-
1
-
-
84857097177
-
RNA-guided genetic silencing systems in bacteria and archaea
-
Wiedenheft, B.; Sternberg, S.H.; Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482, 331–338. [CrossRef] [PubMed]
-
(2012)
Nature
, vol.482
, pp. 331-338
-
-
Wiedenheft, B.1
Sternberg, S.H.2
Doudna, J.A.3
-
2
-
-
80755187812
-
Crispr-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation
-
Bhaya, D.; Davison, M.; Barrangou, R. Crispr-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 2011, 45, 273–297. [CrossRef] [PubMed]
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 273-297
-
-
Bhaya, D.1
Davison, M.2
Barrangou, R.3
-
3
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica, F.J.; Diez-Villasenor, C.; Garcia-Martinez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [CrossRef] [PubMed]
-
(2005)
J. Mol. Evol.
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
4
-
-
79953250082
-
Crispr RNA maturation by trans-encoded small RNA and host factor RNAse iii
-
Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. Crispr RNA maturation by trans-encoded small RNA and host factor RNAse iii. Nature 2011, 471, 602–607. [CrossRef] [PubMed]
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
5
-
-
34248374277
-
Putative rna-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative rna-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 2006, 1, 7. [CrossRef] [PubMed]
-
(2006)
Biol. Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.A.5
-
6
-
-
84884288934
-
Double nicking by RNA-guided Crispr CAas9 for enhanced genome editing specificity
-
Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double nicking by RNA-guided Crispr CAas9 for enhanced genome editing specificity. Cell 2013, 154, 1380–1389. [CrossRef] [PubMed]
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
-
7
-
-
84900395692
-
Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease
-
Chen, H.; Choi, J.; Bailey, S. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J. Biol. Chem. 2014, 289, 13284–13294. [CrossRef] [PubMed]
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 13284-13294
-
-
Chen, H.1
Choi, J.2
Bailey, S.3
-
8
-
-
84957605863
-
Optimized sgRNA design to maximize activity and minimize off-target effects of Crispr-Cas9
-
Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of Crispr-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [CrossRef] [PubMed]
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 184-191
-
-
Doench, J.G.1
Fusi, N.2
Sullender, M.3
Hegde, M.4
Vaimberg, E.W.5
Donovan, K.F.6
Smith, I.7
Tothova, Z.8
Wilen, C.9
Orchard, R.10
-
9
-
-
85041393189
-
Am I ready for Crispr? A user’s guide to genetic screens
-
Doench, J.G. Am I ready for Crispr? A user’s guide to genetic screens. Nat. Rev. Genet. 2017. [CrossRef] [PubMed]
-
(2017)
Nat. Rev. Genet.
-
-
Doench, J.G.1
-
10
-
-
84928205754
-
High-throughput functional genomics using Crispr-Cas9
-
Shalem, O.; Sanjana, N.E.; Zhang, F. High-throughput functional genomics using Crispr-Cas9. Nat. Rev. Genet. 2015, 16, 299–311. [CrossRef] [PubMed]
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 299-311
-
-
Shalem, O.1
Sanjana, N.E.2
Zhang, F.3
-
11
-
-
84892749369
-
Genetic screens in human cells using the Crispr-Cas9 system
-
Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic screens in human cells using the Crispr-Cas9 system. Science 2014, 343, 80–84. [CrossRef] [PubMed]
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
12
-
-
85041408081
-
Orthologous Crispr-Cas9 enzymes for combinatorial genetic screens
-
Najm, F.J.; Strand, C.; Donovan, K.F.; Hegde, M.; Sanson, K.R.; Vaimberg, E.W.; Sullender, M.E.; Hartenian, E.; Kalani, Z.; Fusi, N.; et al. Orthologous Crispr-Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 2017. [CrossRef] [PubMed]
-
(2017)
Nat. Biotechnol.
-
-
Najm, F.J.1
Strand, C.2
Donovan, K.F.3
Hegde, M.4
Sanson, K.R.5
Vaimberg, E.W.6
Sullender, M.E.7
Hartenian, E.8
Kalani, Z.9
Fusi, N.10
-
13
-
-
84927514894
-
Vivo genome editing using staphylococcus aureus Cas9
-
Ran, F.A.; Cong, L.; Yan, W.X.; Scott, D.A.; Gootenberg, J.S.; Kriz, A.J.; Zetsche, B.; Shalem, O.; Wu, X.; Makarova, K.S.; et al. In vivo genome editing using staphylococcus aureus Cas9. Nature 2015, 520, 186–191. [CrossRef] [PubMed]
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
-
14
-
-
84947714470
-
Characterization of staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
-
Friedland, A.E.; Baral, R.; Singhal, P.; Loveluck, K.; Shen, S.; Sanchez, M.; Marco, E.; Gotta, G.M.; Maeder, M.L.; Kennedy, E.M.; et al. Characterization of staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 2015, 16, 257. [CrossRef] [PubMed]
-
(2015)
Genome Biol
, vol.16
, pp. 257
-
-
Friedland, A.E.1
Baral, R.2
Singhal, P.3
Loveluck, K.4
Shen, S.5
Sanchez, M.6
Marco, E.7
Gotta, G.M.8
Maeder, M.L.9
Kennedy, E.M.10
-
15
-
-
84949791988
-
Broadening the targeting range of staphylococcus aureus Crispr-Cas9 by modifying pam recognition
-
Kleinstiver, B.P.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Topkar, V.V.; Zheng, Z.; Joung, J.K. Broadening the targeting range of staphylococcus aureus Crispr-Cas9 by modifying pam recognition. Nat. Biotechnol. 2015, 33, 1293–1298. [CrossRef] [PubMed]
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
Zheng, Z.6
Joung, J.K.7
-
16
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [CrossRef] [PubMed]
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
17
-
-
84873729095
-
Multiplex genome engineering using Crispr/Cas systems
-
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using Crispr/Cas systems. Science 2013, 339, 819–823. [CrossRef] [PubMed]
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
-
18
-
-
85026913421
-
Non-homologous DNA end joining and alternative pathways to double-strand break repair
-
Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [CrossRef] [PubMed]
-
(2017)
Nat. Rev. Mol. Cell Biol.
, vol.18
, pp. 495-506
-
-
Chang, H.H.Y.1
Pannunzio, N.R.2
Adachi, N.3
Lieber, M.R.4
-
19
-
-
84964063204
-
Double strand break repair via non-homologous end-joining. Transl
-
Davis, A.J.; Chen, D.J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2013, 2, 130–143. [PubMed]
-
(2013)
Cancer Res
, vol.2
, pp. 130-143
-
-
Davis, A.J.1
Chen, D.J.D.N.A.2
-
20
-
-
0037155703
-
Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and v(D)j recombination
-
Ma, Y.; Pannicke, U.; Schwarz, K.; Lieber, M.R. Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and v(d)j recombination. Cell 2002, 108, 781–794. [CrossRef]
-
(2002)
Cell
, vol.108
, pp. 781-794
-
-
Ma, Y.1
Pannicke, U.2
Schwarz, K.3
Lieber, M.R.4
-
21
-
-
84895890321
-
Sustained active site rigidity during synthesis by human DNA polymerase mu
-
Moon, A.F.; Pryor, J.M.; Ramsden, D.A.; Kunkel, T.A.; Bebenek, K.; Pedersen, L.C. Sustained active site rigidity during synthesis by human DNA polymerase mu. Nat. Struct. Mol. Biol. 2014, 21, 253–260. [CrossRef] [PubMed]
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 253-260
-
-
Moon, A.F.1
Pryor, J.M.2
Ramsden, D.A.3
Kunkel, T.A.4
Bebenek, K.5
Pedersen, L.C.6
-
22
-
-
84896717088
-
Is non-homologous end-joining really an inherently error-prone process?
-
Betermier, M.; Bertrand, P.; Lopez, B.S. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet. 2014, 10, e1004086. [CrossRef] [PubMed]
-
(2014)
Plos Genet
, vol.10
-
-
Betermier, M.1
Bertrand, P.2
Lopez, B.S.3
-
23
-
-
84976408145
-
Optimization of genome editing through Crispr-Cas9 engineering
-
Zhang, J.H.; Adikaram, P.; Pandey, M.; Genis, A.; Simonds, W.F. Optimization of genome editing through Crispr-Cas9 engineering. Bioengineered 2016, 7, 166–174. [CrossRef] [PubMed]
-
(2016)
Bioengineered
, vol.7
, pp. 166-174
-
-
Zhang, J.H.1
Adikaram, P.2
Pandey, M.3
Genis, A.4
Simonds, W.F.5
-
24
-
-
84892765883
-
Genome-scale Crispr-Cas9 knockout screening in human cells
-
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; et al. Genome-scale Crispr-Cas9 knockout screening in human cells. Science 2014, 343, 84–87. [CrossRef] [PubMed]
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelson, T.S.6
Heckl, D.7
Ebert, B.L.8
Root, D.E.9
Doench, J.G.10
-
25
-
-
84997272235
-
A Crispr-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome
-
Su, T.; Liu, F.; Gu, P.; Jin, H.; Chang, Y.; Wang, Q.; Liang, Q.; Qi, Q. A Crispr-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci. Rep. 2016, 6, 37895. [CrossRef] [PubMed]
-
(2016)
Sci. Rep.
, vol.6
, pp. 37895
-
-
Su, T.1
Liu, F.2
Gu, P.3
Jin, H.4
Chang, Y.5
Wang, Q.6
Liang, Q.7
Qi, Q.8
-
26
-
-
84929147435
-
Increasing the efficiency of homology-directed repair for Crispr-Cas9-induced precise gene editing in mammalian cells
-
Chu, V.T.; Weber, T.; Wefers, B.; Wurst, W.; Sander, S.; Rajewsky, K.; Kuhn, R. Increasing the efficiency of homology-directed repair for Crispr-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015, 33, 543–548. [CrossRef] [PubMed]
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 543-548
-
-
Chu, V.T.1
Weber, T.2
Wefers, B.3
Wurst, W.4
Sander, S.5
Rajewsky, K.6
Kuhn, R.7
-
27
-
-
85007531113
-
Gene editing approaches against viral infections and strategy to prevent occurrence of viral escape
-
White, M.K.; Hu, W.; Khalili, K. Gene editing approaches against viral infections and strategy to prevent occurrence of viral escape. PLoS Pathog. 2016, 12, e1005953. [CrossRef] [PubMed]
-
(2016)
Plos Pathog
, vol.12
-
-
White, M.K.1
Hu, W.2
Khalili, K.3
-
28
-
-
84901648428
-
High-efficiency targeted editing of large viral genomes by RNA-guided nucleases
-
Bi, Y.; Sun, L.; Gao, D.; Ding, C.; Li, Z.; Li, Y.; Cun, W.; Li, Q. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog. 2014, 10, e1004090. [CrossRef] [PubMed]
-
(2014)
Plos Pathog
, vol.10
-
-
Bi, Y.1
Sun, L.2
Gao, D.3
Ding, C.4
Li, Z.5
Li, Y.6
Cun, W.7
Li, Q.8
-
29
-
-
84928562543
-
Efficiently editing the vaccinia virus genome by using the Crispr-Cas9 system
-
Yuan, M.; Zhang, W.; Wang, J.; Al Yaghchi, C.; Ahmed, J.; Chard, L.; Lemoine, N.R.; Wang, Y. Efficiently editing the vaccinia virus genome by using the Crispr-Cas9 system. J. Virol. 2015, 89, 5176–5179. [CrossRef] [PubMed]
-
(2015)
J. Virol.
, vol.89
, pp. 5176-5179
-
-
Yuan, M.1
Zhang, W.2
Wang, J.3
Al Yaghchi, C.4
Ahmed, J.5
Chard, L.6
Lemoine, N.R.7
Wang, Y.8
-
30
-
-
84947471999
-
Identification and characterization of essential genes in the human genome
-
Wang, T.; Birsoy, K.; Hughes, N.W.; Krupczak, K.M.; Post, Y.; Wei, J.J.; Lander, E.S.; Sabatini, D.M. Identification and characterization of essential genes in the human genome. Science 2015, 350, 1096–1101. [CrossRef] [PubMed]
-
(2015)
Science
, vol.350
, pp. 1096-1101
-
-
Wang, T.1
Birsoy, K.2
Hughes, N.W.3
Krupczak, K.M.4
Post, Y.5
Wei, J.J.6
Lander, E.S.7
Sabatini, D.M.8
-
31
-
-
84947048286
-
A Crispr-based screen identifies genes essential for west-nile-virus-induced cell death
-
Ma, H.; Dang, Y.; Wu, Y.; Jia, G.; Anaya, E.; Zhang, J.; Abraham, S.; Choi, J.G.; Shi, G.; Qi, L.; et al. A Crispr-based screen identifies genes essential for west-nile-virus-induced cell death. Cell Rep. 2015, 12, 673–683. [CrossRef] [PubMed]
-
(2015)
Cell Rep
, vol.12
, pp. 673-683
-
-
Ma, H.1
Dang, Y.2
Wu, Y.3
Jia, G.4
Anaya, E.5
Zhang, J.6
Abraham, S.7
Choi, J.G.8
Shi, G.9
Qi, L.10
-
32
-
-
84994850910
-
A crispr dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia
-
Tzelepis, K.; Koike-Yusa, H.; De Braekeleer, E.; Li, Y.; Metzakopian, E.; Dovey, O.M.; Mupo, A.; Grinkevich, V.; Li, M.; Mazan, M.; et al. A crispr dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 2016, 17, 1193–1205. [CrossRef] [PubMed]
-
(2016)
Cell Rep
, vol.17
, pp. 1193-1205
-
-
Tzelepis, K.1
Koike-Yusa, H.2
De Braekeleer, E.3
Li, Y.4
Metzakopian, E.5
Dovey, O.M.6
Mupo, A.7
Grinkevich, V.8
Li, M.9
Mazan, M.10
-
33
-
-
85039070208
-
Evaluation of RNAi and Crispr technologies by large-scale gene expression profiling in the connectivity map
-
Smith, I.; Greenside, P.G.; Natoli, T.; Lahr, D.L.; Wadden, D.; Tirosh, I.; Narayan, R.; Root, D.E.; Golub, T.R.; Subramanian, A.; et al. Evaluation of RNAi and Crispr technologies by large-scale gene expression profiling in the connectivity map. PLoS Biol. 2017, 15, e2003213. [CrossRef] [PubMed]
-
(2017)
Plos Biol
, vol.15
-
-
Smith, I.1
Greenside, P.G.2
Natoli, T.3
Lahr, D.L.4
Wadden, D.5
Tirosh, I.6
Narayan, R.7
Root, D.E.8
Golub, T.R.9
Subramanian, A.10
-
34
-
-
84923221641
-
Unbiased detection of off-target cleavage by Crispr-Cas9 and talens using integrase-defective lentiviral vectors
-
Wang, X.; Wang, Y.; Wu, X.; Wang, J.; Wang, Y.; Qiu, Z.; Chang, T.; Huang, H.; Lin, R.J.; Yee, J.K. Unbiased detection of off-target cleavage by Crispr-Cas9 and talens using integrase-defective lentiviral vectors. Nat. Biotechnol. 2015, 33, 175–178. [CrossRef] [PubMed]
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 175-178
-
-
Wang, X.1
Wang, Y.2
Wu, X.3
Wang, J.4
Wang, Y.5
Qiu, Z.6
Chang, T.7
Huang, H.8
Lin, R.J.9
Yee, J.K.10
-
35
-
-
84902095352
-
Genome-wide binding of the Crispr endonuclease Cas9 in mammalian cells
-
Wu, X.; Scott, D.A.; Kriz, A.J.; Chiu, A.C.; Hsu, P.D.; Dadon, D.B.; Cheng, A.W.; Trevino, A.E.; Konermann, S.; Chen, S.; et al. Genome-wide binding of the Crispr endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 2014, 32, 670–676. [CrossRef] [PubMed]
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 670-676
-
-
Wu, X.1
Scott, D.A.2
Kriz, A.J.3
Chiu, A.C.4
Hsu, P.D.5
Dadon, D.B.6
Cheng, A.W.7
Trevino, A.E.8
Konermann, S.9
Chen, S.10
-
36
-
-
84963941043
-
High-fidelity Crispr-Cas9 nucleases with no detectable genome-wide off-target effects
-
Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-fidelity Crispr-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016, 529, 490–495. [CrossRef] [PubMed]
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Tsai, S.Q.4
Nguyen, N.T.5
Zheng, Z.6
Joung, J.K.7
-
37
-
-
33749023011
-
Minimizing the risk of reporting false positives in large-scale RNAi screens
-
Echeverri, C.J.; Beachy, P.A.; Baum, B.; Boutros, M.; Buchholz, F.; Chanda, S.K.; Downward, J.; Ellenberg, J.; Fraser, A.G.; Hacohen, N.; et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 2006, 3, 777–779. [CrossRef] [PubMed]
-
(2006)
Nat. Methods
, vol.3
, pp. 777-779
-
-
Echeverri, C.J.1
Beachy, P.A.2
Baum, B.3
Boutros, M.4
Buchholz, F.5
Chanda, S.K.6
Downward, J.7
Ellenberg, J.8
Fraser, A.G.9
Hacohen, N.10
-
38
-
-
85006341892
-
Genome-scale Crispr pooled screens
-
Sanjana, N.E. Genome-scale Crispr pooled screens. Anal Biochem. 2017, 532, 95–99. [CrossRef] [PubMed]
-
(2017)
Anal Biochem
, vol.532
, pp. 95-99
-
-
Sanjana, N.E.1
-
39
-
-
84959563516
-
Large-scale single guide rna library construction and use for Crispr-Cas9-based genetic screens
-
Wang, T.; Lander, E.S.; Sabatini, D.M. Large-scale single guide rna library construction and use for Crispr-Cas9-based genetic screens. Cold Spring Harb. Protoc. 2016, 2016. [CrossRef] [PubMed]
-
(2016)
Cold Spring Harb. Protoc.
, vol.2016
-
-
Wang, T.1
Lander, E.S.2
Sabatini, D.M.3
-
40
-
-
85027869993
-
Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood
-
Joung, J.; Engreitz, J.M.; Konermann, S.; Abudayyeh, O.O.; Verdine, V.K.; Aguet, F.; Gootenberg, J.S.; Sanjana, N.E.; Wright, J.B.; Fulco, C.P.; et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 2017, 548, 343–346. [CrossRef] [PubMed]
-
(2017)
Nature
, vol.548
, pp. 343-346
-
-
Joung, J.1
Engreitz, J.M.2
Konermann, S.3
Abudayyeh, O.O.4
Verdine, V.K.5
Aguet, F.6
Gootenberg, J.S.7
Sanjana, N.E.8
Wright, J.B.9
Fulco, C.P.10
-
41
-
-
84927649779
-
Genetic screens and functional genomics using Crispr/Cas9 technology
-
Hartenian, E.; Doench, J.G. Genetic screens and functional genomics using Crispr/Cas9 technology. FEBS J. 2015, 282, 1383–1393. [CrossRef] [PubMed]
-
(2015)
FEBS J
, vol.282
, pp. 1383-1393
-
-
Hartenian, E.1
Doench, J.G.2
-
42
-
-
84955629629
-
Quality control, modeling, and visualization of Crispr screens with mageck-vispr
-
Li, W.; Koster, J.; Xu, H.; Chen, C.H.; Xiao, T.; Liu, J.S.; Brown, M.; Liu, X.S. Quality control, modeling, and visualization of Crispr screens with mageck-vispr. Genome Biol. 2015, 16, 281. [CrossRef] [PubMed]
-
(2015)
Genome Biol
, vol.16
, pp. 281
-
-
Li, W.1
Koster, J.2
Xu, H.3
Chen, C.H.4
Xiao, T.5
Liu, J.S.6
Brown, M.7
Liu, X.S.8
-
43
-
-
85017621411
-
A Crispr toolbox to study virus-host interactions
-
Puschnik, A.S.; Majzoub, K.; Ooi, Y.S.; Carette, J.E. A Crispr toolbox to study virus-host interactions. Nat. Rev. Microbiol. 2017, 15, 351–364. [CrossRef] [PubMed]
-
(2017)
Nat. Rev. Microbiol.
, vol.15
, pp. 351-364
-
-
Puschnik, A.S.1
Majzoub, K.2
Ooi, Y.S.3
Carette, J.E.4
-
44
-
-
84959440683
-
Functional genomic strategies for elucidating human-virus interactions: Will Crispr knockout RNAi and haploid cells?
-
Perreira, J.M.; Meraner, P.; Brass, A.L. Functional genomic strategies for elucidating human-virus interactions: Will Crispr knockout RNAi and haploid cells? Adv. Virus Res. 2016, 94, 1–51. [PubMed]
-
(2016)
Adv. Virus Res.
, vol.94
, pp. 1-51
-
-
Perreira, J.M.1
Meraner, P.2
Brass, A.L.3
-
45
-
-
84977606002
-
A crispr screen defines a signal peptide processing pathway required by flaviviruses
-
Zhang, R.; Miner, J.J.; Gorman, M.J.; Rausch, K.; Ramage, H.; White, J.P.; Zuiani, A.; Zhang, P.; Fernandez, E.; Zhang, Q.; et al. A crispr screen defines a signal peptide processing pathway required by flaviviruses. Nature 2016, 535, 164–168. [CrossRef] [PubMed]
-
(2016)
Nature
, vol.535
, pp. 164-168
-
-
Zhang, R.1
Miner, J.J.2
Gorman, M.J.3
Rausch, K.4
Ramage, H.5
White, J.P.6
Zuiani, A.7
Zhang, P.8
Fernandez, E.9
Zhang, Q.10
-
46
-
-
85003706344
-
Identification of zika virus and dengue virus dependency factors using functional genomics
-
Savidis, G.; McDougall, W.M.; Meraner, P.; Perreira, J.M.; Portmann, J.M.; Trincucci, G.; John, S.P.; Aker, A.M.; Renzette, N.; Robbins, D.R.; et al. Identification of zika virus and dengue virus dependency factors using functional genomics. Cell Rep. 2016, 16, 232–246. [CrossRef] [PubMed]
-
(2016)
Cell Rep
, vol.16
, pp. 232-246
-
-
Savidis, G.1
McDougall, W.M.2
Meraner, P.3
Perreira, J.M.4
Portmann, J.M.5
Trincucci, G.6
John, S.P.7
Aker, A.M.8
Renzette, N.9
Robbins, D.R.10
-
47
-
-
84977639708
-
Genetic dissection of flaviviridae host factors through genome-scale Crispr screens
-
Marceau, C.D.; Puschnik, A.S.; Majzoub, K.; Ooi, Y.S.; Brewer, S.M.; Fuchs, G.; Swaminathan, K.; Mata, M.A.; Elias, J.E.; Sarnow, P.; et al. Genetic dissection of flaviviridae host factors through genome-scale Crispr screens. Nature 2016, 535, 159–163. [CrossRef] [PubMed]
-
(2016)
Nature
, vol.535
, pp. 159-163
-
-
Marceau, C.D.1
Puschnik, A.S.2
Majzoub, K.3
Ooi, Y.S.4
Brewer, S.M.5
Fuchs, G.6
Swaminathan, K.7
Mata, M.A.8
Elias, J.E.9
Sarnow, P.10
-
48
-
-
84983314890
-
Discovery of a proteinaceous cellular receptor for a norovirus
-
Orchard, R.C.; Wilen, C.B.; Doench, J.G.; Baldridge, M.T.; McCune, B.T.; Lee, Y.C.; Lee, S.; Pruett-Miller, S.M.; Nelson, C.A.; Fremont, D.H.; et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 2016, 353, 933–936. [CrossRef] [PubMed]
-
(2016)
Science
, vol.353
, pp. 933-936
-
-
Orchard, R.C.1
Wilen, C.B.2
Doench, J.G.3
Baldridge, M.T.4
McCune, B.T.5
Lee, Y.C.6
Lee, S.7
Pruett-Miller, S.M.8
Nelson, C.A.9
Fremont, D.H.10
-
49
-
-
84991474895
-
Functional receptor molecules cd300lf and cd300ld within the cd300 family enable murine noroviruses to infect cells
-
Haga, K.; Fujimoto, A.; Takai-Todaka, R.; Miki, M.; Doan, Y.H.; Murakami, K.; Yokoyama, M.; Murata, K.; Nakanishi, A.; Katayama, K. Functional receptor molecules cd300lf and cd300ld within the cd300 family enable murine noroviruses to infect cells. Proc. Natl. Acad. Sci. USA 2016, 113, E6248–E6255. [CrossRef] [PubMed]
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. E6248-E6255
-
-
Haga, K.1
Fujimoto, A.2
Takai-Todaka, R.3
Miki, M.4
Doan, Y.H.5
Murakami, K.6
Yokoyama, M.7
Murata, K.8
Nakanishi, A.9
Katayama, K.10
-
50
-
-
85006469855
-
A genome-wide Crispr screen identifies a restricted set of HIV host dependency factors
-
Park, R.J.; Wang, T.; Koundakjian, D.; Hultquist, J.F.; Lamothe-Molina, P.; Monel, B.; Schumann, K.; Yu, H.; Krupzcak, K.M.; Garcia-Beltran, W.; et al. A genome-wide Crispr screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 2017, 49, 193–203. [CrossRef] [PubMed]
-
(2017)
Nat. Genet
, vol.49
, pp. 193-203
-
-
Park, R.J.1
Wang, T.2
Koundakjian, D.3
Hultquist, J.F.4
Lamothe-Molina, P.5
Monel, B.6
Schumann, K.7
Yu, H.8
Krupzcak, K.M.9
Garcia-Beltran, W.10
-
51
-
-
0037143669
-
Tyrosine sulfation of CCR5 n-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence
-
Seibert, C.; Cadene, M.; Sanfiz, A.; Chait, B.T.; Sakmar, T.P. Tyrosine sulfation of CCR5 n-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc. Natl. Acad. Sci. USA 2002, 99, 11031–11036. [CrossRef] [PubMed]
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 11031-11036
-
-
Seibert, C.1
Cadene, M.2
Sanfiz, A.3
Chait, B.T.4
Sakmar, T.P.5
-
52
-
-
84938744950
-
A genome-wide Crispr screen in primary immune cells to dissect regulatory networks
-
Parnas, O.; Jovanovic, M.; Eisenhaure, T.M.; Herbst, R.H.; Dixit, A.; Ye, C.J.; Przybylski, D.; Platt, R.J.; Tirosh, I.; Sanjana, N.E.; et al. A genome-wide Crispr screen in primary immune cells to dissect regulatory networks. Cell 2015, 162, 675–686. [CrossRef] [PubMed]
-
(2015)
Cell
, vol.162
, pp. 675-686
-
-
Parnas, O.1
Jovanovic, M.2
Eisenhaure, T.M.3
Herbst, R.H.4
Dixit, A.5
Ye, C.J.6
Przybylski, D.7
Platt, R.J.8
Tirosh, I.9
Sanjana, N.E.10
-
53
-
-
80455164859
-
Epstein-barr virus: An important vaccine target for cancer prevention
-
Cohen, J.I.; Fauci, A.S.; Varmus, H.; Nabel, G.J. Epstein-barr virus: An important vaccine target for cancer prevention. Sci. Transl. Med. 2011, 3, 107fs7. [CrossRef] [PubMed]
-
(2011)
Sci. Transl. Med.
, vol.3
-
-
Cohen, J.I.1
Fauci, A.S.2
Varmus, H.3
Nabel, G.J.4
-
54
-
-
84974696069
-
Epstein-barr virus
-
6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA
-
Longnecker, R.; Kieff, E.; Cohen, J.I.Epstein-barr virus. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2013; Volume 2, pp. 1898–1959.
-
(2013)
Fields Virology
, vol.2
, pp. 1898-1959
-
-
Longnecker, R.1
Kieff, E.2
Cohen, J.I.3
-
55
-
-
84996868097
-
Epstein-barr virus: Diseases linked to infection and transformation
-
Jha, H.C.; Pei, Y.; Robertson, E.S. Epstein-barr virus: Diseases linked to infection and transformation. Front. Microbiol. 2016, 7, 1602. [CrossRef] [PubMed]
-
(2016)
Front. Microbiol.
, vol.7
, pp. 1602
-
-
Jha, H.C.1
Pei, Y.2
Robertson, E.S.3
-
58
-
-
85017100234
-
Recent advances in understanding epstein-barr virus
-
Stanfield, B.A.; Luftig, M.A. Recent advances in understanding epstein-barr virus. F1000Research 2017, 6, 386. [CrossRef] [PubMed]
-
(2017)
F1000research
, vol.6
, pp. 386
-
-
Stanfield, B.A.1
Luftig, M.A.2
-
59
-
-
84989233516
-
Epstein-barr virus: More than 50 years old and still providing surprises
-
Young, L.S.; Yap, L.F.; Murray, P.G. Epstein-barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer 2016, 16, 789–802. [CrossRef] [PubMed]
-
(2016)
Nat. Rev. Cancer
, vol.16
, pp. 789-802
-
-
Young, L.S.1
Yap, L.F.2
Murray, P.G.3
-
60
-
-
84897020077
-
Gammaherpesviruses and lymphoproliferative disorders
-
Cesarman, E. Gammaherpesviruses and lymphoproliferative disorders. Annu. Rev. Pathol. 2014, 9, 349–372. [CrossRef] [PubMed]
-
(2014)
Annu. Rev. Pathol.
, vol.9
, pp. 349-372
-
-
Cesarman, E.1
-
61
-
-
84955749431
-
Resources for the design of Crispr gene editing experiments
-
Graham, D.B.; Root, D.E. Resources for the design of Crispr gene editing experiments. Genome Biol. 2015, 16, 260. [CrossRef] [PubMed]
-
(2015)
Genome Biol
, vol.16
, pp. 260
-
-
Graham, D.B.1
Root, D.E.2
-
62
-
-
84921540377
-
Rational design of highly active sgRNAs for Crispr-Cas9-mediated gene inactivation
-
Doench, J.G.; Hartenian, E.; Graham, D.B.; Tothova, Z.; Hegde, M.; Smith, I.; Sullender, M.; Ebert, B.L.; Xavier, R.J.; Root, D.E. Rational design of highly active sgRNAs for Crispr-Cas9-mediated gene inactivation. Nat. Biotechnol. 2014, 32, 1262–1267. [CrossRef] [PubMed]
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
Hartenian, E.2
Graham, D.B.3
Tothova, Z.4
Hegde, M.5
Smith, I.6
Sullender, M.7
Ebert, B.L.8
Xavier, R.J.9
Root, D.E.10
-
63
-
-
85042097534
-
Crispr/Cas9-mediated genome editing in epstein-barr virus-transformed lymphoblastoid B-cell lines
-
Jiang, S.; Wang, L.W.; Walsh, M.J.; Trudeau, S.J.; Gerdt, C.; Zhao, B.; Gewurz, B.E. Crispr/Cas9-mediated genome editing in epstein-barr virus-transformed lymphoblastoid B-cell lines. Curr. Protoc. Mol. Biol. 2018, 121, 31.12.1–31.12.23. [PubMed]
-
(2018)
Curr. Protoc. Mol. Biol.
, vol.121
, pp. 1-31
-
-
Jiang, S.1
Wang, L.W.2
Walsh, M.J.3
Trudeau, S.J.4
Gerdt, C.5
Zhao, B.6
Gewurz, B.E.7
-
64
-
-
84906969257
-
RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
-
Wang, J.; Quake, S.R. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc. Natl. Acad. Sci. USA 2014, 111, 13157–13162. [CrossRef] [PubMed]
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 13157-13162
-
-
Wang, J.1
Quake, S.R.2
-
65
-
-
84978863697
-
Crispr/Cas9-mediated genome editing of herpesviruses limits productive and latent infections
-
Van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.; Bruggeling, C.E.; Schurch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.; Lebbink, R.J. Crispr/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 2016, 12, e1005701. [CrossRef] [PubMed]
-
(2016)
Plos Pathog
, vol.12
-
-
Van Diemen, F.R.1
Kruse, E.M.2
Hooykaas, M.J.3
Bruggeling, C.E.4
Schurch, A.C.5
Van Ham, P.M.6
Imhof, S.M.7
Nijhuis, M.8
Wiertz, E.J.9
Lebbink, R.J.10
-
66
-
-
85041419895
-
Suppression of epstein-barr virus DNA load in latently infected nasopharyngeal carcinoma cells by Crispr/Cas9
-
Yuen, K.S.; Wang, Z.M.; Wong, N.M.; Zhang, Z.Q.; Cheng, T.F.; Lui, W.Y.; Chan, C.P.; Jin, D.Y. Suppression of epstein-barr virus DNA load in latently infected nasopharyngeal carcinoma cells by Crispr/Cas9. Virus Res. 2017. [CrossRef] [PubMed]
-
(2017)
Virus Res
-
-
Yuen, K.S.1
Wang, Z.M.2
Wong, N.M.3
Zhang, Z.Q.4
Cheng, T.F.5
Lui, W.Y.6
Chan, C.P.7
Jin, D.Y.8
-
67
-
-
84964931498
-
Highly efficient Crispr/Cas9-mediated cloning and functional characterization of gastric cancer-derived epstein-barr virus strains
-
Kanda, T.; Furuse, Y.; Oshitani, H.; Kiyono, T. Highly efficient Crispr/Cas9-mediated cloning and functional characterization of gastric cancer-derived epstein-barr virus strains. J. Virol. 2016, 90, 4383–4393. [CrossRef] [PubMed]
-
(2016)
J. Virol.
, vol.90
, pp. 4383-4393
-
-
Kanda, T.1
Furuse, Y.2
Oshitani, H.3
Kiyono, T.4
-
68
-
-
84955619179
-
The EBNA3 family of epstein-barr virus nuclear proteins associates with the usp46/usp12 deubiquitination complexes to regulate lymphoblastoid cell line growth
-
Ohashi, M.; Holthaus, A.M.; Calderwood, M.A.; Lai, C.Y.; Krastins, B.; Sarracino, D.; Johannsen, E. The EBNA3 family of epstein-barr virus nuclear proteins associates with the usp46/usp12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog. 2015, 11, e1004822. [CrossRef] [PubMed]
-
(2015)
Plos Pathog
, vol.11
-
-
Ohashi, M.1
Holthaus, A.M.2
Calderwood, M.A.3
Lai, C.Y.4
Krastins, B.5
Sarracino, D.6
Johannsen, E.7
-
69
-
-
84930330653
-
Traf1 coordinates polyubiquitin signaling to enhance epstein-barr virus lmp1-mediated growth and survival pathway activation
-
Greenfeld, H.; Takasaki, K.; Walsh, M.J.; Ersing, I.; Bernhardt, K.; Ma, Y.; Fu, B.; Ashbaugh, C.W.; Cabo, J.; Mollo, S.B.; et al. Traf1 coordinates polyubiquitin signaling to enhance epstein-barr virus lmp1-mediated growth and survival pathway activation. PLoS Pathog. 2015, 11, e1004890. [CrossRef] [PubMed]
-
(2015)
Plos Pathog
, vol.11
-
-
Greenfeld, H.1
Takasaki, K.2
Walsh, M.J.3
Ersing, I.4
Bernhardt, K.5
Ma, Y.6
Fu, B.7
Ashbaugh, C.W.8
Cabo, J.9
Mollo, S.B.10
-
70
-
-
85039769403
-
Ephrin receptor a2 is a functional entry receptor for epstein-barr virus
-
Chen, J.; Sathiyamoorthy, K.; Zhang, X.; Schaller, S.; Perez White, B.E.; Jardetzky, T.S.; Longnecker, R. Ephrin receptor a2 is a functional entry receptor for epstein-barr virus. Nat. Microbiol. 2018. [CrossRef] [PubMed]
-
(2018)
Nat. Microbiol.
-
-
Chen, J.1
Sathiyamoorthy, K.2
Zhang, X.3
Schaller, S.4
Perez White, B.E.5
Jardetzky, T.S.6
Longnecker, R.7
-
71
-
-
85039797270
-
Ephrin receptor a2 is an epithelial cell receptor for epstein-barr virus entry
-
Zhang, H.; Li, Y.; Wang, H.B.; Zhang, A.; Chen, M.L.; Fang, Z.X.; Dong, X.D.; Li, S.B.; Du, Y.; Xiong, D.; et al. Ephrin receptor a2 is an epithelial cell receptor for epstein-barr virus entry. Nat. Microbiol. 2018. [CrossRef] [PubMed]
-
(2018)
Nat. Microbiol.
-
-
Zhang, H.1
Li, Y.2
Wang, H.B.3
Zhang, A.4
Chen, M.L.5
Fang, Z.X.6
Dong, X.D.7
Li, S.B.8
Du, Y.9
Xiong, D.10
-
72
-
-
85032936526
-
Irak4 is essential for tlr9-induced suppression of epstein-barr virus bzlf1 transcription in akata burkitt’s lymphoma cells
-
Jordi, M.; Marty, J.; Mordasini, V.; Lunemann, A.; McComb, S.; Bernasconi, M.; Nadal, D. Irak4 is essential for tlr9-induced suppression of epstein-barr virus bzlf1 transcription in akata burkitt’s lymphoma cells. PLoS ONE 2017, 12, e0186614. [CrossRef] [PubMed]
-
(2017)
Plos ONE
, vol.12
-
-
Jordi, M.1
Marty, J.2
Mordasini, V.3
Lunemann, A.4
McComb, S.5
Bernasconi, M.6
Nadal, D.7
-
73
-
-
85019256983
-
A temporal proteomic map of epstein-barr virus lytic replication in b cells
-
Ersing, I.; Nobre, L.; Wang, L.W.; Soday, L.; Ma, Y.; Paulo, J.A.; Narita, Y.; Ashbaugh, C.W.; Jiang, C.; Grayson, N.E.; et al. A temporal proteomic map of epstein-barr virus lytic replication in b cells. Cell Rep. 2017, 19, 1479–1493. [CrossRef] [PubMed]
-
(2017)
Cell Rep
, vol.19
, pp. 1479-1493
-
-
Ersing, I.1
Nobre, L.2
Wang, L.W.3
Soday, L.4
Ma, Y.5
Paulo, J.A.6
Narita, Y.7
Ashbaugh, C.W.8
Jiang, C.9
Grayson, N.E.10
-
74
-
-
85019072238
-
Crispr/Cas9 screens reveal epstein-barr virus-transformed b cell host dependency factors
-
Ma, Y.; Walsh, M.J.; Bernhardt, K.; Ashbaugh, C.W.; Trudeau, S.J.; Ashbaugh, I.Y.; Jiang, S.; Jiang, C.; Zhao, B.; Root, D.E.; et al. Crispr/Cas9 screens reveal epstein-barr virus-transformed b cell host dependency factors. Cell Host Microbe 2017, 21, 580–591.e7. [CrossRef] [PubMed]
-
(2017)
Cell Host Microbe
, vol.21
, pp. 580-591
-
-
Ma, Y.1
Walsh, M.J.2
Bernhardt, K.3
Ashbaugh, C.W.4
Trudeau, S.J.5
Ashbaugh, I.Y.6
Jiang, S.7
Jiang, C.8
Zhao, B.9
Root, D.E.10
-
75
-
-
84859715609
-
Roles of bcl6 in normal and transformed germinal center B cells
-
Basso, K.; Dalla-Favera, R. Roles of bcl6 in normal and transformed germinal center B cells. Immunol. Rev. 2012, 247, 172–183. [CrossRef] [PubMed]
-
(2012)
Immunol. Rev.
, vol.247
, pp. 172-183
-
-
Basso, K.1
Dalla-Favera, R.2
-
76
-
-
84891764795
-
Oncogenic mechanisms in burkitt lymphoma
-
Schmitz, R.; Ceribelli, M.; Pittaluga, S.; Wright, G.; Staudt, L.M. Oncogenic mechanisms in burkitt lymphoma. Cold Spring Harb. Perspect. Med. 2014, 4. [CrossRef] [PubMed]
-
(2014)
Cold Spring Harb. Perspect. Med.
, vol.4
-
-
Schmitz, R.1
Ceribelli, M.2
Pittaluga, S.3
Wright, G.4
Staudt, L.M.5
-
77
-
-
85026884717
-
An essential EBV latent antigen 3c binds bcl6 for targeted degradation and cell proliferation
-
Pei, Y.; Banerjee, S.; Jha, H.C.; Sun, Z.; Robertson, E.S. An essential EBV latent antigen 3c binds bcl6 for targeted degradation and cell proliferation. PLoS Pathog. 2017, 13, e1006500. [CrossRef] [PubMed]
-
(2017)
Plos Pathog
, vol.13
-
-
Pei, Y.1
Banerjee, S.2
Jha, H.C.3
Sun, Z.4
Robertson, E.S.5
-
79
-
-
85031097307
-
Epstein-barr virus lmp1 mediated oncogenicity
-
Wang, L.W.; Jiang, S.; Gewurz, B.E. Epstein-barr virus lmp1 mediated oncogenicity. J. Virol. 2017. [CrossRef] [PubMed]
-
(2017)
J. Virol
-
-
Wang, L.W.1
Jiang, S.2
Gewurz, B.E.3
-
80
-
-
0347719385
-
Epstein-barr virus latent infection membrane protein 1 traf-binding site induces nik/ikk α-dependent noncanonical NF-κb activation
-
Luftig, M.; Yasui, T.; Soni, V.; Kang, M.S.; Jacobson, N.; Cahir-McFarland, E.; Seed, B.; Kieff, E. Epstein-barr virus latent infection membrane protein 1 traf-binding site induces nik/ikk α-dependent noncanonical NF-κb activation. Proc. Natl. Acad. Sci. USA 2004, 101, 141–146. [CrossRef] [PubMed]
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 141-146
-
-
Luftig, M.1
Yasui, T.2
Soni, V.3
Kang, M.S.4
Jacobson, N.5
Cahir-McFarland, E.6
Seed, B.7
Kieff, E.8
-
81
-
-
1842484160
-
Role of NF-κb in cell survival and transcription of latent membrane protein 1-expressing or epstein-barr virus latency III-infected cells
-
Cahir-McFarland, E.D.; Carter, K.; Rosenwald, A.; Giltnane, J.M.; Henrickson, S.E.; Staudt, L.M.; Kieff, E. Role of NF-κb in cell survival and transcription of latent membrane protein 1-expressing or epstein-barr virus latency III-infected cells. J. Virol. 2004, 78, 4108–4119. [CrossRef] [PubMed]
-
(2004)
J. Virol.
, vol.78
, pp. 4108-4119
-
-
Cahir-McFarland, E.D.1
Carter, K.2
Rosenwald, A.3
Giltnane, J.M.4
Henrickson, S.E.5
Staudt, L.M.6
Kieff, E.7
-
82
-
-
77957301361
-
Roles of traf2 and traf3 in epstein-barr virus latent membrane protein 1-induced alternative NF-κb activation
-
Song, Y.J.; Kang, M.S. Roles of traf2 and traf3 in epstein-barr virus latent membrane protein 1-induced alternative NF-κb activation. Virus Genes 2010, 41, 174–180. [CrossRef] [PubMed]
-
(2010)
Virus Genes
, vol.41
, pp. 174-180
-
-
Song, Y.J.1
Kang, M.S.2
-
83
-
-
0344441264
-
Epstein-barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-κb2 to p52 via an ikkγ/nemo-independent signalling pathway
-
Eliopoulos, A.G.; Caamano, J.H.; Flavell, J.; Reynolds, G.M.; Murray, P.G.; Poyet, J.L.; Young, L.S. Epstein-barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-κb2 to p52 via an ikkγ/nemo-independent signalling pathway. Oncogene 2003, 22, 7557–7569. [CrossRef] [PubMed]
-
(2003)
Oncogene
, vol.22
, pp. 7557-7569
-
-
Eliopoulos, A.G.1
Caamano, J.H.2
Flavell, J.3
Reynolds, G.M.4
Murray, P.G.5
Poyet, J.L.6
Young, L.S.7
-
84
-
-
0033979688
-
Intracellular forms of human notch1 interact at distinctly different levels with rbp-jκ in human B and T cells
-
Callahan, J.; Aster, J.; Sklar, J.; Kieff, E.; Robertson, E.S. Intracellular forms of human notch1 interact at distinctly different levels with rbp-jκ in human B and T cells. Leukemia 2000, 14, 84–92. [CrossRef] [PubMed]
-
(2000)
Leukemia
, vol.14
, pp. 84-92
-
-
Callahan, J.1
Aster, J.2
Sklar, J.3
Kieff, E.4
Robertson, E.S.5
-
85
-
-
0028988990
-
Masking of the cbf1/rbpj κ transcriptional repression domain by epstein-barr virus ebna2
-
Hsieh, J.J.; Hayward, S.D. Masking of the cbf1/rbpj κ transcriptional repression domain by epstein-barr virus ebna2. Science 1995, 268, 560–563. [CrossRef] [PubMed]
-
(1995)
Science
, vol.268
, pp. 560-563
-
-
Hsieh, J.J.1
Hayward, S.D.2
-
86
-
-
0027358873
-
The epstein-barr virus immortalizing protein ebna-2 is targeted to DNA by a cellular enhancer-binding protein
-
Ling, P.D.; Rawlins, D.R.; Hayward, S.D. The epstein-barr virus immortalizing protein ebna-2 is targeted to DNA by a cellular enhancer-binding protein. Proc. Natl. Acad. Sci. USA 1993, 90, 9237–9241. [CrossRef] [PubMed]
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 9237-9241
-
-
Ling, P.D.1
Rawlins, D.R.2
Hayward, S.D.3
-
87
-
-
0029948549
-
Ebna-2 and ebna-3c extensively and mutually exclusively associate with rbpjκ in epstein-barr virus-transformed b lymphocytes
-
Johannsen, E.; Miller, C.L.; Grossman, S.R.; Kieff, E. Ebna-2 and ebna-3c extensively and mutually exclusively associate with rbpjκ in epstein-barr virus-transformed b lymphocytes. J. Virol. 1996, 70, 4179–4183. [PubMed]
-
(1996)
J. Virol.
, vol.70
, pp. 4179-4183
-
-
Johannsen, E.1
Miller, C.L.2
Grossman, S.R.3
Kieff, E.4
-
88
-
-
80052603592
-
Epstein-barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth
-
Zhao, B.; Zou, J.; Wang, H.; Johannsen, E.; Peng, C.W.; Quackenbush, J.; Mar, J.C.; Morton, C.C.; Freedman, M.L.; Blacklow, S.C.; et al. Epstein-barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc. Natl. Acad. Sci. USA 2011, 108, 14902–14907. [CrossRef] [PubMed]
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 14902-14907
-
-
Zhao, B.1
Zou, J.2
Wang, H.3
Johannsen, E.4
Peng, C.W.5
Quackenbush, J.6
Mar, J.C.7
Morton, C.C.8
Freedman, M.L.9
Blacklow, S.C.10
-
89
-
-
0028124316
-
The epstein-barr virus nuclear antigen 2 transactivator is directed to response elements by the j κ recombination signal binding protein
-
Grossman, S.R.; Johannsen, E.; Tong, X.; Yalamanchili, R.; Kieff, E. The epstein-barr virus nuclear antigen 2 transactivator is directed to response elements by the j κ recombination signal binding protein. Proc. Natl. Acad. Sci. USA 1994, 91, 7568–7572. [CrossRef] [PubMed]
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 7568-7572
-
-
Grossman, S.R.1
Johannsen, E.2
Tong, X.3
Yalamanchili, R.4
Kieff, E.5
-
90
-
-
0028133036
-
Mediation of epstein-barr virus ebna2 transactivation by recombination signal-binding protein j κ
-
Henkel, T.; Ling, P.D.; Hayward, S.D.; Peterson, M.G. Mediation of epstein-barr virus ebna2 transactivation by recombination signal-binding protein j κ. Science 1994, 265, 92–95. [CrossRef] [PubMed]
-
(1994)
Science
, vol.265
, pp. 92-95
-
-
Henkel, T.1
Ling, P.D.2
Hayward, S.D.3
Peterson, M.G.4
-
91
-
-
77954664053
-
Epigenetic repression of p16(Ink4a) by latent epstein-barr virus requires the interaction of ebna3a and ebna3c with ctbp
-
Skalska, L.; White, R.E.; Franz, M.; Ruhmann, M.; Allday, M.J. Epigenetic repression of p16(ink4a) by latent epstein-barr virus requires the interaction of ebna3a and ebna3c with ctbp. PLoS Pathog. 2010, 6, e1000951. [CrossRef] [PubMed]
-
(2010)
Plos Pathog
, Issue.6
-
-
Skalska, L.1
White, R.E.2
Franz, M.3
Ruhmann, M.4
Allday, M.J.5
-
92
-
-
0034910721
-
Physical and functional interactions between the corepressor ctbp and the epstein-barr virus nuclear antigen ebna3c
-
Touitou, R.; Hickabottom, M.; Parker, G.; Crook, T.; Allday, M.J. Physical and functional interactions between the corepressor ctbp and the epstein-barr virus nuclear antigen ebna3c. J. Virol. 2001, 75, 7749–7755. [CrossRef] [PubMed]
-
(2001)
J. Virol.
, vol.75
, pp. 7749-7755
-
-
Touitou, R.1
Hickabottom, M.2
Parker, G.3
Crook, T.4
Allday, M.J.5
-
93
-
-
84869037244
-
Analysis of epstein-barr virus-regulated host gene expression changes through primary b-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κb activation
-
Price, A.M.; Tourigny, J.P.; Forte, E.; Salinas, R.E.; Dave, S.S.; Luftig, M.A. Analysis of epstein-barr virus-regulated host gene expression changes through primary b-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-κb activation. J. Virol. 2012, 86, 11096–11106. [CrossRef] [PubMed]
-
(2012)
J. Virol.
, vol.86
, pp. 11096-11106
-
-
Price, A.M.1
Tourigny, J.P.2
Forte, E.3
Salinas, R.E.4
Dave, S.S.5
Luftig, M.A.6
-
94
-
-
84956801603
-
A viral microrna cluster regulates the expression of pten, p27 and of a bcl-2 homolog
-
Bernhardt, K.; Haar, J.; Tsai, M.H.; Poirey, R.; Feederle, R.; Delecluse, H.J. A viral microrna cluster regulates the expression of pten, p27 and of a bcl-2 homolog. PLoS Pathog. 2016, 12, e1005405. [CrossRef] [PubMed]
-
(2016)
Plos Pathog
, vol.12
-
-
Bernhardt, K.1
Haar, J.2
Tsai, M.H.3
Poirey, R.4
Feederle, R.5
Delecluse, H.J.6
-
95
-
-
33645748053
-
NF-κb is essential for the progression of kshv- and ebv-infected lymphomas in vivo
-
Keller, S.A.; Hernandez-Hopkins, D.; Vider, J.; Ponomarev, V.; Hyjek, E.; Schattner, E.J.; Cesarman, E. NF-κb is essential for the progression of kshv- and ebv-infected lymphomas in vivo. Blood 2006, 107, 3295–3302. [CrossRef] [PubMed]
-
(2006)
Blood
, vol.107
, pp. 3295-3302
-
-
Keller, S.A.1
Hernandez-Hopkins, D.2
Vider, J.3
Ponomarev, V.4
Hyjek, E.5
Schattner, E.J.6
Cesarman, E.7
-
96
-
-
84922515063
-
The NF-κb genomic landscape in lymphoblastoid B cells
-
Zhao, B.; Barrera, L.A.; Ersing, I.; Willox, B.; Schmidt, S.C.; Greenfeld, H.; Zhou, H.; Mollo, S.B.; Shi, T.T.; Takasaki, K.; et al. The NF-κb genomic landscape in lymphoblastoid B cells. Cell Rep. 2014, 8, 1595–1606. [CrossRef] [PubMed]
-
(2014)
Cell Rep
, vol.8
, pp. 1595-1606
-
-
Zhao, B.1
Barrera, L.A.2
Ersing, I.3
Willox, B.4
Schmidt, S.C.5
Greenfeld, H.6
Zhou, H.7
Mollo, S.B.8
Shi, T.T.9
Takasaki, K.10
-
97
-
-
84923007402
-
Epstein-barr virus oncoprotein super-enhancers control B cell growth
-
Zhou, H.; Schmidt, S.C.; Jiang, S.; Willox, B.; Bernhardt, K.; Liang, J.; Johannsen, E.C.; Kharchenko, P.; Gewurz, B.E.; Kieff, E.; et al. Epstein-barr virus oncoprotein super-enhancers control B cell growth. Cell Host Microbe 2015, 17, 205–216. [CrossRef] [PubMed]
-
(2015)
Cell Host Microbe
, vol.17
, pp. 205-216
-
-
Zhou, H.1
Schmidt, S.C.2
Jiang, S.3
Willox, B.4
Bernhardt, K.5
Liang, J.6
Johannsen, E.C.7
Kharchenko, P.8
Gewurz, B.E.9
Kieff, E.10
-
98
-
-
85032514322
-
The epstein-barr virus regulome in lymphoblastoid cells
-
Jiang, S.; Zhou, H.; Liang, J.; Gerdt, C.; Wang, C.; Ke, L.; Schmidt, S.C.S.; Narita, Y.; Ma, Y.; Wang, S.; et al. The epstein-barr virus regulome in lymphoblastoid cells. Cell Host Microbe 2017, 22, 561–573.e4. [CrossRef] [PubMed]
-
(2017)
Cell Host Microbe
, vol.22
, pp. 561-573
-
-
Jiang, S.1
Zhou, H.2
Liang, J.3
Gerdt, C.4
Wang, C.5
Ke, L.6
Schmidt, S.C.S.7
Narita, Y.8
Ma, Y.9
Wang, S.10
-
99
-
-
84878507873
-
The ebv latent antigen 3c inhibits apoptosis through targeted regulation of interferon regulatory factors 4 and 8
-
Banerjee, S.; Lu, J.; Cai, Q.; Saha, A.; Jha, H.C.; Dzeng, R.K.; Robertson, E.S. The ebv latent antigen 3c inhibits apoptosis through targeted regulation of interferon regulatory factors 4 and 8. PLoS Pathog. 2013, 9, e1003314. [CrossRef] [PubMed]
-
(2013)
Plos Pathog
, vol.9
-
-
Banerjee, S.1
Lu, J.2
Cai, Q.3
Saha, A.4
Jha, H.C.5
Dzeng, R.K.6
Robertson, E.S.7
-
100
-
-
84891940137
-
Epstein-barr virus nuclear antigen 3c binds to batf/irf4 or spi1/irf4 composite sites and recruits sin3a to repress cdkn2a
-
Jiang, S.; Willox, B.; Zhou, H.; Holthaus, A.M.; Wang, A.; Shi, T.T.; Maruo, S.; Kharchenko, P.V.; Johannsen, E.C.; Kieff, E.; et al. Epstein-barr virus nuclear antigen 3c binds to batf/irf4 or spi1/irf4 composite sites and recruits sin3a to repress cdkn2a. Proc. Natl. Acad. Sci. USA 2014, 111, 421–426. [CrossRef] [PubMed]
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 421-426
-
-
Jiang, S.1
Willox, B.2
Zhou, H.3
Holthaus, A.M.4
Wang, A.5
Shi, T.T.6
Maruo, S.7
Kharchenko, P.V.8
Johannsen, E.C.9
Kieff, E.10
-
101
-
-
84920973039
-
Epstein-barr virus nuclear antigen 3a partially coincides with ebna3c genome-wide and is tethered to DNA through batf complexes
-
Schmidt, S.C.; Jiang, S.; Zhou, H.; Willox, B.; Holthaus, A.M.; Kharchenko, P.V.; Johannsen, E.C.; Kieff, E.; Zhao, B. Epstein-barr virus nuclear antigen 3a partially coincides with ebna3c genome-wide and is tethered to DNA through batf complexes. Proc. Natl. Acad. Sci. USA 2015, 112, 554–559. [CrossRef] [PubMed]
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 554-559
-
-
Schmidt, S.C.1
Jiang, S.2
Zhou, H.3
Willox, B.4
Holthaus, A.M.5
Kharchenko, P.V.6
Johannsen, E.C.7
Kieff, E.8
Zhao, B.9
-
102
-
-
84918796392
-
Ebv finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection
-
Allday, M.J. Ebv finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection. Front. Genet. 2013, 4, 212. [CrossRef] [PubMed]
-
(2013)
Front. Genet.
, vol.4
, pp. 212
-
-
Allday, M.J.1
-
103
-
-
38349057842
-
Two epstein-barr virus (Ebv) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor bim: Clues to the pathogenesis of burkitt’s lymphoma
-
Anderton, E.; Yee, J.; Smith, P.; Crook, T.; White, R.E.; Allday, M.J. Two epstein-barr virus (ebv) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor bim: Clues to the pathogenesis of burkitt’s lymphoma. Oncogene 2008, 27, 421–433. [CrossRef] [PubMed]
-
(2008)
Oncogene
, vol.27
, pp. 421-433
-
-
Anderton, E.1
Yee, J.2
Smith, P.3
Crook, T.4
White, R.E.5
Allday, M.J.6
-
104
-
-
84867288340
-
Bim promoter directly targeted by ebna3c in polycomb-mediated repression by EBV
-
Paschos, K.; Parker, G.A.; Watanatanasup, E.; White, R.E.; Allday, M.J. Bim promoter directly targeted by ebna3c in polycomb-mediated repression by EBV. Nucleic Acids Res. 2012, 40, 7233–7246. [CrossRef] [PubMed]
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 7233-7246
-
-
Paschos, K.1
Parker, G.A.2
Watanatanasup, E.3
White, R.E.4
Allday, M.J.5
-
105
-
-
84985914211
-
Myc activation and bcl2l11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs
-
Wood, C.D.; Veenstra, H.; Khasnis, S.; Gunnell, A.; Webb, H.M.; Shannon-Lowe, C.; Andrews, S.; Osborne, C.S.; West, M.J. Myc activation and bcl2l11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. eLife 2016, 5, e18270. [CrossRef] [PubMed]
-
(2016)
Elife
, vol.5
-
-
Wood, C.D.1
Veenstra, H.2
Khasnis, S.3
Gunnell, A.4
Webb, H.M.5
Shannon-Lowe, C.6
Andrews, S.7
Osborne, C.S.8
West, M.J.9
-
106
-
-
85018351487
-
Core binding factor (Cbf) is required for epstein-barr virus ebna3 proteins to regulate target gene expression
-
Paschos, K.; Bazot, Q.; Ho, G.; Parker, G.A.; Lees, J.; Barton, G.; Allday, M.J. Core binding factor (cbf) is required for epstein-barr virus ebna3 proteins to regulate target gene expression. Nucleic Acids Res. 2017, 45, 2368–2383. [CrossRef] [PubMed]
-
(2017)
Nucleic Acids Res
, vol.45
, pp. 2368-2383
-
-
Paschos, K.1
Bazot, Q.2
Ho, G.3
Parker, G.A.4
Lees, J.5
Barton, G.6
Allday, M.J.7
-
107
-
-
85018341634
-
Mouse model of epstein-barr virus lmp1- and lmp2a-driven germinal center B-cell lymphoproliferative disease
-
Minamitani, T.; Ma, Y.; Zhou, H.; Kida, H.; Tsai, C.Y.; Obana, M.; Okuzaki, D.; Fujio, Y.; Kumanogoh, A.; Zhao, B.; et al. Mouse model of epstein-barr virus lmp1- and lmp2a-driven germinal center B-cell lymphoproliferative disease. Proc. Natl. Acad. Sci. USA 2017, 114, 4751–4756. [CrossRef] [PubMed]
-
(2017)
Proc. Natl. Acad. Sci. USA
, vol.114
, pp. 4751-4756
-
-
Minamitani, T.1
Ma, Y.2
Zhou, H.3
Kida, H.4
Tsai, C.Y.5
Obana, M.6
Okuzaki, D.7
Fujio, Y.8
Kumanogoh, A.9
Zhao, B.10
-
108
-
-
84959345626
-
Ebv-mir-bhrf1-2 targets prdm1/blimp1: Potential role in EBV lymphomagenesis
-
Ma, J.; Nie, K.; Redmond, D.; Liu, Y.; Elemento, O.; Knowles, D.M.; Tam, W. Ebv-mir-bhrf1-2 targets prdm1/blimp1: Potential role in EBV lymphomagenesis. Leukemia 2016, 30, 594–604. [CrossRef] [PubMed]
-
(2016)
Leukemia
, vol.30
, pp. 594-604
-
-
Ma, J.1
Nie, K.2
Redmond, D.3
Liu, Y.4
Elemento, O.5
Knowles, D.M.6
Tam, W.7
-
109
-
-
84946085231
-
Differentiation-dependent klf4 expression promotes lytic epstein-barr virus infection in epithelial cells
-
Nawandar, D.M.; Wang, A.; Makielski, K.; Lee, D.; Ma, S.; Barlow, E.; Reusch, J.; Jiang, R.; Wille, C.K.; Greenspan, D.; et al. Differentiation-dependent klf4 expression promotes lytic epstein-barr virus infection in epithelial cells. PLoS Pathog. 2015, 11, e1005195. [CrossRef] [PubMed]
-
(2015)
Plos Pathog
, vol.11
-
-
Nawandar, D.M.1
Wang, A.2
Makielski, K.3
Lee, D.4
Ma, S.5
Barlow, E.6
Reusch, J.7
Jiang, R.8
Wille, C.K.9
Greenspan, D.10
-
110
-
-
84921480902
-
Cellular differentiation regulator blimp1 induces epstein-barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters
-
Reusch, J.A.; Nawandar, D.M.; Wright, K.L.; Kenney, S.C.; Mertz, J.E. Cellular differentiation regulator blimp1 induces epstein-barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J. Virol. 2015, 89, 1731–1743. [CrossRef] [PubMed]
-
(2015)
J. Virol.
, vol.89
, pp. 1731-1743
-
-
Reusch, J.A.1
Nawandar, D.M.2
Wright, K.L.3
Kenney, S.C.4
Mertz, J.E.5
-
111
-
-
84859837117
-
Lytic epstein-barr virus infection in epithelial cells but not in B-lymphocytes is dependent on blimp1
-
Buettner, M.; Lang, A.; Tudor, C.S.; Meyer, B.; Cruchley, A.; Barros, M.H.; Farrell, P.J.; Jack, H.M.; Schuh, W.; Niedobitek, G. Lytic epstein-barr virus infection in epithelial cells but not in B-lymphocytes is dependent on blimp1. J. Gen. Virol. 2012, 93, 1059–1064. [CrossRef] [PubMed]
-
(2012)
J. Gen. Virol.
, vol.93
, pp. 1059-1064
-
-
Buettner, M.1
Lang, A.2
Tudor, C.S.3
Meyer, B.4
Cruchley, A.5
Barros, M.H.6
Farrell, P.J.7
Jack, H.M.8
Schuh, W.9
Niedobitek, G.10
-
112
-
-
84925008880
-
Genome-wide Crispr screen in a mouse model of tumor growth and metastasis
-
Chen, S.; Sanjana, N.E.; Zheng, K.; Shalem, O.; Lee, K.; Shi, X.; Scott, D.A.; Song, J.; Pan, J.Q.; Weissleder, R.; et al. Genome-wide Crispr screen in a mouse model of tumor growth and metastasis. Cell 2015, 160, 1246–1260. [CrossRef] [PubMed]
-
(2015)
Cell
, vol.160
, pp. 1246-1260
-
-
Chen, S.1
Sanjana, N.E.2
Zheng, K.3
Shalem, O.4
Lee, K.5
Shi, X.6
Scott, D.A.7
Song, J.8
Pan, J.Q.9
Weissleder, R.10
-
113
-
-
85026403229
-
In vivo crispr screening identifies ptpn2 as a cancer immunotherapy target
-
Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In vivo crispr screening identifies ptpn2 as a cancer immunotherapy target. Nature 2017, 547, 413–418. [CrossRef] [PubMed]
-
(2017)
Nature
, vol.547
, pp. 413-418
-
-
Manguso, R.T.1
Pope, H.W.2
Zimmer, M.D.3
Brown, F.D.4
Yates, K.B.5
Miller, B.C.6
Collins, N.B.7
Bi, K.8
Lafleur, M.W.9
Juneja, V.R.10
-
114
-
-
84874687019
-
Repurposing crispr as an RNA-guided platform for sequence-specific control of gene expression
-
Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing crispr as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173–1183. [CrossRef] [PubMed]
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
115
-
-
85041421930
-
Crispri and crispra screens in mammalian cells for precision biology and medicine
-
Kampmann, M. Crispri and crispra screens in mammalian cells for precision biology and medicine. ACS Chem. Biol. 2017. [CrossRef] [PubMed]
-
(2017)
ACS Chem. Biol
-
-
Kampmann, M.1
-
116
-
-
84880571335
-
Crispr-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A. Crispr-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442–451. [CrossRef] [PubMed]
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
Torres, S.E.6
Stern-Ginossar, N.7
Brandman, O.8
Whitehead, E.H.9
Doudna, J.A.10
-
117
-
-
77950421703
-
Krab–zinc finger proteins and kap1 can mediate long-range transcriptional repression through heterochromatin spreading
-
Groner, A.C.; Meylan, S.; Ciuffi, A.; Zangger, N.; Ambrosini, G.; Dénervaud, N.; Bucher, P.; Trono, D. Krab–zinc finger proteins and kap1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 2010, 6, e1000869. [CrossRef] [PubMed]
-
(2010)
Plos Genet
, vol.6
-
-
Groner, A.C.1
Meylan, S.2
Ciuffi, A.3
Zangger, N.4
Ambrosini, G.5
Dénervaud, N.6
Bucher, P.7
Trono, D.8
-
118
-
-
84926521955
-
Highly efficient Cas9-mediated transcriptional programming
-
Chavez, A.; Scheiman, J.; Vora, S.; Pruitt, B.W.; Tuttle, M.; Iyer, E.P.; Lin, S.; Kiani, S.; Guzman, C.D.; Wiegand, D.J. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 2015, 12, 326–328. [CrossRef] [PubMed]
-
(2015)
Nat. Methods
, vol.12
, pp. 326-328
-
-
Chavez, A.1
Scheiman, J.2
Vora, S.3
Pruitt, B.W.4
Tuttle, M.5
Iyer, E.P.6
Lin, S.7
Kiani, S.8
Guzman, C.D.9
Wiegand, D.J.10
-
119
-
-
84908352138
-
Genome-scale Crispr-mediated control of gene repression and activation
-
Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C. Genome-scale Crispr-mediated control of gene repression and activation. Cell 2014, 159, 647–661. [CrossRef] [PubMed]
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
Chen, Y.5
Whitehead, E.H.6
Guimaraes, C.7
Panning, B.8
Ploegh, H.L.9
Bassik, M.C.10
-
120
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
Tanenbaum, M.E.; Gilbert, L.A.; Qi, L.S.; Weissman, J.S.; Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014, 159, 635–646. [CrossRef] [PubMed]
-
(2014)
Cell
, vol.159
, pp. 635-646
-
-
Tanenbaum, M.E.1
Gilbert, L.A.2
Qi, L.S.3
Weissman, J.S.4
Vale, R.D.5
-
121
-
-
84884906690
-
RNA-guided gene activation by Crispr-Cas9-based transcription factors
-
Perez-Pinera, P.; Kocak, D.D.; Vockley, C.M.; Adler, A.F.; Kabadi, A.M.; Polstein, L.R.; Thakore, P.I.; Glass, K.A.; Ousterout, D.G.; Leong, K.W. RNA-guided gene activation by Crispr-Cas9-based transcription factors. Nat. Methods 2013, 10, 973–976. [CrossRef] [PubMed]
-
(2013)
Nat. Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
Adler, A.F.4
Kabadi, A.M.5
Polstein, L.R.6
Thakore, P.I.7
Glass, K.A.8
Ousterout, D.G.9
Leong, K.W.10
-
122
-
-
84994418123
-
Compact and highly active next-generation libraries for crispr-mediated gene repression and activation
-
Horlbeck, M.A.; Gilbert, L.A.; Villalta, J.E.; Adamson, B.; Pak, R.A.; Chen, Y.; Fields, A.P.; Park, C.Y.; Corn, J.E.; Kampmann, M. Compact and highly active next-generation libraries for crispr-mediated gene repression and activation. eLife 2016, 5, e19760. [CrossRef] [PubMed]
-
(2016)
Elife
, vol.5
-
-
Horlbeck, M.A.1
Gilbert, L.A.2
Villalta, J.E.3
Adamson, B.4
Pak, R.A.5
Chen, Y.6
Fields, A.P.7
Park, C.Y.8
Corn, J.E.9
Kampmann, M.10
-
123
-
-
84953297519
-
Crispr technology for genome activation and repression in mammalian cells
-
Du, D.; Qi, L.S. Crispr technology for genome activation and repression in mammalian cells. Cold Spring Harb. Protoc. 2016, 2016. [CrossRef] [PubMed]
-
(2016)
Cold Spring Harb. Protoc.
, vol.2016
-
-
Du, D.1
Qi, L.S.2
-
124
-
-
84969195094
-
Nucleosomes impede Cas9 access to DNA in vivo and in vitro
-
Horlbeck, M.A.; Witkowsky, L.B.; Guglielmi, B.; Replogle, J.M.; Gilbert, L.A.; Villalta, J.E.; Torigoe, S.E.; Tijan, R.; Weissman, J.S. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 2016, 5, e12677. [CrossRef] [PubMed]
-
(2016)
Elife
, vol.5
-
-
Horlbeck, M.A.1
Witkowsky, L.B.2
Guglielmi, B.3
Replogle, J.M.4
Gilbert, L.A.5
Villalta, J.E.6
Torigoe, S.E.7
Tijan, R.8
Weissman, J.S.9
-
125
-
-
85027847997
-
A Crispr activation screen identifies a pan-avian influenza virus inhibitory host factor
-
Heaton, B.E.; Kennedy, E.M.; Dumm, R.E.; Harding, A.T.; Sacco, M.T.; Sachs, D.; Heaton, N.S. A Crispr activation screen identifies a pan-avian influenza virus inhibitory host factor. Cell Rep. 2017, 20, 1503–1512. [CrossRef] [PubMed]
-
(2017)
Cell Rep
, vol.20
, pp. 1503-1512
-
-
Heaton, B.E.1
Kennedy, E.M.2
Dumm, R.E.3
Harding, A.T.4
Sacco, M.T.5
Sachs, D.6
Heaton, N.S.7
-
126
-
-
84922480109
-
The sweet spot: Defining virus-sialic acid interactions
-
Stencel-Baerenwald, J.E.; Reiss, K.; Reiter, D.M.; Stehle, T.; Dermody, T.S. The sweet spot: Defining virus-sialic acid interactions. Nat. Rev. Microbiol. 2014, 12, 739–749. [CrossRef] [PubMed]
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 739-749
-
-
Stencel-Baerenwald, J.E.1
Reiss, K.2
Reiter, D.M.3
Stehle, T.4
Dermody, T.S.5
-
127
-
-
84861968318
-
A review of influenza haemagglutinin receptor binding as it relates to pandemic properties
-
Wilks, S.; de Graaf, M.; Smith, D.J.; Burke, D.F. A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine 2012, 30, 4369–4376. [CrossRef] [PubMed]
-
(2012)
Vaccine
, vol.30
, pp. 4369-4376
-
-
Wilks, S.1
De Graaf, M.2
Smith, D.J.3
Burke, D.F.4
-
128
-
-
60149099385
-
Evolution and functions of long noncoding rnas
-
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding rnas. Cell 2009, 136, 629–641. [CrossRef] [PubMed]
-
(2009)
Cell
, vol.136
, pp. 629-641
-
-
Ponting, C.P.1
Oliver, P.L.2
Reik, W.3
-
129
-
-
84861904178
-
Genome regulation by long noncoding RNAs
-
Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [CrossRef] [PubMed]
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 145-166
-
-
Rinn, J.L.1
Chang, H.Y.2
-
130
-
-
84962739336
-
Long noncoding RNAs in cancer pathways
-
Schmitt, A.M.; Chang, H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell 2016, 29, 452–463. [CrossRef] [PubMed]
-
(2016)
Cancer Cell
, vol.29
, pp. 452-463
-
-
Schmitt, A.M.1
Chang, H.Y.2
-
131
-
-
84961291622
-
From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease
-
Sun, M.; Kraus, W.L. From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease. Endocr. Rev. 2015, 36, 25–64. [CrossRef] [PubMed]
-
(2015)
Endocr. Rev.
, vol.36
, pp. 25-64
-
-
Sun, M.1
Kraus, W.L.2
-
132
-
-
33745608078
-
Off-target effects by siRNA can induce toxic phenotype
-
Fedorov, Y.; Anderson, E.M.; Birmingham, A.; Reynolds, A.; Karpilow, J.; Robinson, K.; Leake, D.; Marshall, W.S.; Khvorova, A. Off-target effects by siRNA can induce toxic phenotype. RNA 2006, 12, 1188–1196. [CrossRef] [PubMed]
-
(2006)
RNA
, vol.12
, pp. 1188-1196
-
-
Fedorov, Y.1
Anderson, E.M.2
Birmingham, A.3
Reynolds, A.4
Karpilow, J.5
Robinson, K.6
Leake, D.7
Marshall, W.S.8
Khvorova, A.9
-
133
-
-
74049124186
-
Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application
-
Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 2010, 9, 57–67. [CrossRef] [PubMed]
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 57-67
-
-
Jackson, A.L.1
Linsley, P.S.2
-
134
-
-
0036074161
-
RNA interference in human cells is restricted to the cytoplasm
-
Zeng, Y.; Cullen, B.R. RNA interference in human cells is restricted to the cytoplasm. RNA 2002, 8, 855–860. [CrossRef] [PubMed]
-
(2002)
RNA
, vol.8
, pp. 855-860
-
-
Zeng, Y.1
Cullen, B.R.2
-
135
-
-
85008257169
-
Crispri-based genome-scale identification of functional long noncoding RNA loci in human cells
-
Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y. Crispri-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 2017, 355. [CrossRef] [PubMed]
-
(2017)
Science
, vol.355
-
-
Liu, S.J.1
Horlbeck, M.A.2
Cho, S.W.3
Birk, H.S.4
Malatesta, M.5
He, D.6
Attenello, F.J.7
Villalta, J.E.8
Cho, M.Y.9
Chen, Y.10
-
136
-
-
84982918709
-
Genomic copy number dictates a gene-independent cell response to Crispr/Cas9 targeting
-
Aguirre, A.J.; Meyers, R.M.; Weir, B.A.; Vazquez, F.; Zhang, C.-Z.; Ben-David, U.; Cook, A.; Ha, G.; Harrington, W.F.; Doshi, M.B. Genomic copy number dictates a gene-independent cell response to Crispr/Cas9 targeting. Cancer Discov. 2016, 6, 914–929. [CrossRef] [PubMed]
-
(2016)
Cancer Discov
, vol.6
, pp. 914-929
-
-
Aguirre, A.J.1
Meyers, R.M.2
Weir, B.A.3
Vazquez, F.4
Zhang, C.-Z.5
Ben-David, U.6
Cook, A.7
Ha, G.8
Harrington, W.F.9
Doshi, M.B.10
-
137
-
-
85021377645
-
Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 genome project samples
-
Mandage, R.; Telford, M.; Rodríguez, J.A.; Farré, X.; Layouni, H.; Marigorta, U.M.; Cundiff, C.; Heredia-Genestar, J.M.; Navarro, A.; Santpere, G. Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 genome project samples. PLoS ONE 2017, 12, e0179446. [CrossRef] [PubMed]
-
(2017)
Plos ONE
, vol.12
-
-
Mandage, R.1
Telford, M.2
Rodríguez, J.A.3
Farré, X.4
Layouni, H.5
Marigorta, U.M.6
Cundiff, C.7
Heredia-Genestar, J.M.8
Navarro, A.9
Santpere, G.10
-
138
-
-
0027403265
-
Episomal and integrated copies of epstein-barr virus coexist in burkitt lymphoma cell lines
-
Delecluse, H.; Bartnizke, S.; Hammerschmidt, W.; Bullerdiek, J.; Bornkamm, G. Episomal and integrated copies of epstein-barr virus coexist in burkitt lymphoma cell lines. J. Virol. 1993, 67, 1292–1299. [PubMed]
-
(1993)
J. Virol.
, vol.67
, pp. 1292-1299
-
-
Delecluse, H.1
Bartnizke, S.2
Hammerschmidt, W.3
Bullerdiek, J.4
Bornkamm, G.5
-
139
-
-
84884685804
-
Modulation of enhancer looping and differential gene targeting by epstein-barr virus transcription factors directs cellular reprogramming
-
McClellan, M.J.; Wood, C.D.; Ojeniyi, O.; Cooper, T.J.; Kanhere, A.; Arvey, A.; Webb, H.M.; Palermo, R.D.; Harth-Hertle, M.L.; Kempkes, B. Modulation of enhancer looping and differential gene targeting by epstein-barr virus transcription factors directs cellular reprogramming. PLoS Pathog. 2013, 9, e1003636. [CrossRef] [PubMed]
-
(2013)
Plos Pathog
, vol.9
-
-
McClellan, M.J.1
Wood, C.D.2
Ojeniyi, O.3
Cooper, T.J.4
Kanhere, A.5
Arvey, A.6
Webb, H.M.7
Palermo, R.D.8
Harth-Hertle, M.L.9
Kempkes, B.10
-
140
-
-
85042084537
-
Modulating gene expression in epstein-barr virus (EBV)-positive B cell lines with CRISPRa and CRISPRi
-
[CrossRef] [PubMed]
-
Wang, L.W.; Trudeau, S.J.; Wang, C.; Gerdt, C.; Jiang, S.; Zhao, B.; Gewurz, B.E. Modulating gene expression in epstein-barr virus (EBV)-positive B cell lines with CRISPRa and CRISPRi. Curr. Protoc. Mol. Biol. 2018, 121, 31.13.1–31.13.18. [CrossRef] [PubMed]
-
(2018)
Curr. Protoc. Mol. Biol.
, vol.121
, pp. 1-31
-
-
Wang, L.W.1
Trudeau, S.J.2
Wang, C.3
Gerdt, C.4
Jiang, S.5
Zhao, B.6
Gewurz, B.E.7
-
141
-
-
85030178360
-
Multiplex enhancer interference reveals collaborative control of gene regulation by estrogen receptor α-bound enhancers
-
Carleton, J.B.; Berrett, K.C.; Gertz, J. Multiplex enhancer interference reveals collaborative control of gene regulation by estrogen receptor α-bound enhancers. Cell Syst. 2017, 5, 333–344.e5. [CrossRef] [PubMed]
-
(2017)
Cell Syst
, vol.5
, pp. 333-344
-
-
Carleton, J.B.1
Berrett, K.C.2
Gertz, J.3
-
142
-
-
84989216655
-
A global genetic interaction network maps a wiring diagram of cellular function
-
Costanzo, M.; VanderSluis, B.; Koch, E.N.; Baryshnikova, A.; Pons, C.; Tan, G.; Wang, W.; Usaj, M.; Hanchard, J.; Lee, S.D.; et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 2016, 353. [CrossRef] [PubMed]
-
(2016)
Science
, vol.353
-
-
Costanzo, M.1
Vandersluis, B.2
Koch, E.N.3
Baryshnikova, A.4
Pons, C.5
Tan, G.6
Wang, W.7
Usaj, M.8
Hanchard, J.9
Lee, S.D.10
-
143
-
-
85030698228
-
The revolution continues: Newly discovered systems expand the Crispr-Cas toolkit
-
Murugan, K.; Babu, K.; Sundaresan, R.; Rajan, R.; Sashital, D.G. The revolution continues: Newly discovered systems expand the Crispr-Cas toolkit. Mol. Cell 2017, 68, 15–25. [CrossRef] [PubMed]
-
(2017)
Mol. Cell
, vol.68
, pp. 15-25
-
-
Murugan, K.1
Babu, K.2
Sundaresan, R.3
Rajan, R.4
Sashital, D.G.5
-
144
-
-
85031303757
-
RNA targeting with Crispr–Cas13
-
Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.; Kellner, M.J.; Regev, A. RNA targeting with Crispr–Cas13. Nature 2017, 550, 280–284. [CrossRef] [PubMed]
-
(2017)
Nature
, vol.550
, pp. 280-284
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Essletzbichler, P.3
Han, S.4
Joung, J.5
Belanto, J.J.6
Verdine, V.7
Cox, D.B.8
Kellner, M.J.9
Regev, A.10
-
145
-
-
85032331429
-
RNA editing with Crispr-Cas13
-
Cox, D.B.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with Crispr-Cas13. Science 2017, 358, 1019–1027. [CrossRef] [PubMed]
-
(2017)
Science
, vol.358
, pp. 1019-1027
-
-
Cox, D.B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Franklin, B.4
Kellner, M.J.5
Joung, J.6
Zhang, F.7
-
146
-
-
85041394523
-
Harnessing Crispr/Cas systems for programmable transcriptional and post-transcriptional regulation
-
Mahas, A.; Stewart, C.N.; Mahfouz, M.M.Harnessing Crispr/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol. Adv. 2017. [CrossRef] [PubMed]
-
(2017)
Biotechnol. Adv
-
-
Mahas, A.1
Stewart, C.N.2
Mahfouz, M.M.3
-
147
-
-
85017652697
-
Nucleic acid detection with Crispr-Cas13a/c2c2
-
Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with Crispr-Cas13a/c2c2. Science 2017, 356, 438–442. [CrossRef] [PubMed]
-
(2017)
Science
, vol.356
, pp. 438-442
-
-
Gootenberg, J.S.1
Abudayyeh, O.O.2
Lee, J.W.3
Essletzbichler, P.4
Dy, A.J.5
Joung, J.6
Verdine, V.7
Donghia, N.8
Daringer, N.M.9
Freije, C.A.10
|