-
1
-
-
84939563369
-
Bacterial recombineering: Genome engineering via phage-based homologous recombination
-
Pines, G., Freed, E. F., Winkler, J. D. & Gill, R. T. Bacterial recombineering: genome engineering via phage-based homologous recombination. Acs Synth Biol 4, 1176-1185, doi: 10.1021/acssynbio.5b00009 (2015).
-
(2015)
Acs Synth Biol
, vol.4
, pp. 1176-1185
-
-
Pines, G.1
Freed, E.F.2
Winkler, J.D.3
Gill, R.T.4
-
2
-
-
84926665601
-
A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies
-
Gu, P. F. et al. A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep-Uk 5, doi: ARTN 968410.1038/srep09684 (2015).
-
(2015)
Sci Rep-UK
, vol.5
-
-
Gu, P.F.1
-
3
-
-
84958247886
-
Synthetic biology to access and expand nature's chemical diversity
-
Smanski, M. J. et al. Synthetic biology to access and expand nature's chemical diversity. Nat Rev Microbiol 14, 135-149, doi: 10.1038/ nrmicro.2015.24 (2016).
-
(2016)
Nat Rev Microbiol
, vol.14
, pp. 135-149
-
-
Smanski, M.J.1
-
4
-
-
84873800970
-
Genome-scale engineering for systems and synthetic biology
-
Esvelt, K. M. & Wang, H. H. Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9, 641, doi: 10.1038/ msb.2012.66 (2013).
-
(2013)
Mol Syst Biol
, vol.9
, pp. 641
-
-
Esvelt, K.M.1
Wang, H.H.2
-
5
-
-
84976307779
-
Recombineering: Genetic engineering in bacteria using homologous recombination
-
Thomason, L. C., Sawitzke, J. A., Li, X., Costantino, N. & Court, D. L. Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 106, 1 1611-1116 39, doi: 10.1002/0471142727.mb0116s106 (2014).
-
(2014)
Curr Protoc Mol Biol
, vol.106
, pp. 11611-111639
-
-
Thomason, L.C.1
Sawitzke, J.A.2
Li, X.3
Costantino, N.4
Court, D.L.5
-
6
-
-
0031924072
-
Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli
-
Murphy, K. C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180, 2063-2071 (1998).
-
(1998)
J Bacteriol
, vol.180
, pp. 2063-2071
-
-
Murphy, K.C.1
-
7
-
-
0031664853
-
A new logic for DNA engineering using recombination in Escherichia coli
-
Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20, 123-128, doi: 10.1038/2417 (1998).
-
(1998)
Nat Genet
, vol.20
, pp. 123-128
-
-
Zhang, Y.1
Buchholz, F.2
Muyrers, J.P.3
Stewart, A.F.4
-
8
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. P Natl Acad Sci USA 97, 6640-6645, doi: DOI 10.1073/pnas.120163297 (2000).
-
(2000)
P Natl Acad Sci USA
, vol.97
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
9
-
-
84930936429
-
Multiplexed tracking of combinatorial genomic mutations in engineered cell populations
-
Zeitoun, R. I. et al. Multiplexed tracking of combinatorial genomic mutations in engineered cell populations. Nat Biotechnol 33, 631-637, doi: 10.1038/nbt.3177 (2015).
-
(2015)
Nat Biotechnol
, vol.33
, pp. 631-637
-
-
Zeitoun, R.I.1
-
10
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W. Y., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239, doi: 10.1038/nbt.2508 (2013).
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.Y.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
11
-
-
84885610892
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 155, 479-480, doi: 10.1016/j.cell.2013.09.040 (2013).
-
(2013)
Cell
, vol.155
, pp. 479-480
-
-
Ran, F.A.1
-
12
-
-
84949641392
-
Current and future prospects for CRISPR-based tools in bacteria
-
Luo, M. L., Leenay, R. T. & Beisel, C. L. Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng 113, 930-943, doi: 10.1002/bit.25851 (2016).
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 930-943
-
-
Luo, M.L.1
Leenay, R.T.2
Beisel, C.L.3
-
13
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, doi: 10.1126/science.1231143 (2013).
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
14
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826, doi: 10.1126/science.1232033 (2013).
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
15
-
-
51849121635
-
DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells
-
Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902-2906 (2008).
-
(2008)
Cell Cycle
, vol.7
, pp. 2902-2906
-
-
Mao, Z.1
Bozzella, M.2
Seluanov, A.3
Gorbunova, V.4
-
16
-
-
33645781346
-
Making ends meet: Repairing breaks in bacterial DNA by non-homologous end-joining
-
Bowater, R. & Doherty, A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. Plos Genet 2, e8, doi: 10.1371/journal.pgen.0020008 (2006).
-
(2006)
Plos Genet
, vol.2
, pp. e8
-
-
Bowater, R.1
Doherty, A.J.2
-
17
-
-
3242881500
-
The cellular response to general and programmed DNA double strand breaks
-
Bassing, C. H. & Alt, F. W. The cellular response to general and programmed DNA double strand breaks. DNA Repair 3, 781-796, doi: http://dx.doi.org/10.1016/j.dnarep.2004.06.001 (2004).
-
(2004)
DNA Repair
, vol.3
, pp. 781-796
-
-
Bassing, C.H.1
Alt, F.W.2
-
18
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
-
Gomaa, A. A. et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5, e00928-00913, doi: 10.1128/mBio.00928-13 (2014).
-
(2014)
MBio
, vol.5
, pp. e00928-e00913
-
-
Gomaa, A.A.1
-
19
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32, 1141-1145, doi: 10.1038/nbt.3011 (2014).
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
20
-
-
0034889360
-
Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
-
Aravind, L. & Koonin, E. V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11, 1365-1374, doi: DOI 10.1101/gr.181001 (2001).
-
(2001)
Genome Res
, vol.11
, pp. 1365-1374
-
-
Aravind, L.1
Koonin, E.V.2
-
21
-
-
7444269607
-
Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine
-
Della, M. et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306, 683-685, doi: 10.1126/science.1099824 (2004).
-
(2004)
Science
, vol.306
, pp. 683-685
-
-
Della, M.1
-
22
-
-
67749091313
-
Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway
-
Brissett, N. C. & Doherty, A. J. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway. Biochem Soc T 37, 539-545, doi: 10.1042/Bst0370539 (2009).
-
(2009)
Biochem Soc T
, vol.37
, pp. 539-545
-
-
Brissett, N.C.1
Doherty, A.J.2
-
23
-
-
84940106526
-
CRISPR-Cas9 Based engineering of actinomycetal genomes
-
Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 Based engineering of actinomycetal genomes. Acs Synth Biol 4, 1020-1029, doi: 10.1021/acssynbio.5b00038 (2015).
-
(2015)
Acs Synth Biol
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
24
-
-
84930197469
-
Targeted DNA degradation using a CRISPR device stably carried in the host genome
-
Caliando, B. J. & Voigt, C. A. Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat Commun 6, 6989, doi: 10.1038/ncomms7989 (2015).
-
(2015)
Nat Commun
, vol.6
, pp. 6989
-
-
Caliando, B.J.1
Voigt, C.A.2
-
25
-
-
34548534319
-
Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology
-
Malyarchuk, S. et al. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology. DNA Repair (Amst) 6, 1413-1424, doi: 10.1016/j.dnarep.2007.04.004 (2007).
-
(2007)
DNA Repair (Amst)
, vol.6
, pp. 1413-1424
-
-
Malyarchuk, S.1
-
26
-
-
84865070369
-
A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M. et al. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, doi: 10.1126/science.1225829 (2012).
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
27
-
-
33847251953
-
New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts
-
Pagano, A. et al. New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts. Plos Genet 3, 174-184, doi: ARTN e110.1371/journal.pgen.0030001 (2007).
-
(2007)
Plos Genet
, vol.3
, pp. 174-184
-
-
Pagano, A.1
-
28
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84, doi: 10.1126/science.1246981 (2014).
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
29
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li, Y. F. et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31, 13-21, doi: 10.1016/j.ymben.2015.06.006 (2015).
-
(2015)
Metab Eng
, vol.31
, pp. 13-21
-
-
Li, Y.F.1
-
30
-
-
84884926579
-
Implementation of stable and complex biological systems through recombinaseassisted genome engineering
-
Santos, C. N., Regitsky, D. D. & Yoshikuni, Y. Implementation of stable and complex biological systems through recombinaseassisted genome engineering. Nat Commun 4, 2503, doi: 10.1038/ncomms3503 (2013).
-
(2013)
Nat Commun
, vol.4
, pp. 2503
-
-
Santos, C.N.1
Regitsky, D.D.2
Yoshikuni, Y.3
-
31
-
-
84898949923
-
Improved seamless mutagenesis by recombineering using ccdB for counterselection
-
Wang, H. et al. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 42, e37, doi: 10.1093/nar/gkt1339 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e37
-
-
Wang, H.1
-
32
-
-
0035810938
-
High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides
-
Ellis, H. M., Yu, D. G., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. P Natl Acad Sci USA 98, 6742-6746, doi: 10.1073/pnas.121164898 (2001).
-
(2001)
P Natl Acad Sci USA
, vol.98
, pp. 6742-6746
-
-
Ellis, H.M.1
Yu, D.G.2
DiTizio, T.3
Court, D.L.4
-
33
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894-898, doi: 10.1038/nature08187 (2009).
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
-
34
-
-
84955464550
-
CRMAGE: CRISPR optimized MAGE recombineering
-
Ronda, C., Pedersen, L. E., Sommer, M. O. & Nielsen, A. T. CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep 6, 19452, doi: 10.1038/srep19452 (2016).
-
(2016)
Sci Rep
, vol.6
-
-
Ronda, C.1
Pedersen, L.E.2
Sommer, M.O.3
Nielsen, A.T.4
-
35
-
-
0036228521
-
Engineering a reduced Escherichia coli genome
-
Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res 12, 640-647, doi: 10.1101/gr.217202 (2002).
-
(2002)
Genome Res
, vol.12
, pp. 640-647
-
-
Kolisnychenko, V.1
-
36
-
-
81855166264
-
Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli
-
Tuntufye, H. N. & Goddeeris, B. M. Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli. FEMS Microbiol Lett 325, 140-147, doi: 10.1111/j.1574-6968.2011.02421.x (2011).
-
(2011)
FEMS Microbiol Lett
, vol.325
, pp. 140-147
-
-
Tuntufye, H.N.1
Goddeeris, B.M.2
-
37
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81, 2506-2514, doi: 10.1128/AEM.04023-14 (2015).
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
-
38
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne, M. E., Moo-Young, M., Chung, D. E. A. & Chou, C. P. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microb 81, 5103-5114, doi: 10.1128/Aem.01248-15 (2015).
-
(2015)
Appl Environ Microb
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.E.A.3
Chou, C.P.4
-
39
-
-
84944320385
-
The no-SCAR (scarless Cas9 assisted recombineering) system for genome editing in Escherichia coli
-
Reisch, C. R. & Prather, K. L. J. The no-SCAR (scarless Cas9 assisted recombineering) system for genome editing in Escherichia coli. Sci Rep-Uk 5, doi: ARTN 1509610.1038/srep15096 (2015).
-
(2015)
Sci Rep-UK
, vol.5
-
-
Reisch, C.R.1
Prather, K.L.J.2
-
40
-
-
84926645319
-
Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis
-
Lv, L., Ren, Y. L., Chen, J. C., Wu, Q. & Chen, G. Q. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29, 160-168, doi: 10.1016/j.ymben.2015.03.013 (2015).
-
(2015)
Metab Eng
, vol.29
, pp. 160-168
-
-
Lv, L.1
Ren, Y.L.2
Chen, J.C.3
Wu, Q.4
Chen, G.Q.5
-
41
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41, 7429-7437, doi: 10.1093/nar/gkt520 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
-
42
-
-
84987875388
-
Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system
-
Altenbuchner, J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol, doi: 10.1128/ AEM.01453-16 (2016).
-
(2016)
Appl Environ Microbiol
-
-
Altenbuchner, J.1
-
43
-
-
84947999145
-
Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
-
Standage-Beier, K., Zhang, Q. & Wang, X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. Acs Synth Biol 4, 1217-1225, doi: 10.1021/acssynbio.5b00132 (2015).
-
(2015)
Acs Synth Biol
, vol.4
, pp. 1217-1225
-
-
Standage-Beier, K.1
Zhang, Q.2
Wang, X.3
-
44
-
-
84970046200
-
Consequences of Cas9 cleavage in the chromosome of Escherichia coli
-
Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res, doi: 10.1093/nar/ gkw223 (2016).
-
(2016)
Nucleic Acids Res
-
-
Cui, L.1
Bikard, D.2
-
45
-
-
84941285455
-
Bacterial CRISPR: Accomplishments and prospects
-
Peters, J. M. et al. Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol 27, 121-126, doi: 10.1016/j. mib.2015.08.007 (2015).
-
(2015)
Curr Opin Microbiol
, vol.27
, pp. 121-126
-
-
Peters, J.M.1
-
46
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu, T. et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol 81, 4423-4431, doi: 10.1128/AEM.00873-15 (2015).
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
-
47
-
-
84856034421
-
What limits the efficiency of double-strand break-dependent stress-induced mutation in Escherichia coli?
-
Shee, C., Ponder, R., Gibson, J. L. & Rosenberg, S. M. What limits the efficiency of double-strand break-dependent stress-induced mutation in Escherichia coli? J Mol Microb Biotech 21, 8-19, doi: 10.1159/000335354 (2011).
-
(2011)
J Mol Microb Biotech
, vol.21
, pp. 8-19
-
-
Shee, C.1
Ponder, R.2
Gibson, J.L.3
Rosenberg, S.M.4
-
48
-
-
80051961878
-
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli
-
Shee, C., Gibson, J. L., Darrow, M. C., Gonzalez, C. & Rosenberg, S. M. Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci USA 108, 13659-13664, doi: 10.1073/pnas.1104681108 (2011).
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 13659-13664
-
-
Shee, C.1
Gibson, J.L.2
Darrow, M.C.3
Gonzalez, C.4
Rosenberg, S.M.5
-
49
-
-
84940466800
-
Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance
-
ARTN93
-
Zhu, L. J., Li, Y. & Cai, Z. Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. Biotechnol Biofuels 8, doi: ARTN 9310.1186/s13068-015-0276-1 (2015).
-
(2015)
Biotechnol Biofuels
, vol.8
-
-
Zhu, L.J.1
Li, Y.2
Cai, Z.3
-
50
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343-345, doi: 10.1038/ Nmeth.1318 (2009).
-
(2009)
Nat Methods
, vol.6
, pp. 343-345
-
-
Gibson, D.G.1
|