
-
OPA1 requires mitofusin 1 to promote mitochondrial fusion
-
Cipolat S., et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15927-15932.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15927-15932
-
-
Cipolat, S.1
-
35
-
-
49349112331
-
OPA1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization
-
Yamaguchi R., et al. OPA1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 2008, 31:557-569.
-
(2008)
Mol. Cell
, vol.31
, pp. 557-569
-
-
Yamaguchi, R.1
-
36
-
-
78650284389
-
Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli
-
Costa V., et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol. Med. 2010, 2:490-503.
-
(2010)
EMBO Mol. Med.
, vol.2
, pp. 490-503
-
-
Costa, V.1
-
37
-
-
77953123212
-
The BH3-only Bnip3 binds to the dynamin OPA1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms
-
Landes T., et al. The BH3-only Bnip3 binds to the dynamin OPA1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 2010, 11:459-465.
-
(2010)
EMBO Rep.
, vol.11
, pp. 459-465
-
-
Landes, T.1
-
38
-
-
9144238312
-
Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy
-
Lodi R., et al. Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann. Neurol. 2004, 56:719-723.
-
(2004)
Ann. Neurol.
, vol.56
, pp. 719-723
-
-
Lodi, R.1
-
39
-
-
38849190029
-
OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion
-
Zanna C., et al. OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain 2008, 131:352-367.
-
(2008)
Brain
, vol.131
, pp. 352-367
-
-
Zanna, C.1
-
40
-
-
84864193527
-
Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations
-
Agier V., et al. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim. Biophys. Acta 2012, 1822:1570-1580.
-
(2012)
Biochim. Biophys. Acta
, vol.1822
, pp. 1570-1580
-
-
Agier, V.1
-
41
-
-
54449084658
-
A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function
-
Spinazzi M., et al. A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum. Mol. Genet. 2008, 17:3291-3302.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 3291-3302
-
-
Spinazzi, M.1
-
42
-
-
52249096823
-
Mitochondrial oxidative phosphorylation in autosomal dominant optic atrophy
-
Mayorov V.I., et al. Mitochondrial oxidative phosphorylation in autosomal dominant optic atrophy. BMC. Biochem. 2008, 9:22.
-
(2008)
BMC. Biochem.
, vol.9
, pp. 22
-
-
Mayorov, V.I.1
-
43
-
-
84930607266
-
The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage
-
Varanita T., et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015, 21:834-844.
-
(2015)
Cell Metab.
, vol.21
, pp. 834-844
-
-
Varanita, T.1
-
44
-
-
84930588143
-
OPA1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models
-
Civiletto G., et al. OPA1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 2015, 21:845-854.
-
(2015)
Cell Metab.
, vol.21
, pp. 845-854
-
-
Civiletto, G.1
-
45
-
-
84897382106
-
Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
-
Khacho M., et al. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat. Commun. 2014, 5:3550.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3550
-
-
Khacho, M.1
-
46
-
-
84894475127
-
ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics
-
Norton M., et al. ROMO1 is an essential redox-dependent regulator of mitochondrial dynamics. Sci. Signal. 2014, 7:ra10.
-
(2014)
Sci. Signal.
, vol.7
, pp. ra10
-
-
Norton, M.1
-
47
-
-
84896689137
-
A new non-canonical pathway of Galpha(q) protein regulating mitochondrial dynamics and bioenergetics
-
Beninca C., et al. A new non-canonical pathway of Galpha(q) protein regulating mitochondrial dynamics and bioenergetics. Cell. Signal. 2014, 26:1135-1146.
-
(2014)
Cell. Signal.
, vol.26
, pp. 1135-1146
-
-
Beninca, C.1
-
48
-
-
80054831882
-
Structural biology. Up close with membrane lipid-protein complexes
-
Whitelegge J. Structural biology. Up close with membrane lipid-protein complexes. Science 2011, 334:320-321.
-
(2011)
Science
, vol.334
, pp. 320-321
-
-
Whitelegge, J.1
-
49
-
-
84876514398
-
Cellular microcompartments constitute general suborganellar functional units in cells
-
Holthuis J.C., Ungermann C. Cellular microcompartments constitute general suborganellar functional units in cells. Biol. Chem. 2013, 394:151-161.
-
(2013)
Biol. Chem.
, vol.394
, pp. 151-161
-
-
Holthuis, J.C.1
Ungermann, C.2
-
50
-
-
0033046823
-
X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060)
-
Barth P.G., et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060). J. Inherit. Metab. Dis. 1999, 22:555-567.
-
(1999)
J. Inherit. Metab. Dis.
, vol.22
, pp. 555-567
-
-
Barth, P.G.1
-
51
-
-
84867579830
-
Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes
-
Bottinger L., et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 2012, 423:677-686.
-
(2012)
J. Mol. Biol.
, vol.423
, pp. 677-686
-
-
Bottinger, L.1
-
52
-
-
79959727395
-
Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria
-
Acehan D., et al. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys. J. 2011, 100:2184-2192.
-
(2011)
Biophys. J.
, vol.100
, pp. 2184-2192
-
-
Acehan, D.1
-
53
-
-
84879493450
-
Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome
-
Dudek J., et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 2013, 11:806-819.
-
(2013)
Stem Cell Res.
, vol.11
, pp. 806-819
-
-
Dudek, J.1
-
54
-
-
84924917575
-
C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization
-
Desmurs M., et al. C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol. Cell. Biol. 2015, 35:1139-1156.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 1139-1156
-
-
Desmurs, M.1
-
55
-
-
39449112660
-
Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria
-
Merkwirth C., et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008, 22:476-488.
-
(2008)
Genes Dev.
, vol.22
, pp. 476-488
-
-
Merkwirth, C.1
-
56
-
-
0032954927
-
Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria
-
Steglich G., et al. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol. Cell. Biol. 1999, 19:3435-3442.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 3435-3442
-
-
Steglich, G.1
-
57
-
-
0034213904
-
Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins
-
Nijtmans L.G., et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 2000, 19:2444-2451.
-
(2000)
EMBO J.
, vol.19
, pp. 2444-2451
-
-
Nijtmans, L.G.1
-
58
-
-
84867916208
-
Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses
-
Christie D.A., et al. Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses. J. Immunol. 2012, 189:4349-4360.
-
(2012)
J. Immunol.
, vol.189
, pp. 4349-4360
-
-
Christie, D.A.1
-
59
-
-
84929222831
-
Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function
-
Mitsopoulos P., et al. Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol. Cell. Biol. 2015, 35:1838-1847.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 1838-1847
-
-
Mitsopoulos, P.1
-
60
-
-
84872081577
-
Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV
-
Bazan S., et al. Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J. Biol. Chem. 2013, 288:401-411.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 401-411
-
-
Bazan, S.1
-
61
-
-
84888419234
-
The importance of cardiolipin synthase for mitochondrial ultrastructure, respiratory function, plant development, and stress responses in Arabidopsis
-
Pineau B., et al. The importance of cardiolipin synthase for mitochondrial ultrastructure, respiratory function, plant development, and stress responses in Arabidopsis. Plant Cell 2013, 25:4195-4208.
-
(2013)
Plant Cell
, vol.25
, pp. 4195-4208
-
-
Pineau, B.1
-
62
-
-
84897600256
-
An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization
-
Gehl B., et al. An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization. Plant Physiol. 2014, 164:1389-1400.
-
(2014)
Plant Physiol.
, vol.164
, pp. 1389-1400
-
-
Gehl, B.1
-
63
-
-
84901049393
-
Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?
-
Gehl B., Sweetlove L.J. Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?. Front. Plant Sci. 2014, 5:141.
-
(2014)
Front. Plant Sci.
, vol.5
, pp. 141
-
-
Gehl, B.1
Sweetlove, L.J.2
-
64
-
-
0036470775
-
The ATP synthase is involved in generating mitochondrial cristae morphology
-
Paumard P., et al. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 2002, 21:221-230.
-
(2002)
EMBO J.
, vol.21
, pp. 221-230
-
-
Paumard, P.1
-
65
-
-
84884863198
-
Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super-)complex matter?
-
Habersetzer J., et al. Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super-)complex matter?. PLoS ONE 2013, 8:e75429.
-
(2013)
PLoS ONE
, vol.8
, pp. e75429
-
-
Habersetzer, J.1
-
66
-
-
84860528911
-
The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts
-
Kao L.P., et al. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts. Toxicol. Appl. Pharmacol. 2012, 261:42-49.
-
(2012)
Toxicol. Appl. Pharmacol.
, vol.261
, pp. 42-49
-
-
Kao, L.P.1
-
67
-
-
84877583490
-
IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling
-
Faccenda D., et al. IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling. Cell Death Differ. 2013, 20:686-697.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 686-697
-
-
Faccenda, D.1
-
68
-
-
79959915345
-
Atypical cristae morphology of human syncytiotrophoblast mitochondria: role for complex V
-
De los Rios C.D., et al. Atypical cristae morphology of human syncytiotrophoblast mitochondria: role for complex V. J. Biol. Chem. 2011, 286:23911-23919.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 23911-23919
-
-
De los Rios, C.D.1
-
69
-
-
84863719422
-
Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts
-
Wasilewski M., et al. Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr. Biol. 2012, 22:1228-1234.
-
(2012)
Curr. Biol.
, vol.22
, pp. 1228-1234
-
-
Wasilewski, M.1
-
70
-
-
84928938497
-
ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation
-
Teixeira F.K., et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat. Cell Biol. 2015, 17:689-696.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 689-696
-
-
Teixeira, F.K.1
-
71
-
-
80052691753
-
The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation
-
Hom J.R., et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 2011, 21:469-478.
-
(2011)
Dev. Cell
, vol.21
, pp. 469-478
-
-
Hom, J.R.1
-
72
-
-
84887321199
-
Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling
-
Kasahara A., et al. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 2013, 342:734-737.
-
(2013)
Science
, vol.342
, pp. 734-737
-
-
Kasahara, A.1
-
73
-
-
84876031864
-
Dimers of mitochondrial ATP synthase form the permeability transition pore
-
Giorgio V., et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5887-5892.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5887-5892
-
-
Giorgio, V.1
-
74
-
-
84884344280
-
Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria
-
Daum B., et al. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:15301-15306.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 15301-15306
-
-
Daum, B.1
-
75
-
-
67449168381
-
Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g
-
Rabl R., et al. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J. Cell Biol. 2009, 185:1047-1063.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1047-1063
-
-
Rabl, R.1
-
76
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
-
(2013)
Cell Metab.
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
77
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191:1367-1380.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
-
78
-
-
78649463381
-
Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
-
Gegg M.E., et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19:4861-4870.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 4861-4870
-
-
Gegg, M.E.1
-
79
-
-
84865395988
-
Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis
-
Leboucher G.P., et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell 2012, 47:547-557.
-
(2012)
Mol. Cell
, vol.47
, pp. 547-557
-
-
Leboucher, G.P.1
-
80
-
-
84871802627
-
Recent advances into the understanding of mitochondrial fission
-
Elgass K., et al. Recent advances into the understanding of mitochondrial fission. Biochim. Biophys. Acta 2013, 1833:150-161.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 150-161
-
-
Elgass, K.1
-
81
-
-
33746299692
-
Regulation of mitochondrial morphology through proteolytic cleavage of OPA1
-
Ishihara N., et al. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 2006, 25:2966-2977.
-
(2006)
EMBO J.
, vol.25
, pp. 2966-2977
-
-
Ishihara, N.1
-
82
-
-
76149140917
-
Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1
-
Ehses S., et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 2009, 187:1023-1036.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 1023-1036
-
-
Ehses, S.1
-
83
-
-
33745685054
-
Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling
-
Cipolat S., et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006, 126:163-175.
-
(2006)
Cell
, vol.126
, pp. 163-175
-
-
Cipolat, S.1
-
84
-
-
84941710348
-
Metalloprotease OMA1 fine-tunes mitochondrial bioenergetic function and respiratory supercomplex stability
-
Bohovych I., et al. Metalloprotease OMA1 fine-tunes mitochondrial bioenergetic function and respiratory supercomplex stability. Sci. Rep. 2015, 5:13989.
-
(2015)
Sci. Rep.
, vol.5
, pp. 13989
-
-
Bohovych, I.1
-
85
-
-
79958797425
-
Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes
-
Makino A., et al. Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300:R1296-R1302.
-
(2011)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.300
, pp. R1296-R1302
-
-
Makino, A.1
-
86
-
-
77953526521
-
OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation
-
Ban T., et al. OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum. Mol. Genet. 2010, 19:2113-2122.
-
(2010)
Hum. Mol. Genet.
, vol.19
, pp. 2113-2122
-
-
Ban, T.1
-
87
-
-
84909595098
-
A Mitofusin-2-dependent inactivating cleavage of OPA1 links changes in mitochondria cristae and ER contacts in the postprandial liver
-
Sood A., et al. A Mitofusin-2-dependent inactivating cleavage of OPA1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16017-16022.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16017-16022
-
-
Sood, A.1
-
88
-
-
84949653400
-
The oxidation status of Mic19 regulates MICOS assembly
-
Sakowska P., et al. The oxidation status of Mic19 regulates MICOS assembly. Mol. Cell. Biol. 2015, 35:4222-4237.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 4222-4237
-
-
Sakowska, P.1
-
89
-
-
84878527132
-
Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes
-
Simsek-Duran F., et al. Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS ONE 2013, 8:e64955.
-
(2013)
PLoS ONE
, vol.8
, pp. e64955
-
-
Simsek-Duran, F.1
-
90
-
-
70349446460
-
Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart
-
Gomez L.A., et al. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch. Biochem. Biophys. 2009, 490:30-35.
-
(2009)
Arch. Biochem. Biophys.
, vol.490
, pp. 30-35
-
-
Gomez, L.A.1
-
91
-
-
84859822387
-
OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs
-
Hofmann A.D., et al. OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS ONE 2012, 7:e35160.
-
(2012)
PLoS ONE
, vol.7
, pp. e35160
-
-
Hofmann, A.D.1
-
92
-
-
0029685882
-
VDAC, a channel in the outer mitochondrial membrane
-
Colombini M., et al. VDAC, a channel in the outer mitochondrial membrane. Ion Channels 1996, 4:169-202.
-
(1996)
Ion Channels
, vol.4
, pp. 169-202
-
-
Colombini, M.1
-
93
-
-
0036702195
-
Mitochondrial protein import: two membranes, three translocases
-
Pfanner N., Wiedemann N. Mitochondrial protein import: two membranes, three translocases. Curr. Opin. Cell Biol. 2002, 14:400-411.
-
(2002)
Curr. Opin. Cell Biol.
, vol.14
, pp. 400-411
-
-
Pfanner, N.1
Wiedemann, N.2
-
94
-
-
0030910776
-
The Tom and Tim machine
-
Pfanner N., Meijer M. The Tom and Tim machine. Curr. Biol. 1997, 7:R100-R103.
-
(1997)
Curr. Biol.
, vol.7
, pp. R100-R103
-
-
Pfanner, N.1
Meijer, M.2
-
95
-
-
0037815083
-
Protein insertion into the inner membrane of mitochondria
-
Herrmann J.M., Neupert W. Protein insertion into the inner membrane of mitochondria. IUBMB Life 2003, 55:219-225.
-
(2003)
IUBMB Life
, vol.55
, pp. 219-225
-
-
Herrmann, J.M.1
Neupert, W.2
-
96
-
-
55949098781
-
Respiratory active mitochondrial supercomplexes
-
Acin-Perez R., et al. Respiratory active mitochondrial supercomplexes. Mol. Cell 2008, 32:529-539.
-
(2008)
Mol. Cell
, vol.32
, pp. 529-539
-
-
Acin-Perez, R.1
-
97
-
-
0035851099
-
The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes
-
Schagger H., Pfeiffer K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 2001, 276:37861-37867.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 37861-37867
-
-
Schagger, H.1
Pfeiffer, K.2
-
98
-
-
2942700102
-
Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina
-
Krause F., et al. Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J. Biol. Chem. 2004, 279:26453-26461.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 26453-26461
-
-
Krause, F.1
-
99
-
-
37549019364
-
Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria
-
Marques I., et al. Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria. Eukaryot. Cell 2007, 6:2391-2405.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 2391-2405
-
-
Marques, I.1
-
100
-
-
84896691807
-
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation
-
Chaban Y., et al. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim. Biophys. Acta 2014, 1837:418-426.
-
(2014)
Biochim. Biophys. Acta
, vol.1837
, pp. 418-426
-
-
Chaban, Y.1
-
101
-
-
1042278126
-
Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans
-
Stroh A., et al. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J. Biol. Chem. 2004, 279:5000-5007.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 5000-5007
-
-
Stroh, A.1
-
102
-
-
14744270722
-
Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III
-
Dudkina N.V., et al. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:3225-3229.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 3225-3229
-
-
Dudkina, N.V.1
-
103
-
-
0141786914
-
New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II
-
Eubel H., et al. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol. 2003, 133:274-286.
-
(2003)
Plant Physiol.
, vol.133
, pp. 274-286
-
-
Eubel, H.1
-
104
-
-
77955638748
-
Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells
-
Muster B., et al. Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. PLoS ONE 2010, 5:e11910.
-
(2010)
PLoS ONE
, vol.5
, pp. e11910
-
-
Muster, B.1
-
105
-
-
84861320506
-
Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex
-
Strogolova V., et al. Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol. Cell. Biol. 2012, 32:1363-1373.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1363-1373
-
-
Strogolova, V.1
-
106
-
-
84863229229
-
Identification of a protein mediating respiratory supercomplex stability
-
Chen Y.C., et al. Identification of a protein mediating respiratory supercomplex stability. Cell Metab. 2012, 15:348-360.
-
(2012)
Cell Metab.
, vol.15
, pp. 348-360
-
-
Chen, Y.C.1
-
107
-
-
84879617853
-
Supercomplex assembly determines electron flux in the mitochondrial electron transport chain
-
Lapuente-Brun E., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 2013, 340:1567-1570.
-
(2013)
Science
, vol.340
, pp. 1567-1570
-
-
Lapuente-Brun, E.1
-
108
-
-
84892986978
-
Genetic variability of respiratory complex abundance, organization and activity in mouse brain
-
Buck K.J., et al. Genetic variability of respiratory complex abundance, organization and activity in mouse brain. Genes Brain Behav. 2014, 13:135-143.
-
(2014)
Genes Brain Behav.
, vol.13
, pp. 135-143
-
-
Buck, K.J.1
-
109
-
-
84938336729
-
RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model
-
Fischer F., et al. RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model. Sci. Rep. 2015, 5:12697.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12697
-
-
Fischer, F.1
-
110
-
-
84878989199
-
MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations
-
Hatle K.M., et al. MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol. Cell. Biol. 2013, 33:2302-2314.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 2302-2314
-
-
Hatle, K.M.1
|