-
1
-
-
84889575198
-
Modulation of oxidative stress as an anticancer strategy
-
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931–947.
-
(2013)
Nat Rev Drug Discov
, vol.12
, pp. 931-947
-
-
Gorrini, C.1
Harris, I.S.2
Mak, T.W.3
-
2
-
-
0036285034
-
C-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function
-
Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–1044.
-
(2002)
A Mechanism for Oncogene-Induced Genetic Instability. Mol Cell
, vol.9
, pp. 1031-1044
-
-
Vafa, O.1
Wade, M.2
Kern, S.3
Beeche, M.4
Pandita, T.K.5
Hampton, G.M.6
-
3
-
-
79952712223
-
Mitochondrial reactive oxygen species drive proinflammatory cytokine production
-
Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208: 417–420.
-
(2011)
J Exp Med
, vol.208
, pp. 417-420
-
-
Naik, E.1
Dixit, V.M.2
-
4
-
-
34548257176
-
HIF-dependent antitumorigenic effect of antioxidants in vivo
-
Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007; 12: 230–238.
-
(2007)
Cancer Cell
, vol.12
, pp. 230-238
-
-
Gao, P.1
Zhang, H.2
Dinavahi, R.3
Li, F.4
Xiang, Y.5
Raman, V.6
-
5
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
6
-
-
82755166890
-
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
-
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334: 1278–1283.
-
(2011)
Science
, vol.334
, pp. 1278-1283
-
-
Anastasiou, D.1
Poulogiannis, G.2
Asara, J.M.3
Boxer, M.B.4
Jiang, J.K.5
Shen, M.6
-
7
-
-
84908153270
-
Targeting antioxidants for cancer therapy
-
Glasauer A, Chandel NS. Targeting antioxidants for cancer therapy. Biochem Pharmacol 2014; 92: 90–101.
-
(2014)
Biochem Pharmacol
, vol.92
, pp. 90-101
-
-
Glasauer, A.1
Chandel, N.S.2
-
8
-
-
84946919734
-
Cancer: The enemy of my enemy is my friend
-
Harris IS, Brugge JS. Cancer: the enemy of my enemy is my friend. Nature 2015; 527: 170–171.
-
(2015)
Nature
, vol.527
, pp. 170-171
-
-
Harris, I.S.1
Brugge, J.S.2
-
9
-
-
69949101473
-
Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
-
Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461: 109–113.
-
(2009)
Nature
, vol.461
, pp. 109-113
-
-
Schafer, Z.T.1
Grassian, A.R.2
Song, L.3
Jiang, Z.4
Gerhart-Hines, Z.5
Irie, H.Y.6
-
10
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
Denicola, G.M.1
Karreth, F.A.2
Humpton, T.J.3
Gopinathan, A.4
Wei, C.5
Frese, K.6
-
11
-
-
84922805618
-
Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth
-
Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 2015; 27: 257–270.
-
(2015)
Cancer Cell
, vol.27
, pp. 257-270
-
-
Jin, L.1
Li, D.2
Alesi, G.N.3
Fan, J.4
Kang, H.B.5
Lu, Z.6
-
13
-
-
84939801568
-
A chemical approach for the detection of protein sulfinylation
-
Lo Conte M, Lin J, Wilson MA, Carroll KS. A chemical approach for the detection of protein sulfinylation. ACS Chem Biol 2015; 10: 1825–1830.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 1825-1830
-
-
Lo Conte, M.1
Lin, J.2
Wilson, M.A.3
Carroll, K.S.4
-
14
-
-
84934895803
-
The redox biology network in cancer pathophysiology and therapeutics
-
Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 2015; 5: 347–357.
-
(2015)
Redox Biol
, vol.5
, pp. 347-357
-
-
Manda, G.1
Isvoranu, G.2
Comanescu, M.V.3
Manea, A.4
Debelec Butuner, B.5
Korkmaz, K.S.6
-
15
-
-
84938970430
-
ROS signaling and redox biology in endothelial cells
-
Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72: 3281–3303.
-
(2015)
Cell Mol Life Sci
, vol.72
, pp. 3281-3303
-
-
Panieri, E.1
Santoro, M.M.2
-
16
-
-
1542406446
-
NOX enzymes and the biology of reactive oxygen
-
Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 181–189.
-
(2004)
Nat Rev Immunol
, vol.4
, pp. 181-189
-
-
Lambeth, J.D.1
-
17
-
-
33646716659
-
The mechanism of superoxide production by NADH:Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
-
Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 2006; 103: 7607–7612.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 7607-7612
-
-
Kussmaul, L.1
Hirst, J.2
-
18
-
-
84864540083
-
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
-
Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 2012; 287: 27255–27264.
-
(2012)
J Biol Chem
, vol.287
, pp. 27255-27264
-
-
Quinlan, C.L.1
Orr, A.L.2
Perevoshchikova, I.V.3
Treberg, J.R.4
Ackrell, B.A.5
Brand, M.D.6
-
19
-
-
84892366219
-
The thioredoxin antioxidant system
-
Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med 2014; 66: 75–87.
-
(2014)
Free Radic Biol Med
, vol.66
, pp. 75-87
-
-
Lu, J.1
Holmgren, A.2
-
20
-
-
84937519769
-
Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling
-
Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 2015; 40: 435–445.
-
(2015)
Trends Biochem Sci
, vol.40
, pp. 435-445
-
-
Perkins, A.1
Nelson, K.J.2
Parsonage, D.3
Poole, L.B.4
Karplus, P.A.5
-
21
-
-
84876917760
-
Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling
-
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19: 1539–1605.
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 1539-1605
-
-
Hanschmann, E.M.1
Godoy, J.R.2
Berndt, C.3
Hudemann, C.4
Lillig, C.H.5
-
22
-
-
34547644483
-
Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide
-
Lu J, Chew EH, Holmgren A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA 2007; 104: 12288–12293.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 12288-12293
-
-
Lu, J.1
Chew, E.H.2
Holmgren, A.3
-
23
-
-
84887478834
-
Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system
-
Du Y, Zhang H, Zhang X, Lu J, Holmgren A. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J Biol Chem 2013; 288: 32241–32247.
-
(2013)
J Biol Chem
, vol.288
, pp. 32241-32247
-
-
Du, Y.1
Zhang, H.2
Zhang, X.3
Lu, J.4
Holmgren, A.5
-
24
-
-
84890285329
-
Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1
-
Brautigam L, Jensen LD, Poschmann G, Nystrom S, Bannenberg S, Dreij K et al. Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proc Natl Acad Sci USA 2013; 110: 20057–20062.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 20057-20062
-
-
Brautigam, L.1
Jensen, L.D.2
Poschmann, G.3
Nystrom, S.4
Bannenberg, S.5
Dreij, K.6
-
25
-
-
84902294371
-
Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal
-
Zhang H, Du Y, Zhang X, Lu J, Holmgren A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal 2014; 21: 669–681.
-
(2014)
Antioxid Redox Signal
, vol.21
, pp. 669-681
-
-
Zhang, H.1
Du, Y.2
Zhang, X.3
Lu, J.4
Holmgren, A.5
-
26
-
-
84957989959
-
Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin
-
Peskin AV, Pace PE, Behring JB, Paton LN, Soethoudt M, Bachschmid MM et al. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J Biol Chem 2016; 291: 3053–3062.
-
(2016)
J Biol Chem
, vol.291
, pp. 3053-3062
-
-
Peskin, A.V.1
Pace, P.E.2
Behring, J.B.3
Paton, L.N.4
Soethoudt, M.5
Bachschmid, M.M.6
-
27
-
-
84878609914
-
Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis
-
Rolfs F, Huber M, Gruber F, Bohm F, Pfister HJ, Bochkov VN et al. Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis. Cancer Res 2013; 73: 3460–3469.
-
(2013)
Cancer Res
, vol.73
, pp. 3460-3469
-
-
Rolfs, F.1
Huber, M.2
Gruber, F.3
Bohm, F.4
Pfister, H.J.5
Bochkov, V.N.6
-
28
-
-
0034666290
-
1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities
-
Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 2000; 275: 28421–28427.
-
(2000)
J Biol Chem
, vol.275
, pp. 28421-28427
-
-
Chen, J.W.1
Dodia, C.2
Feinstein, S.I.3
Jain, M.K.4
Fisher, A.B.5
-
29
-
-
77954935933
-
A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses
-
Adimora NJ, Jones DP, Kemp ML. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal 2010; 13: 731–743.
-
(2010)
Antioxid Redox Signal
, vol.13
, pp. 731-743
-
-
Adimora, N.J.1
Jones, D.P.2
Kemp, M.L.3
-
30
-
-
84862777700
-
Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
-
Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell 2012; 45: 398–408.
-
(2012)
Mol Cell
, vol.45
, pp. 398-408
-
-
Day, A.M.1
Brown, J.D.2
Taylor, S.R.3
Rand, J.D.4
Morgan, B.A.5
Veal, E.A.6
-
31
-
-
84901052694
-
ROS function in redox signaling and oxidative stress
-
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24: R453–R462.
-
(2014)
Curr Biol
, vol.24
, pp. R453-R462
-
-
Schieber, M.1
Chandel, N.S.2
-
32
-
-
84863664040
-
Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription
-
Al-Mehdi AB, Pastukh VM, Swiger BM, Reed DJ, Patel MR, Bardwell GC et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal 2012; 5ra47.
-
(2012)
Sci Signal
, vol.5
-
-
Al-Mehdi, A.B.1
Pastukh, V.M.2
Swiger, B.M.3
Reed, D.J.4
Patel, M.R.5
Bardwell, G.C.6
-
33
-
-
67549084381
-
Superoxide is the major reactive oxygen species regulating autophagy
-
Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16: 1040–1052.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1040-1052
-
-
Chen, Y.1
Azad, M.B.2
Gibson, S.B.3
-
34
-
-
0037036358
-
Reversible inactivation of the tumor suppressor PTEN by H2O2
-
Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 2002; 277: 20336–20342.
-
(2002)
J Biol Chem
, vol.277
, pp. 20336-20342
-
-
Lee, S.R.1
Yang, K.S.2
Kwon, J.3
Lee, C.4
Jeong, W.5
Rhee, S.G.6
-
35
-
-
15144343374
-
Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation
-
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 1997; 272: 217–221.
-
(1997)
J Biol Chem
, vol.272
, pp. 217-221
-
-
Bae, Y.S.1
Kang, S.W.2
Seo, M.S.3
Baines, I.C.4
Tekle, E.5
Chock, P.B.6
-
36
-
-
84922272549
-
ROS-mediated DNA methylation pattern alterations in carcinogenesis
-
Wu Q, Ni X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 2015; 16: 13–19.
-
(2015)
Curr Drug Targets
, vol.16
, pp. 13-19
-
-
Wu, Q.1
Ni, X.2
-
37
-
-
0020646527
-
A study of the reactivity of HO2/O2-with unsaturated fatty acids
-
Bielski BH, Arudi RL, Sutherland MW. A study of the reactivity of HO2/O2-with unsaturated fatty acids. J Biol Chem 1983; 258: 4759–4761.
-
(1983)
J Biol Chem
, vol.258
, pp. 4759-4761
-
-
Bielski, B.H.1
Arudi, R.L.2
Sutherland, M.W.3
-
38
-
-
84901316606
-
Cellular mechanisms and physiological consequences of redox-dependent signalling
-
Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15: 411–421.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 411-421
-
-
Holmstrom, K.M.1
Finkel, T.2
-
39
-
-
0036015521
-
Reactive oxygen species as double-edged swords in cellular processes: Low-dose cell signaling versus high-dose toxicity
-
Martin KR, Barrett JC. Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 2002; 21: 71–75.
-
(2002)
Hum Exp Toxicol
, vol.21
, pp. 71-75
-
-
Martin, K.R.1
Barrett, J.C.2
-
40
-
-
84960366835
-
Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells
-
Hara-Chikuma M, Watanabe S, Satooka H. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem Biophys Res Commun 2016; 471: 603–609.
-
(2016)
Biochem Biophys Res Commun
, vol.471
, pp. 603-609
-
-
Hara-Chikuma, M.1
Watanabe, S.2
Satooka, H.3
-
41
-
-
84878994375
-
Hydrogen peroxide inhibits transforming growth factor-beta1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway
-
Choi J, Park SJ, Jo EJ, Lee HY, Hong S, Kim SJ et al. Hydrogen peroxide inhibits transforming growth factor-beta1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway. Biochem Biophys Res Commun 2013; 435: 634–639.
-
(2013)
Biochem Biophys Res Commun
, vol.435
, pp. 634-639
-
-
Choi, J.1
Park, S.J.2
Jo, E.J.3
Lee, H.Y.4
Hong, S.5
Kim, S.J.6
-
42
-
-
44449160071
-
Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling
-
Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci USA 2008; 105: 7147–7152.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 7147-7152
-
-
Juarez, J.C.1
Manuia, M.2
Burnett, M.E.3
Betancourt, O.4
Boivin, B.5
Shaw, D.E.6
-
43
-
-
84957308920
-
Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation
-
Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z et al. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis 2015; 6: e1749.
-
(2015)
Cell Death Dis
, vol.6
-
-
Kluckova, K.1
Sticha, M.2
Cerny, J.3
Mracek, T.4
Dong, L.5
Drahota, Z.6
-
44
-
-
84947869935
-
Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death
-
Schenk B, Fulda S. Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 2015; 34: 5796–5806.
-
(2015)
Oncogene
, vol.34
, pp. 5796-5806
-
-
Schenk, B.1
Fulda, S.2
-
45
-
-
84927949905
-
Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-X(L)/p53-mediated amplification mechanisms
-
Shi YL, Feng S, Chen W, Hua ZC, Bian JJ, Yin W. Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-X(L)/p53-mediated amplification mechanisms. Cell Death Dis 2014; 5: e1579.
-
(2014)
Cell Death Dis
, vol.5
-
-
Shi, Y.L.1
Feng, S.2
Chen, W.3
Hua, Z.C.4
Bian, J.J.5
Yin, W.6
-
46
-
-
17444442378
-
Effect of oxidative stress by iron on 4-hydroxynonenal formation and proliferative activity in hepatomas of different degrees of differentiation
-
Hammer A, Ferro M, Tillian HM, Tatzber F, Zollner H, Schauenstein E et al. Effect of oxidative stress by iron on 4-hydroxynonenal formation and proliferative activity in hepatomas of different degrees of differentiation. Free Radic Biol Med 1997; 23: 26–33.
-
(1997)
Free Radic Biol Med
, vol.23
, pp. 26-33
-
-
Hammer, A.1
Ferro, M.2
Tillian, H.M.3
Tatzber, F.4
Zollner, H.5
Schauenstein, E.6
-
47
-
-
34247383583
-
4-Hydroxynonenal and PPARgamma ligands affect proliferation, differentiation, and apoptosis in colon cancer cells
-
Cerbone A, Toaldo C, Laurora S, Briatore F, Pizzimenti S, Dianzani MU et al. 4-Hydroxynonenal and PPARgamma ligands affect proliferation, differentiation, and apoptosis in colon cancer cells. Free Radic Biol Med 2007; 42: 1661–1670.
-
(2007)
Free Radic Biol Med
, vol.42
, pp. 1661-1670
-
-
Cerbone, A.1
Toaldo, C.2
Laurora, S.3
Briatore, F.4
Pizzimenti, S.5
Dianzani, M.U.6
-
48
-
-
84894184722
-
Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions
-
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS ONE 2013; 8: e81162.
-
(2013)
Plos ONE
, vol.8
-
-
Marullo, R.1
Werner, E.2
Degtyareva, N.3
Moore, B.4
Altavilla, G.5
Ramalingam, S.S.6
-
49
-
-
79961135075
-
Cisplatin induces production of reactive oxygen species via NADPH oxidase activation in human prostate cancer cells
-
Itoh T, Terazawa R, Kojima K, Nakane K, Deguchi T, Ando M et al. Cisplatin induces production of reactive oxygen species via NADPH oxidase activation in human prostate cancer cells. Free Radic Res 2011; 45: 1033–1039.
-
(2011)
Free Radic Res
, vol.45
, pp. 1033-1039
-
-
Itoh, T.1
Terazawa, R.2
Kojima, K.3
Nakane, K.4
Deguchi, T.5
Ando, M.6
-
50
-
-
84951757493
-
Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer
-
Roh JL, Park JY, Kim EH, Jang HJ, Kwon M. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer. Cancer Lett 2016; 371: 20–29.
-
(2016)
Cancer Lett
, vol.371
, pp. 20-29
-
-
Roh, J.L.1
Park, J.Y.2
Kim, E.H.3
Jang, H.J.4
Kwon, M.5
-
51
-
-
84962589825
-
Effective killing of cancer cells through ros-mediated mechanisms by AMRI-59 targeting peroxiredoxin I
-
Yang YJ, Baek JY, Goo J, Shin Y, Park JK, Jang JY et al. Effective killing of cancer cells through ros-mediated mechanisms by AMRI-59 targeting peroxiredoxin I. Antioxid Redox Signal 2015; 24: 453–469.
-
(2015)
Antioxid Redox Signal
, vol.24
, pp. 453-469
-
-
Yang, Y.J.1
Baek, J.Y.2
Goo, J.3
Shin, Y.4
Park, J.K.5
Jang, J.Y.6
-
52
-
-
84876707046
-
Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production
-
Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 2013; 9: 558–569.
-
(2013)
Nanomedicine
, vol.9
, pp. 558-569
-
-
Wason, M.S.1
Colon, J.2
Das, S.3
Seal, S.4
Turkson, J.5
Zhao, J.6
-
53
-
-
70350001754
-
Targeted depletion of BMI1 sensitizes tumor cells to P53-mediated apoptosis in response to radiation therapy
-
Alajez NM, Shi W, Hui AB, Yue S, Ng R, Lo KW et al. Targeted depletion of BMI1 sensitizes tumor cells to P53-mediated apoptosis in response to radiation therapy. Cell Death Differ 2009; 16: 1469–1479.
-
(2009)
Cell Death Differ
, vol.16
, pp. 1469-1479
-
-
Alajez, N.M.1
Shi, W.2
Hui, A.B.3
Yue, S.4
Ng, R.5
Lo, K.W.6
-
54
-
-
77958129306
-
Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance
-
Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal 2010; 13: 1627–1637.
-
(2010)
Antioxid Redox Signal
, vol.13
, pp. 1627-1637
-
-
Singh, A.1
Bodas, M.2
Wakabayashi, N.3
Bunz, F.4
Biswal, S.5
-
55
-
-
84891367550
-
Low production of reactive oxygen species and high DNA repair: Mechanism of radioresistance of prostate cancer stem cells
-
Kim YS, Kang MJ, Cho YM. Low production of reactive oxygen species and high DNA repair: mechanism of radioresistance of prostate cancer stem cells. Anticancer Res 2013; 33: 4469–4474.
-
(2013)
Anticancer Res
, vol.33
, pp. 4469-4474
-
-
Kim, Y.S.1
Kang, M.J.2
Cho, Y.M.3
-
56
-
-
79952122321
-
Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism
-
Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA 2011; 108: 1433–1438.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 1433-1438
-
-
Ren, D.1
Villeneuve, N.F.2
Jiang, T.3
Wu, T.4
Lau, A.5
Toppin, H.A.6
-
57
-
-
84870943008
-
Role of antioxidants in cancer therapy
-
Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition 2013; 29: 15–21.
-
(2013)
Nutrition
, vol.29
, pp. 15-21
-
-
Fuchs-Tarlovsky, V.1
-
58
-
-
84947035936
-
Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy
-
Leon-Gonzalez AJ, Auger C, Schini-Kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 2015; 98: 371–380.
-
(2015)
Biochem Pharmacol
, vol.98
, pp. 371-380
-
-
Leon-Gonzalez, A.J.1
Auger, C.2
Schini-Kerth, V.B.3
-
59
-
-
84930021507
-
Mediterranean diet and risk of endometrial cancer: A pooled analysis of three Italian case-control studies
-
Filomeno M, Bosetti C, Bidoli E, Levi F, Serraino D, Montella M et al. Mediterranean diet and risk of endometrial cancer: a pooled analysis of three Italian case-control studies. Br J Cancer 2015; 112: 1816–1821.
-
(2015)
Br J Cancer
, vol.112
, pp. 1816-1821
-
-
Filomeno, M.1
Bosetti, C.2
Bidoli, E.3
Levi, F.4
Serraino, D.5
Montella, M.6
-
60
-
-
84929462671
-
Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner
-
Yan B, Stantic M, Zobalova R, Bezawork-Geleta A, Stapelberg M, Stursa J et al. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 2015; 15: 401.
-
(2015)
BMC Cancer
, vol.15
, pp. 401
-
-
Yan, B.1
Stantic, M.2
Zobalova, R.3
Bezawork-Geleta, A.4
Stapelberg, M.5
Stursa, J.6
-
61
-
-
84922783167
-
Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression
-
Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015; 27: 211–222.
-
(2015)
Cancer Cell
, vol.27
, pp. 211-222
-
-
Harris, I.S.1
Treloar, A.E.2
Inoue, S.3
Sasaki, M.4
Gorrini, C.5
Lee, K.C.6
-
62
-
-
79960427057
-
Selective killing of cancer cells by a small molecule targeting the stress response to ROS
-
Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231–234.
-
(2011)
Nature
, vol.475
, pp. 231-234
-
-
Raj, L.1
Ide, T.2
Gurkar, A.U.3
Foley, M.4
Schenone, M.5
Li, X.6
-
63
-
-
79957722003
-
Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress
-
Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A et al. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA 2011; 108: 8773–8778.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 8773-8778
-
-
Shaw, A.T.1
Winslow, M.M.2
Magendantz, M.3
Ouyang, C.4
Dowdle, J.5
Subramanian, A.6
-
64
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV. Links between metabolism and cancer. Genes Dev 2012; 26: 877–890.
-
(2012)
Genes Dev
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
65
-
-
84862675932
-
Radical decisions in cancer: Redox control of cell growth and death
-
Sainz RM, Lombo F, Mayo JC. Radical decisions in cancer: redox control of cell growth and death. Cancers 2012; 4: 442–474.
-
(2012)
Cancers
, vol.4
, pp. 442-474
-
-
Sainz, R.M.1
Lombo, F.2
Mayo, J.C.3
-
66
-
-
84946903513
-
Oxidative stress inhibits distant metastasis by human melanoma cells
-
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015; 527: 186–191.
-
(2015)
Nature
, vol.527
, pp. 186-191
-
-
Piskounova, E.1
Agathocleous, M.2
Murphy, M.M.3
Hu, Z.4
Huddlestun, S.E.5
Zhao, Z.6
-
67
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510: 298–302.
-
(2014)
Nature
, vol.510
, pp. 298-302
-
-
Fan, J.1
Ye, J.2
Kamphorst, J.J.3
Shlomi, T.4
Thompson, C.B.5
Rabinowitz, J.D.6
-
68
-
-
84926618247
-
Redox control of glutamine utilization in cancer
-
Alberghina L, Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis 2014; 5: e1561.
-
(2014)
Cell Death Dis
, vol.5
-
-
Alberghina, L.1
Gaglio, D.2
-
69
-
-
84905187426
-
Regulation of the pentose phosphate pathway in cancer
-
Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 2014; 5: 592–602.
-
(2014)
Protein Cell
, vol.5
, pp. 592-602
-
-
Jiang, P.1
Du, W.2
Wu, M.3
-
70
-
-
84881372774
-
Cellular fatty acid metabolism and cancer
-
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18: 153–161.
-
(2013)
Cell Metab
, vol.18
, pp. 153-161
-
-
Currie, E.1
Schulze, A.2
Zechner, R.3
Walther, T.C.4
Farese, R.V.5
-
72
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
73
-
-
78649711427
-
The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
-
Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.
-
(2010)
Science
, vol.330
, pp. 1340-1344
-
-
Levine, A.J.1
Puzio-Kuter, A.M.2
-
74
-
-
84908220531
-
2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy
-
Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014; 355: 176–183.
-
(2014)
Cancer Lett
, vol.355
, pp. 176-183
-
-
Zhang, D.1
Li, J.2
Wang, F.3
Hu, J.4
Wang, S.5
Sun, Y.6
-
75
-
-
44449147036
-
Tumor cell metabolism: Cancer's Achilles' heel
-
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.
-
(2008)
Cancer Cell
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
76
-
-
84892411852
-
Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells
-
Zhai X, Yang Y, Wan J, Zhu R, Wu Y. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncology Rep 2013; 30: 2983–2991.
-
(2013)
Oncology Rep
, vol.30
, pp. 2983-2991
-
-
Zhai, X.1
Yang, Y.2
Wan, J.3
Zhu, R.4
Wu, Y.5
-
77
-
-
84894542141
-
Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments
-
Zhang X, Fryknas M, Hernlund E, Fayad W, De Milito A, Olofsson MH et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun 2014; 5: 3295.
-
(2014)
Nat Commun
, vol.5
, pp. 3295
-
-
Zhang, X.1
Fryknas, M.2
Hernlund, E.3
Fayad, W.4
de Milito, A.5
Olofsson, M.H.6
-
78
-
-
38349183620
-
Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth
-
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 2008; 7: 110–120.
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 110-120
-
-
Clem, B.1
Telang, S.2
Clem, A.3
Yalcin, A.4
Meier, J.5
Simmons, A.6
-
79
-
-
80054883247
-
Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2
-
Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 2011; 30: 4297–4306.
-
(2011)
Oncogene
, vol.30
, pp. 4297-4306
-
-
Chen, J.1
Xie, J.2
Jiang, Z.3
Wang, B.4
Wang, Y.5
Hu, X.6
-
80
-
-
33646342485
-
Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues
-
Godoy A, Ulloa V, Rodriguez F, Reinicke K, Yanez AJ, Garcia Mde L et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006; 207: 614–627.
-
(2006)
J Cell Physiol
, vol.207
, pp. 614-627
-
-
Godoy, A.1
Ulloa, V.2
Rodriguez, F.3
Reinicke, K.4
Yanez, A.J.5
Garcia Mde, L.6
-
81
-
-
59849084800
-
Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation
-
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009; 418: 29–37.
-
(2009)
Biochem J
, vol.418
, pp. 29-37
-
-
Aykin-Burns, N.1
Ahmad, I.M.2
Zhu, Y.3
Oberley, L.W.4
Spitz, D.R.5
-
82
-
-
76649126249
-
Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
-
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037–2042.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 2037-2042
-
-
Le, A.1
Cooper, C.R.2
Gouw, A.M.3
Dinavahi, R.4
Maitra, A.5
Deck, L.M.6
-
83
-
-
84920431299
-
Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells
-
Li J, Csibi A, Yang S, Hoffman GR, Li C, Zhang E et al. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci USA 2015; 112: E21–E29.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E21-E29
-
-
Li, J.1
Csibi, A.2
Yang, S.3
Hoffman, G.R.4
Li, C.5
Zhang, E.6
-
84
-
-
84875465199
-
Cancer metabolism: Fatty acid oxidation in the limelight
-
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13: 227–232.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 227-232
-
-
Carracedo, A.1
Cantley, L.C.2
Pandolfi, P.P.3
-
85
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485: 661–665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
Chandel, N.S.2
Hay, N.3
-
86
-
-
79956326256
-
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
-
Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011; 25: 1041–1051.
-
(2011)
Genes Dev
, vol.25
, pp. 1041-1051
-
-
Zaugg, K.1
Yao, Y.2
Reilly, P.T.3
Kannan, K.4
Kiarash, R.5
Mason, J.6
-
87
-
-
84867595989
-
Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
-
Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012; 22: 547–560.
-
(2012)
Cancer Cell
, vol.22
, pp. 547-560
-
-
Caro, P.1
Kishan, A.U.2
Norberg, E.3
Stanley, I.A.4
Chapuy, B.5
Ficarro, S.B.6
-
88
-
-
79955601028
-
Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
-
Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 2011; 1807: 726–734.
-
(2011)
Biochim Biophys Acta
, vol.1807
, pp. 726-734
-
-
Pike, L.S.1
Smift, A.L.2
Croteau, N.J.3
Ferrick, D.A.4
Wu, M.5
-
89
-
-
74949089659
-
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
-
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010; 120: 142–156.
-
(2010)
J Clin Invest
, vol.120
, pp. 142-156
-
-
Samudio, I.1
Harmancey, R.2
Fiegl, M.3
Kantarjian, H.4
Konopleva, M.5
Korchin, B.6
-
90
-
-
84863486244
-
The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate
-
Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 2012; 53: 421–436.
-
(2012)
Free Radic Biol Med
, vol.53
, pp. 421-436
-
-
Riganti, C.1
Gazzano, E.2
Polimeni, M.3
Aldieri, E.4
Ghigo, D.5
-
91
-
-
84904969433
-
The pentose phosphate pathway and cancer
-
Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci 2014; 39: 347–354.
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 347-354
-
-
Patra, K.C.1
Hay, N.2
-
92
-
-
84881453767
-
TAp73 enhances the pentose phosphate pathway and supports cell proliferation
-
Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013; 15: 991–1000.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 991-1000
-
-
Du, W.1
Jiang, P.2
Mancuso, A.3
Stonestrom, A.4
Brewer, M.D.5
Minn, A.J.6
-
93
-
-
84907484052
-
Metabolic effect of TAp63alpha: Enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense
-
D'Alessandro A, Amelio I, Berkers CR, Antonov A, Vousden KH, Melino G et al. Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 2014; 5: 7722–7733.
-
(2014)
Oncotarget
, vol.5
, pp. 7722-7733
-
-
D'alessandro, A.1
Amelio, I.2
Berkers, C.R.3
Antonov, A.4
Vousden, K.H.5
Melino, G.6
-
94
-
-
84931055981
-
Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma
-
Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 2015; 6: 13371–13386.
-
(2015)
Oncotarget
, vol.6
, pp. 13371-13386
-
-
Lucarelli, G.1
Galleggiante, V.2
Rutigliano, M.3
Sanguedolce, F.4
Cagiano, S.5
Bufo, P.6
-
95
-
-
80052708782
-
Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity
-
Polimeni M, Voena C, Kopecka J, Riganti C, Pescarmona G, Bosia A et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem J 2011; 439: 141–149.
-
(2011)
Biochem J
, vol.439
, pp. 141-149
-
-
Polimeni, M.1
Voena, C.2
Kopecka, J.3
Riganti, C.4
Pescarmona, G.5
Bosia, A.6
-
96
-
-
84900441753
-
Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death
-
Yin L, Kufe T, Avigan D, Kufe D. Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 2014; 123: 2997–3006.
-
(2014)
Blood
, vol.123
, pp. 2997-3006
-
-
Yin, L.1
Kufe, T.2
Avigan, D.3
Kufe, D.4
-
97
-
-
77954028765
-
Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes
-
Sharma PK, Bhardwaj R, Dwarakanath BS, Varshney R. Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes. Cancer Lett 2010; 295: 154–166.
-
(2010)
Cancer Lett
, vol.295
, pp. 154-166
-
-
Sharma, P.K.1
Bhardwaj, R.2
Dwarakanath, B.S.3
Varshney, R.4
-
98
-
-
84903700955
-
Glutamine, glucose and other fuels for cancer
-
Ruiz-Perez MV, Sanchez-Jimenez F, Alonso FJ, Segura JA, Marquez J, Medina MA. Glutamine, glucose and other fuels for cancer. Curr Pharm Des 2014; 20: 2557–2579.
-
(2014)
Curr Pharm Des
, vol.20
, pp. 2557-2579
-
-
Ruiz-Perez, M.V.1
Sanchez-Jimenez, F.2
Alonso, F.J.3
Segura, J.A.4
Marquez, J.5
Medina, M.A.6
-
99
-
-
84861975431
-
Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis
-
Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 2012; 23: 362–369.
-
(2012)
Semin Cell Dev Biol
, vol.23
, pp. 362-369
-
-
Daye, D.1
Wellen, K.E.2
-
100
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
Deberardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
101
-
-
84937968917
-
Loss of the tumor suppressor Hace1 leads to ROS-dependent glutamine addiction
-
Cetinbas N, Daugaard M, Mullen AR, Hajee S, Rotblat B, Lopez A et al. Loss of the tumor suppressor Hace1 leads to ROS-dependent glutamine addiction. Oncogene 2014; 34: 4005–4010.
-
(2014)
Oncogene
, vol.34
, pp. 4005-4010
-
-
Cetinbas, N.1
Daugaard, M.2
Mullen, A.R.3
Hajee, S.4
Rotblat, B.5
Lopez, A.6
-
102
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101–105.
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
-
103
-
-
84855453655
-
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–121.
-
(2012)
Cell Metab
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
104
-
-
0033597349
-
Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins
-
Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 1999; 274: 11455–11458.
-
(1999)
J Biol Chem
, vol.274
, pp. 11455-11458
-
-
Sato, H.1
Tamba, M.2
Ishii, T.3
Bannai, S.4
-
105
-
-
84876728581
-
Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer
-
Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA, Alonso FJ, Marquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 2013; 13: 514–534.
-
(2013)
Curr Mol Med
, vol.13
, pp. 514-534
-
-
Mates, J.M.1
Segura, J.A.2
Martin-Rufian, M.3
Campos-Sandoval, J.A.4
Alonso, F.J.5
Marquez, J.6
-
106
-
-
84879766148
-
Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance
-
Lyssiotis CA, Son J, Cantley LC, Kimmelman AC. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 2013; 12: 1987–1988.
-
(2013)
Cell Cycle
, vol.12
, pp. 1987-1988
-
-
Lyssiotis, C.A.1
Son, J.2
Cantley, L.C.3
Kimmelman, A.C.4
-
107
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678–3684.
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
Deberardinis, R.J.3
-
108
-
-
84930392977
-
Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis
-
Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 2015; 125: 2293–2306.
-
(2015)
J Clin Invest
, vol.125
, pp. 2293-2306
-
-
Xiang, Y.1
Stine, Z.E.2
Xia, J.3
Lu, Y.4
O'connor, R.S.5
Altman, B.J.6
-
109
-
-
78549283855
-
Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
-
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010; 70: 8981–8987.
-
(2010)
Cancer Res
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.J.1
Bennett, B.D.2
Joshi, A.D.3
Gao, P.4
Thomas, A.G.5
Ferraris, D.V.6
-
110
-
-
84899089555
-
Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations
-
Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol 2014; 42: 247–251.
-
(2014)
Exp Hematol
, vol.42
, pp. 247-251
-
-
Emadi, A.1
Jun, S.A.2
Tsukamoto, T.3
Fathi, A.T.4
Minden, M.D.5
Dang, C.V.6
-
111
-
-
84902208195
-
Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis
-
Goto M, Miwa H, Shikami M, Tsunekawa-Imai N, Suganuma K, Mizuno S et al. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest 2014; 32: 241–247.
-
(2014)
Cancer Invest
, vol.32
, pp. 241-247
-
-
Goto, M.1
Miwa, H.2
Shikami, M.3
Tsunekawa-Imai, N.4
Suganuma, K.5
Mizuno, S.6
-
112
-
-
43449095001
-
Increased chemosensitivity and elevated reactive oxygen species are mediated by glutathione reduction in glutamine deprived neuroblastoma cells
-
Izaki S, Goto H, Yokota S. Increased chemosensitivity and elevated reactive oxygen species are mediated by glutathione reduction in glutamine deprived neuroblastoma cells. J Cancer Res Clin Oncol 2008; 134: 761–768.
-
(2008)
J Cancer Res Clin Oncol
, vol.134
, pp. 761-768
-
-
Izaki, S.1
Goto, H.2
Yokota, S.3
-
113
-
-
84881177291
-
Serine, glycine and one-carbon units: Cancer metabolism in full circle
-
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013; 13: 572–583.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 572-583
-
-
Locasale, J.W.1
-
114
-
-
80052775587
-
Serine metabolism: Some tumors take the road less traveled
-
DeBerardinis RJ. Serine metabolism: some tumors take the road less traveled. Cell Metab 2011; 14: 285–286.
-
(2011)
Cell Metab
, vol.14
, pp. 285-286
-
-
Deberardinis, R.J.1
-
115
-
-
84897392385
-
Serine and glycine metabolism in cancer
-
Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci 2014; 39: 191–198.
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 191-198
-
-
Amelio, I.1
Cutruzzola, F.2
Antonov, A.3
Agostini, M.4
Melino, G.5
-
116
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515: 431–435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
Pell, V.R.2
Gaude, E.3
Aksentijevic, D.4
Sundier, S.Y.5
Robb, E.L.6
-
117
-
-
84915735656
-
Mitochondrial one-carbon metabolism maintains redox balance during hypoxia
-
Martinez-Reyes I, Chandel NS. Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov 2014; 4: 1371–1373.
-
(2014)
Cancer Discov
, vol.4
, pp. 1371-1373
-
-
Martinez-Reyes, I.1
Chandel, N.S.2
-
118
-
-
84904504373
-
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells
-
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Molecular cell 2014; 55: 253–263.
-
(2014)
Molecular Cell
, vol.55
, pp. 253-263
-
-
Lewis, C.A.1
Parker, S.J.2
Fiske, B.P.3
McCloskey, D.4
Gui, D.Y.5
Green, C.R.6
-
119
-
-
84915746768
-
Serine catabolism regulates mitochondrial redox control during hypoxia
-
Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 2014; 4: 1406–1417.
-
(2014)
Cancer Discov
, vol.4
, pp. 1406-1417
-
-
Ye, J.1
Fan, J.2
Venneti, S.3
Wan, Y.W.4
Pawel, B.R.5
Zhang, J.6
-
120
-
-
84949102276
-
NRF2 regulates serine biosynthesis in non-small cell lung cancer
-
DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 2015; 47: 1475–1481.
-
(2015)
Nat Genet
, vol.47
, pp. 1475-1481
-
-
Denicola, G.M.1
Chen, P.H.2
Mullarky, E.3
Sudderth, J.A.4
Hu, Z.5
Wu, D.6
-
121
-
-
79953228534
-
In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed
-
Daidone F, Florio R, Rinaldo S, Contestabile R, di Salvo ML, Cutruzzola F et al. In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. Eur J Med Chem 2011; 46: 1616–1621.
-
(2011)
Eur J Med Chem
, vol.46
, pp. 1616-1621
-
-
Daidone, F.1
Florio, R.2
Rinaldo, S.3
Contestabile, R.4
Di Salvo, M.L.5
Cutruzzola, F.6
-
122
-
-
84859809125
-
Redox regulation of mitochondrial function
-
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16: 1323–1367.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 1323-1367
-
-
Handy, D.E.1
Loscalzo, J.2
-
123
-
-
84856821006
-
Signal transduction by mitochondrial oxidants
-
Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem 2012; 287: 4434–4440.
-
(2012)
J Biol Chem
, vol.287
, pp. 4434-4440
-
-
Finkel, T.1
-
124
-
-
0037458619
-
Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol
-
Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 2003; 278: 5557–5563.
-
(2003)
J Biol Chem
, vol.278
, pp. 5557-5563
-
-
Han, D.1
Antunes, F.2
Canali, R.3
Rettori, D.4
Cadenas, E.5
-
125
-
-
84861938799
-
Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels
-
Lustgarten MS, Bhattacharya A, Muller FL, Jang YC, Shimizu T, Shirasawa T et al. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem Biophys Res Commun 2012; 422: 515–521.
-
(2012)
Biochem Biophys Res Commun
, vol.422
, pp. 515-521
-
-
Lustgarten, M.S.1
Bhattacharya, A.2
Muller, F.L.3
Jang, Y.C.4
Shimizu, T.5
Shirasawa, T.6
-
126
-
-
84856729192
-
Mitochondrial thiols in antioxidant protection and redox signaling: Distinct roles for glutathionylation and other thiol modifications
-
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16: 476–495.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 476-495
-
-
Murphy, M.P.1
-
127
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107: 8788–8793.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
-
128
-
-
77955283395
-
Animal and human studies with the mitochondria-targeted antioxidant MitoQ
-
Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann NY Acad Sci 2010; 1201: 96–103.
-
(2010)
Ann NY Acad Sci
, vol.1201
, pp. 96-103
-
-
Smith, R.A.1
Murphy, M.P.2
-
129
-
-
78049398265
-
The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone
-
Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS et al. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 2010; 285: 34447–34459.
-
(2010)
J Biol Chem
, vol.285
, pp. 34447-34459
-
-
Rao, V.A.1
Klein, S.R.2
Bonar, S.J.3
Zielonka, J.4
Mizuno, N.5
Dickey, J.S.6
-
130
-
-
84897414311
-
Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer
-
Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 2014; 5: 3128.
-
(2014)
Nat Commun
, vol.5
, pp. 3128
-
-
Nilsson, R.1
Jain, M.2
Madhusudhan, N.3
Sheppard, N.G.4
Strittmatter, L.5
Kampf, C.6
-
131
-
-
84875782309
-
High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion
-
Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O et al. High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 2013; 4: 48–63.
-
(2013)
Oncotarget
, vol.4
, pp. 48-63
-
-
Lehtinen, L.1
Ketola, K.2
Makela, R.3
Mpindi, J.P.4
Viitala, M.5
Kallioniemi, O.6
-
132
-
-
81255190755
-
Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation
-
Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 2011; 20: 4605–4616.
-
(2011)
Hum Mol Genet
, vol.20
, pp. 4605-4616
-
-
Sharma, L.K.1
Fang, H.2
Liu, J.3
Vartak, R.4
Deng, J.5
Bai, Y.6
-
133
-
-
85060496113
-
Mitochondrial reactive oxygen species and cancer
-
Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2014; 2: 17.
-
(2014)
Cancer Metab
, vol.2
, pp. 17
-
-
Sullivan, L.B.1
Chandel, N.S.2
-
134
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981–990.
-
(2012)
Cell Signal
, vol.24
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
135
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
136
-
-
75149148563
-
Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
-
DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313–324.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
Deberardinis, R.J.1
Cheng, T.2
-
137
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385–388.
-
(2012)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.H.4
Sullivan, L.B.5
Cheng, T.6
-
138
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
139
-
-
83455228665
-
Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice
-
Woo DK, Green PD, Santos JH, D'Souza AD, Walther Z, Martin WD et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am J Pathol 2012; 180: 24–31.
-
(2012)
Am J Pathol
, vol.180
, pp. 24-31
-
-
Woo, D.K.1
Green, P.D.2
Santos, J.H.3
D'souza, A.D.4
Walther, Z.5
Martin, W.D.6
-
140
-
-
43249112094
-
ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis
-
Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320: 661–664.
-
(2008)
Science
, vol.320
, pp. 661-664
-
-
Ishikawa, K.1
Takenaga, K.2
Akimoto, M.3
Koshikawa, N.4
Yamaguchi, A.5
Imanishi, H.6
-
141
-
-
84920802831
-
A mitochondrial switch promotes tumor metastasis
-
Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T et al. A mitochondrial switch promotes tumor metastasis. Cell Rep 2014; 8: 754–766.
-
(2014)
Cell Rep
, vol.8
, pp. 754-766
-
-
Porporato, P.E.1
Payen, V.L.2
Perez-Escuredo, J.3
de Saedeleer, C.J.4
Danhier, P.5
Copetti, T.6
-
142
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9: 712.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 712
-
-
Fan, J.1
Kamphorst, J.J.2
Mathew, R.3
Chung, M.K.4
White, E.5
Shlomi, T.6
-
143
-
-
84876436850
-
Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF
-
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013; 23: 302–315.
-
(2013)
Cancer Cell
, vol.23
, pp. 302-315
-
-
Haq, R.1
Shoag, J.2
Andreu-Perez, P.3
Yokoyama, S.4
Edelman, H.5
Rowe, G.C.6
-
144
-
-
84876448550
-
PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress
-
Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013; 23: 287–301.
-
(2013)
Cancer Cell
, vol.23
, pp. 287-301
-
-
Vazquez, F.1
Lim, J.H.2
Chim, H.3
Bhalla, K.4
Girnun, G.5
Pierce, K.6
-
145
-
-
84861158967
-
Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death
-
Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr., Joseph J et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 2012; 72: 2634–2644.
-
(2012)
Cancer Res
, vol.72
, pp. 2634-2644
-
-
Cheng, G.1
Zielonka, J.2
Dranka, B.P.3
McAllister, D.4
Mackinnon, A.C.5
Joseph, J.6
-
146
-
-
57349194139
-
Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers
-
Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.
-
(2008)
Nat Med
, vol.14
, pp. 1351-1356
-
-
Engelman, J.A.1
Chen, L.2
Tan, X.3
Crosby, K.4
Guimaraes, A.R.5
Upadhyay, R.6
-
147
-
-
84902110574
-
Overcoming drug development bottlenecks with repurposing: Repurposing biguanides to target energy metabolism for cancer treatment
-
Pollak M. Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat Med 2014; 20: 591–593.
-
(2014)
Nat Med
, vol.20
, pp. 591-593
-
-
Pollak, M.1
-
148
-
-
77956415337
-
Metformin prevents tobacco carcinogen–induced lung tumorigenesis
-
Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA. Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev Res (Phila) 2010; 3: 1066–1076.
-
(2010)
Cancer Prev Res (Phila)
, vol.3
, pp. 1066-1076
-
-
Memmott, R.M.1
Mercado, J.R.2
Maier, C.R.3
Kawabata, S.4
Fox, S.D.5
Dennis, P.A.6
-
150
-
-
84900468450
-
Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
-
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014; 3: e02242.
-
(2014)
Elife
, vol.3
-
-
Wheaton, W.W.1
Weinberg, S.E.2
Hamanaka, R.B.3
Soberanes, S.4
Sullivan, L.B.5
Anso, E.6
-
151
-
-
84863695624
-
Untuning the tumor metabolic machine: Targeting cancer metabolism: A bedside lesson
-
Birsoy K, Sabatini DM, Possemato R. Untuning the tumor metabolic machine: Targeting cancer metabolism: a bedside lesson. Nat Med 2012; 18: 1022–1023.
-
(2012)
Nat Med
, vol.18
, pp. 1022-1023
-
-
Birsoy, K.1
Sabatini, D.M.2
Possemato, R.3
-
152
-
-
84857640868
-
The insulin and insulin-like growth factor receptor family in neoplasia: An update
-
Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012; 12: 159–169.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 159-169
-
-
Pollak, M.1
-
153
-
-
84878561961
-
Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK
-
Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz JC et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer 2013; 108: 2021–2032.
-
(2013)
Br J Cancer
, vol.108
, pp. 2021-2032
-
-
Storozhuk, Y.1
Hopmans, S.N.2
Sanli, T.3
Barron, C.4
Tsiani, E.5
Cutz, J.C.6
-
154
-
-
84904686912
-
Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells
-
Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci USA 2014; 111: 10574–10579.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 10574-10579
-
-
Janzer, A.1
German, N.J.2
Gonzalez-Herrera, K.N.3
Asara, J.M.4
Haigis, M.C.5
Struhl, K.6
-
155
-
-
84858287883
-
Phenformin as prophylaxis and therapy in breast cancer xenografts
-
Appleyard MV, Murray KE, Coates PJ, Wullschleger S, Bray SE, Kernohan NM et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br J Cancer 2012; 106: 1117–1122.
-
(2012)
Br J Cancer
, vol.106
, pp. 1117-1122
-
-
Appleyard, M.V.1
Murray, K.E.2
Coates, P.J.3
Wullschleger, S.4
Bray, S.E.5
Kernohan, N.M.6
-
156
-
-
84887296747
-
Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma
-
Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci USA 2013; 110: 18226–18231.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 18226-18231
-
-
Yuan, P.1
Ito, K.2
Perez-Lorenzo, R.3
Del Guzzo, C.4
Lee, J.H.5
Shen, C.H.6
-
157
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
-
Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158.
-
(2013)
Cancer Cell
, vol.23
, pp. 143-158
-
-
Shackelford, D.B.1
Abt, E.2
Gerken, L.3
Vasquez, D.S.4
Seki, A.5
Leblanc, M.6
-
158
-
-
33746341516
-
Phenformin-induced lactic acidosis in an older diabetic patient: A recurrent drama (phenformin and lactic acidosis)
-
Fimognari FL, Pastorelli R, Incalzi RA. Phenformin-induced lactic acidosis in an older diabetic patient: a recurrent drama (phenformin and lactic acidosis). Diabetes Care 2006; 29: 950–951.
-
(2006)
Diabetes Care
, vol.29
, pp. 950-951
-
-
Fimognari, F.L.1
Pastorelli, R.2
Incalzi, R.A.3
-
159
-
-
81255192118
-
Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia
-
Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20: 674–688.
-
(2011)
Cancer Cell
, vol.20
, pp. 674-688
-
-
Skrtic, M.1
Sriskanthadevan, S.2
Jhas, B.3
Gebbia, M.4
Wang, X.5
Wang, Z.6
-
160
-
-
84867604591
-
A combination of 2-deoxy-D-glucose and 6-aminonicotinamide induces cell cycle arrest and apoptosis selectively in irradiated human malignant cells
-
Bhardwaj R, Sharma PK, Jadon SP, Varshney R. A combination of 2-deoxy-D-glucose and 6-aminonicotinamide induces cell cycle arrest and apoptosis selectively in irradiated human malignant cells. Tumour Biol 2012; 33: 1021–1030.
-
(2012)
Tumour Biol
, vol.33
, pp. 1021-1030
-
-
Bhardwaj, R.1
Sharma, P.K.2
Jadon, S.P.3
Varshney, R.4
-
161
-
-
84875047834
-
Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells
-
Alarifi S, Ali D, Alkahtani S, Siddiqui MA, Ali BA. Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Onco Targets Ther 2013; 6: 75–84.
-
(2013)
Onco Targets Ther
, vol.6
, pp. 75-84
-
-
Alarifi, S.1
Ali, D.2
Alkahtani, S.3
Siddiqui, M.A.4
Ali, B.A.5
-
162
-
-
84869803901
-
Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny
-
Hanot M, Boivin A, Malesys C, Beuve M, Colliaux A, Foray N et al. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny. PloS ONE 2012; 7: e44367.
-
(2012)
Plos ONE
, vol.7
-
-
Hanot, M.1
Boivin, A.2
Malesys, C.3
Beuve, M.4
Colliaux, A.5
Foray, N.6
-
163
-
-
77954580063
-
Glutathione depletion enhances arsenic trioxide-induced apoptosis in lymphoma cells through mitochondrial-independent mechanisms
-
Bhalla S, Gordon LI, David K, Prachand S, Singh AT, Yang S et al. Glutathione depletion enhances arsenic trioxide-induced apoptosis in lymphoma cells through mitochondrial-independent mechanisms. Br J Haematol 2010; 150: 365–369.
-
(2010)
Br J Haematol
, vol.150
, pp. 365-369
-
-
Bhalla, S.1
Gordon, L.I.2
David, K.3
Prachand, S.4
Singh, A.T.5
Yang, S.6
-
164
-
-
81855176014
-
Combination of arsenic trioxide and BCNU synergistically triggers redox-mediated autophagic cell death in human solid tumors
-
Kuo CC, Liu TW, Chen LT, Shiah HS, Wu CM, Cheng YT et al. Combination of arsenic trioxide and BCNU synergistically triggers redox-mediated autophagic cell death in human solid tumors. Free Radic Biol Med 2011; 51: 2195–2209.
-
(2011)
Free Radic Biol Med
, vol.51
, pp. 2195-2209
-
-
Kuo, C.C.1
Liu, T.W.2
Chen, L.T.3
Shiah, H.S.4
Wu, C.M.5
Cheng, Y.T.6
-
165
-
-
79953780625
-
Redox-active quinones and ascorbate: An innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress
-
Verrax J, Beck R, Dejeans N, Glorieux C, Sid B, Pedrosa RC et al. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress. Anticancer Agents Med Chem 2011; 11: 213–221.
-
(2011)
Anticancer Agents Med Chem
, vol.11
, pp. 213-221
-
-
Verrax, J.1
Beck, R.2
Dejeans, N.3
Glorieux, C.4
Sid, B.5
Pedrosa, R.C.6
-
166
-
-
84937525519
-
Glutaminolysis and transferrin regulate ferroptosis
-
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 2015; 59: 298–308.
-
(2015)
Mol Cell
, vol.59
, pp. 298-308
-
-
Gao, M.1
Monian, P.2
Quadri, N.3
Ramasamy, R.4
Jiang, X.5
-
167
-
-
84957429081
-
Ferroptosis: Process and function
-
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al. Ferroptosis: process and function. Cell Death Differ 2016; 23: 369–379.
-
(2016)
Cell Death Differ
, vol.23
, pp. 369-379
-
-
Xie, Y.1
Hou, W.2
Song, X.3
Yu, Y.4
Huang, J.5
Sun, X.6
-
168
-
-
84892685001
-
Regulation of ferroptotic cancer cell death by GPX4
-
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156: 317–331.
-
(2014)
Cell
, vol.156
, pp. 317-331
-
-
Yang, W.S.1
Sriramaratnam, R.2
Welsch, M.E.3
Shimada, K.4
Skouta, R.5
Viswanathan, V.S.6
-
169
-
-
84958103915
-
Ferroptosis: Death by lipid peroxidation
-
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol 2016; 26: 165–176.
-
(2016)
Trends Cell Biol
, vol.26
, pp. 165-176
-
-
Yang, W.S.1
Stockwell, B.R.2
-
170
-
-
84901323900
-
Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis
-
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014; 3: e02523.
-
(2014)
Elife
, vol.3
-
-
Dixon, S.J.1
Patel, D.N.2
Welsch, M.3
Skouta, R.4
Lee, E.D.5
Hayano, M.6
|