메뉴 건너뛰기




Volumn 355, Issue 6320, 2017, Pages

CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells

Author keywords

[No Author keywords available]

Indexed keywords

GUIDE RNA; LONG UNTRANSLATED RNA; TRANSCRIPTOME;

EID: 85008257169     PISSN: 00368075     EISSN: 10959203     Source Type: Journal    
DOI: 10.1126/science.aah7111     Document Type: Article
Times cited : (553)

References (61)
  • 1
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • S. Djebali et al., Landscape of transcription in human cells. Nature 489, 101-108 (2012). doi: 10.1038/nature11233
    • (2012) Nature , vol.489 , pp. 101-108
    • Djebali, S.1
  • 2
    • 84897406127 scopus 로고    scopus 로고
    • A promoter-level mammalian expression atlas
    • A. R. R. Forrest et al., A promoter-level mammalian expression atlas. Nature 507, 462-470 (2014). doi: 10.1038/nature13182
    • (2014) Nature , vol.507 , pp. 462-470
    • Forrest, A.R.R.1
  • 3
    • 84879987789 scopus 로고    scopus 로고
    • LincRNAs: Genomics, evolution, and mechanisms
    • I. Ulitsky, D. P. Bartel, lincRNAs: Genomics, evolution, and mechanisms. Cell 154, 26-46 (2013). doi: 10.1016/j.cell.2013.06.020
    • (2013) Cell , vol.154 , pp. 26-46
    • Ulitsky, I.1    Bartel, D.P.2
  • 4
    • 84861904178 scopus 로고    scopus 로고
    • Genome regulation by long noncoding RNAs
    • J. L. Rinn, H. Y. Chang, Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145-166 (2012). doi: 10.1146/annurev-biochem-051410-092902
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 145-166
    • Rinn, J.L.1    Chang, H.Y.2
  • 5
    • 60149099385 scopus 로고    scopus 로고
    • Evolution and functions of long noncoding RNAs
    • C. P. Ponting, P. L. Oliver, W. Reik, Evolution and functions of long noncoding RNAs. Cell 136, 629-641 (2009). doi: 10.1016/j.cell.2009.02.006
    • (2009) Cell , vol.136 , pp. 629-641
    • Ponting, C.P.1    Oliver, P.L.2    Reik, W.3
  • 6
    • 84921353503 scopus 로고    scopus 로고
    • Considerations when investigating lncRNA function in vivo
    • A. R. Bassett et al., Considerations when investigating lncRNA function in vivo. eLife 3, e03058 (2014). doi: 10.7554/eLife.03058
    • (2014) ELife , vol.3 , pp. e03058
    • Bassett, A.R.1
  • 7
    • 84891757415 scopus 로고    scopus 로고
    • Multiple knockout mouse models reveal lincRNAs are required for life and brain development
    • M. Sauvageau et al., Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749 (2013). doi: 10.7554/eLife.01749
    • (2013) ELife , vol.2 , pp. e01749
    • Sauvageau, M.1
  • 8
    • 0036500632 scopus 로고    scopus 로고
    • The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex
    • V. H. Meller, B. P. Rattner, The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21, 1084-1091 (2002). doi: 10.1093/emboj/21.5.1084
    • (2002) EMBO J. , vol.21 , pp. 1084-1091
    • Meller, V.H.1    Rattner, B.P.2
  • 9
    • 84945124703 scopus 로고    scopus 로고
    • DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs
    • E. Aparicio-Prat et al., DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 16, 846 (2015). doi: 10.1186/s12864-015-2086-z
    • (2015) BMC Genomics , vol.16 , pp. 846
    • Aparicio-Prat, E.1
  • 10
    • 84936077333 scopus 로고    scopus 로고
    • Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines
    • 10.1093/nar/gku1198
    • T.-T. Ho et al., Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 43, 10.1093/nar/gku1198 (2014). doi: 10.1093/nar/gku1198
    • (2014) Nucleic Acids Res. , vol.43
    • Ho, T.-T.1
  • 11
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • T. Wang, J. J. Wei, D. M. Sabatini, E. S. Lander, Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84 (2014). doi: 10.1126/science.1246981
    • (2014) Science , vol.343 , pp. 80-84
    • Wang, T.1    Wei, J.J.2    Sabatini, D.M.3    Lander, E.S.4
  • 12
    • 84892765883 scopus 로고    scopus 로고
    • Genome-scale CRISPR-Cas9 knockout screening in human cells
    • O. Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87 (2014). doi: 10.1126/science.1247005
    • (2014) Science , vol.343 , pp. 84-87
    • Shalem, O.1
  • 13
    • 84930939029 scopus 로고    scopus 로고
    • Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
    • J. Shi et al., Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661-667 (2015). doi: 10.1038/nbt.3235
    • (2015) Nat. Biotechnol. , vol.33 , pp. 661-667
    • Shi, J.1
  • 14
    • 84929272870 scopus 로고    scopus 로고
    • Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation
    • Y. Yin et al., Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell 16, 504-516 (2015). doi: 10.1016/j.stem.2015.03.007
    • (2015) Cell Stem Cell , vol.16 , pp. 504-516
    • Yin, Y.1
  • 15
    • 84962129303 scopus 로고    scopus 로고
    • Unlinking an lncRNA from its associated cis element
    • V. R. Paralkar et al., Unlinking an lncRNA from its associated cis element. Mol. Cell 62, 104-110 (2016). doi: 10.1016/j.molcel.2016.02.029
    • (2016) Mol. Cell , vol.62 , pp. 104-110
    • Paralkar, V.R.1
  • 16
    • 84981715587 scopus 로고    scopus 로고
    • In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements
    • A. F. Groff et al., In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep. 16, 2178-2186 (2016). doi: 10.1016/j.celrep.2016.07.050
    • (2016) Cell Rep. , vol.16 , pp. 2178-2186
    • Groff, A.F.1
  • 17
    • 85003712738 scopus 로고    scopus 로고
    • Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library
    • 10.1038/nbt.3715
    • S. Zhu et al., Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 10.1038/nbt.3715 (2016). doi: 10.1038/nbt.3715
    • (2016) Nat. Biotechnol.
    • Zhu, S.1
  • 18
    • 80052869283 scopus 로고    scopus 로고
    • LincRNAs act in the circuitry controlling pluripotency and differentiation
    • M. Guttman et al., lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295-300 (2011). doi: 10.1038/nature10398
    • (2011) Nature , vol.477 , pp. 295-300
    • Guttman, M.1
  • 19
    • 84896385370 scopus 로고    scopus 로고
    • An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment
    • N. Lin et al., An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell 53, 1005-1019 (2014). doi: 10.1016/j.molcel.2014.01.021
    • (2014) Mol. Cell , vol.53 , pp. 1005-1019
    • Lin, N.1
  • 20
    • 84857781943 scopus 로고    scopus 로고
    • A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response
    • B. Adamson, A. Smogorzewska, F. D. Sigoillot, R. W. King, S. J. Elledge, A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat. Cell Biol. 14, 318-328 (2012). doi: 10.1038/ncb2426
    • (2012) Nat. Cell Biol. , vol.14 , pp. 318-328
    • Adamson, B.1    Smogorzewska, A.2    Sigoillot, F.D.3    King, R.W.4    Elledge, S.J.5
  • 21
    • 0036074161 scopus 로고    scopus 로고
    • RNA interference in human cells is restricted to the cytoplasm
    • Y. Zeng, B. R. Cullen, RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855-860 (2002). doi: 10.1017/S1355838202020071
    • (2002) RNA , vol.8 , pp. 855-860
    • Zeng, Y.1    Cullen, B.R.2
  • 22
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • L. A. Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451 (2013). doi: 10.1016/j.cell.2013.06.044
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1
  • 23
    • 84908352138 scopus 로고    scopus 로고
    • Genome-scale CRISPR-mediated control of gene repression and activation
    • L. A. Gilbert et al., Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647-661 (2014). doi: 10.1016/j.cell.2014.09.029
    • (2014) Cell , vol.159 , pp. 647-661
    • Gilbert, L.A.1
  • 24
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • L. S. Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183 (2013). doi: 10.1016/j.cell.2013.02.022
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 25
    • 84940368054 scopus 로고    scopus 로고
    • Crystal structure of Staphylococcus aureus Cas9
    • H. Nishimasu et al., Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113-1126 (2015). doi: 10.1016/j.cell.2015.08.007
    • (2015) Cell , vol.162 , pp. 1113-1126
    • Nishimasu, H.1
  • 26
    • 84996441862 scopus 로고    scopus 로고
    • Local regulation of gene expression by lncRNA promoters, transcription and splicing
    • J. M. Engreitz et al., Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452-455 (2016).
    • (2016) Nature , vol.539 , pp. 452-455
    • Engreitz, J.M.1
  • 27
    • 84878451215 scopus 로고    scopus 로고
    • Gene regulation by the act of long non-coding RNA transcription
    • A. E. Kornienko, P. M. Guenzl, D. P. Barlow, F. M. Pauler, Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 11, 59 (2013). doi: 10.1186/1741-7007-11-59
    • (2013) BMC Biol. , vol.11 , pp. 59
    • Kornienko, A.E.1    Guenzl, P.M.2    Barlow, D.P.3    Pauler, F.M.4
  • 28
    • 77957243921 scopus 로고    scopus 로고
    • Long noncoding RNAs with enhancer-like function in human cells
    • U. A. Orom et al., Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46-58 (2010). doi: 10.1016/j.cell.2010.09.001
    • (2010) Cell , vol.143 , pp. 46-58
    • Orom, U.A.1
  • 29
    • 84879695128 scopus 로고    scopus 로고
    • Functional roles of enhancer RNAs for oestrogendependent transcriptional activation
    • W. Li et al., Functional roles of enhancer RNAs for oestrogendependent transcriptional activation. Nature 498, 516-520 (2013). doi: 10.1038/nature12210
    • (2013) Nature , vol.498 , pp. 516-520
    • Li, W.1
  • 30
    • 84990852918 scopus 로고    scopus 로고
    • Systematic mapping of functional enhancer-promoter connections with CRISPR interference
    • C. P. Fulco et al., Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769-773 (2016). doi: 10.1126/science.aag2445
    • (2016) Science , vol.354 , pp. 769-773
    • Fulco, C.P.1
  • 31
    • 84949100864 scopus 로고    scopus 로고
    • Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
    • P. I. Thakore et al., Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143-1149 (2015). doi: 10.1038/nmeth.3630
    • (2015) Nat. Methods , vol.12 , pp. 1143-1149
    • Thakore, P.I.1
  • 32
    • 84988592852 scopus 로고    scopus 로고
    • Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing
    • A. Amabile et al., Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219-232.e14 (2016). doi: 10.1016/j.cell.2016.09.006
    • (2016) Cell , vol.167 , pp. 219e14-232e14
    • Amabile, A.1
  • 33
    • 84959929298 scopus 로고    scopus 로고
    • CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs
    • M. A. Mandegar et al., CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541-553 (2016). doi: 10.1016/j.stem.2016.01.022
    • (2016) Cell Stem Cell , vol.18 , pp. 541-553
    • Mandegar, M.A.1
  • 34
    • 84977557474 scopus 로고    scopus 로고
    • Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation
    • C. J. Braun et al., Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc. Natl. Acad. Sci. U.S.A. 113, E3892-E3900 (2016). doi: 10.1073/pnas.1600582113
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. E3892-E3900
    • Braun, C.J.1
  • 35
    • 84994418123 scopus 로고    scopus 로고
    • Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
    • M. A. Horlbeck et al., Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016). doi: 10.7554/eLife.19760
    • (2016) ELife , vol.5 , pp. e19760
    • Horlbeck, M.A.1
  • 36
    • 36248966518 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from adult human fibroblasts by defined factors
    • K. Takahashi et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 (2007). doi: 10.1016/j.cell.2007.11.019
    • (2007) Cell , vol.131 , pp. 861-872
    • Takahashi, K.1
  • 37
    • 80052978224 scopus 로고    scopus 로고
    • Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
    • M. N. Cabili et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915-1927 (2011). doi: 10.1101/gad.17446611
    • (2011) Genes Dev. , vol.25 , pp. 1915-1927
    • Cabili, M.N.1
  • 38
    • 84924063355 scopus 로고    scopus 로고
    • The landscape of long noncoding RNAs in the human transcriptome
    • M. K. Iyer et al., The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199-208 (2015). doi: 10.1038/ng.3192
    • (2015) Nat. Genet. , vol.47 , pp. 199-208
    • Iyer, M.K.1
  • 39
    • 84976870685 scopus 로고    scopus 로고
    • Ensembl 2016
    • A. Yates et al., Ensembl 2016. Nucleic Acids Res. 44, D710-D716 (2015). doi: 10.1093/nar/gkv1157
    • (2015) Nucleic Acids Res. , vol.44 , pp. D710-D716
    • Yates, A.1
  • 40
    • 7444260846 scopus 로고    scopus 로고
    • The ENCODE (ENCyclopedia of DNA Elements) project
    • ENCODE Project Consortium
    • ENCODE Project Consortium, The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636-640 (2004). doi: 10.1126/science.1105136
    • (2004) Science , vol.306 , pp. 636-640
  • 41
    • 84885431901 scopus 로고    scopus 로고
    • A robust method to derive functional neural crest cells from human pluripotent stem cells
    • F. R. Kreitzer et al., A robust method to derive functional neural crest cells from human pluripotent stem cells. Am. J. Stem Cells 2, 119-131 (2013).
    • (2013) Am. J. Stem Cells , vol.2 , pp. 119-131
    • Kreitzer, F.R.1
  • 42
    • 84963544829 scopus 로고    scopus 로고
    • Single-cell analysis of long non-coding RNAs in the developing human neocortex
    • S. J. Liu et al., Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 17, 67 (2016). doi: 10.1186/s13059-016-0932-1
    • (2016) Genome Biol. , vol.17 , pp. 67
    • Liu, S.J.1
  • 43
    • 84879319702 scopus 로고    scopus 로고
    • Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells
    • M. Kampmann, M. C. Bassik, J. S. Weissman, Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 110, E2317-E2326 (2013). doi: 10.1073/pnas.1307002110
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E2317-E2326
    • Kampmann, M.1    Bassik, M.C.2    Weissman, J.S.3
  • 44
    • 84905274395 scopus 로고    scopus 로고
    • Measuring error rates in genomic perturbation screens: Gold standards for human functional genomics
    • T. Hart, K. R. Brown, F. Sircoulomb, R. Rottapel, J. Moffat, Measuring error rates in genomic perturbation screens: Gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014). doi: 10.15252/msb.20145216
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 733
    • Hart, T.1    Brown, K.R.2    Sircoulomb, F.3    Rottapel, R.4    Moffat, J.5
  • 45
    • 84905578200 scopus 로고    scopus 로고
    • PVT1 dependence in cancer with MYC copy-number increase
    • Y.-Y. Tseng et al., PVT1 dependence in cancer with MYC copy-number increase. Nature 512, 82-86 (2014).
    • (2014) Nature , vol.512 , pp. 82-86
    • Tseng, Y.-Y.1
  • 46
    • 84947471999 scopus 로고    scopus 로고
    • Identification and characterization of essential genes in the human genome
    • T. Wang et al., Identification and characterization of essential genes in the human genome. Science 350, 1096-1101 (2015). doi: 10.1126/science.aac7041
    • (2015) Science , vol.350 , pp. 1096-1101
    • Wang, T.1
  • 47
    • 84949233942 scopus 로고    scopus 로고
    • High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities
    • T. Hart et al., High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515-1526 (2015). doi: 10.1016/j.cell.2015.11.015
    • (2015) Cell , vol.163 , pp. 1515-1526
    • Hart, T.1
  • 48
    • 84897459814 scopus 로고    scopus 로고
    • An atlas of active enhancers across human cell types and tissues
    • R. Andersson et al., An atlas of active enhancers across human cell types and tissues. Nature 507, 455-461 (2014). doi: 10.1038/nature12787
    • (2014) Nature , vol.507 , pp. 455-461
    • Andersson, R.1
  • 49
    • 33846112470 scopus 로고    scopus 로고
    • VISTA Enhancer Browser-A database of tissue-specific human enhancers
    • A. Visel, S. Minovitsky, I. Dubchak, L. A. Pennacchio, VISTA Enhancer Browser-A database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88-D92 (2007). doi: 10.1093/nar/gkl822
    • (2007) Nucleic Acids Res. , vol.35 , pp. D88-D92
    • Visel, A.1    Minovitsky, S.2    Dubchak, I.3    Pennacchio, L.A.4
  • 50
    • 84944077358 scopus 로고    scopus 로고
    • Comprehensive genomic characterization of long non-coding RNAs across human cancers
    • X. Yan et al., Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28, 529-540 (2015). doi: 10.1016/j.ccell.2015.09.006
    • (2015) Cancer Cell , vol.28 , pp. 529-540
    • Yan, X.1
  • 51
    • 84888015137 scopus 로고    scopus 로고
    • Super-enhancers in the control of cell identity and disease
    • D. Hnisz et al., Super-enhancers in the control of cell identity and disease. Cell 155, 934-947 (2013). doi: 10.1016/j.cell.2013.09.053
    • (2013) Cell , vol.155 , pp. 934-947
    • Hnisz, D.1
  • 52
    • 84956638042 scopus 로고    scopus 로고
    • Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs
    • J. Chen et al., Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol. 17, 19 (2016). doi: 10.1186/s13059-016-0880-9
    • (2016) Genome Biol. , vol.17 , pp. 19
    • Chen, J.1
  • 53
    • 79953748673 scopus 로고    scopus 로고
    • A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression
    • K. C. Wang et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120-124 (2011). doi: 10.1038/nature09819
    • (2011) Nature , vol.472 , pp. 120-124
    • Wang, K.C.1
  • 54
    • 84926177361 scopus 로고    scopus 로고
    • Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes
    • W. Ma et al., Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12, 71-78 (2015). doi: 10.1038/nmeth.3205
    • (2015) Nat. Methods , vol.12 , pp. 71-78
    • Ma, W.1
  • 55
    • 84879642373 scopus 로고    scopus 로고
    • The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome
    • J. M. Engreitz et al., The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013). doi: 10.1126/science.1237973
    • (2013) Science , vol.341 , pp. 1237973
    • Engreitz, J.M.1
  • 56
    • 84895908120 scopus 로고    scopus 로고
    • The evolution of lncRNA repertoires and expression patterns in tetrapods
    • A. Necsulea et al., The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635-640 (2014). doi: 10.1038/nature12943
    • (2014) Nature , vol.505 , pp. 635-640
    • Necsulea, A.1
  • 57
    • 84926163086 scopus 로고    scopus 로고
    • The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells
    • A. D. Ramos et al., The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16, 439-447 (2015). doi: 10.1016/j.stem.2015.02.007
    • (2015) Cell Stem Cell , vol.16 , pp. 439-447
    • Ramos, A.D.1
  • 58
    • 84872135457 scopus 로고    scopus 로고
    • Control of somatic tissue differentiation by the long non-coding RNA TINCR
    • M. Kretz et al., Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231-235 (2013). doi: 10.1038/nature11661
    • (2013) Nature , vol.493 , pp. 231-235
    • Kretz, M.1
  • 59
    • 84873451950 scopus 로고    scopus 로고
    • The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells
    • T. Gutschner et al., The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180-1189 (2013). doi: 10.1158/0008-5472.CAN-12-2850
    • (2013) Cancer Res. , vol.73 , pp. 1180-1189
    • Gutschner, T.1
  • 60
    • 77951118936 scopus 로고    scopus 로고
    • Long non-coding RNA HOTAIR reprograms chromatinstate to promote cancer metastasis
    • R. A. Gupta et al., Long non-coding RNA HOTAIR reprograms chromatinstate to promote cancer metastasis. Nature 464, 1071-1076 (2011). doi: 10.1038/nature08975
    • (2011) Nature , vol.464 , pp. 1071-1076
    • Gupta, R.A.1
  • 61
    • 84949432853 scopus 로고    scopus 로고
    • Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution
    • J. A. Briggs, E. J. Wolvetang, J. S. Mattick, J. L. Rinn, G. Barry, Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron 88, 861-877 (2015). doi: 10.1016/j.neuron.2015.09.045
    • (2015) Neuron , vol.88 , pp. 861-877
    • Briggs, J.A.1    Wolvetang, E.J.2    Mattick, J.S.3    Rinn, J.L.4    Barry, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.