메뉴 건너뛰기




Volumn 40, Issue 8, 2015, Pages 435-445

Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling

Author keywords

Antioxidant defense; Antioxidant enzyme; Peroxidase; Redox signaling

Indexed keywords

CATALASE; CYSTEINE; GLUTATHIONE PEROXIDASE; HYDROGEN PEROXIDE; HYDROPEROXIDE; ISOPROTEIN; PEROXIDE; PEROXIREDOXIN; PEROXIREDOXIN 1; PEROXIREDOXIN 5; PEROXIREDOXIN 6; THIOREDOXIN;

EID: 84937519769     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.05.001     Document Type: Review
Times cited : (433)

References (105)
  • 1
    • 84924136457 scopus 로고    scopus 로고
    • A primer on peroxiredoxin biochemistry
    • Karplus P.A. A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 2014, 80:183-190.
    • (2014) Free Radic. Biol. Med. , vol.80 , pp. 183-190
    • Karplus, P.A.1
  • 2
    • 42249088093 scopus 로고    scopus 로고
    • Reconciling the chemistry and biology of reactive oxygen species
    • Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4:278-286.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 278-286
    • Winterbourn, C.C.1
  • 3
    • 0028226006 scopus 로고
    • Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes
    • Chae H.Z., et al. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:7017-7021.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 7017-7021
    • Chae, H.Z.1
  • 4
    • 77954935933 scopus 로고    scopus 로고
    • A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses
    • Adimora N.J., et al. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid. Redox Signal. 2010, 13:731-743.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 731-743
    • Adimora, N.J.1
  • 5
    • 0037064080 scopus 로고    scopus 로고
    • Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
    • Yang K.S., et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 2002, 277:38029-38036.
    • (2002) J. Biol. Chem. , vol.277 , pp. 38029-38036
    • Yang, K.S.1
  • 6
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Wood Z.A., et al. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300:650-653.
    • (2003) Science , vol.300 , pp. 650-653
    • Wood, Z.A.1
  • 7
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
    • (2011) J. Cell Biol. , vol.194 , pp. 7-15
    • Finkel, T.1
  • 8
    • 0242668688 scopus 로고    scopus 로고
    • Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation
    • Woo H.A., et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003, 300:653-656.
    • (2003) Science , vol.300 , pp. 653-656
    • Woo, H.A.1
  • 9
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
    • Biteau B., et al. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425:980-984.
    • (2003) Nature , vol.425 , pp. 980-984
    • Biteau, B.1
  • 10
    • 0042568938 scopus 로고    scopus 로고
    • Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression
    • Neumann C.A., et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003, 424:561-565.
    • (2003) Nature , vol.424 , pp. 561-565
    • Neumann, C.A.1
  • 11
    • 84920829987 scopus 로고    scopus 로고
    • Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma
    • Gong F., et al. Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma. Med. Oncol. 2015, 32:455.
    • (2015) Med. Oncol. , vol.32 , pp. 455
    • Gong, F.1
  • 12
    • 84857835586 scopus 로고    scopus 로고
    • Novel roles of peroxiredoxins in inflammation, cancer and innate immunity
    • Ishii T., et al. Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J. Clin. Biochem. Nutr. 2012, 50:91-105.
    • (2012) J. Clin. Biochem. Nutr. , vol.50 , pp. 91-105
    • Ishii, T.1
  • 13
    • 84866490309 scopus 로고    scopus 로고
    • Peroxiredoxins, gerontogenes linking aging to genome instability and cancer
    • Nystrom T., et al. Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev. 2012, 26:2001-2008.
    • (2012) Genes Dev. , vol.26 , pp. 2001-2008
    • Nystrom, T.1
  • 14
    • 84918511722 scopus 로고    scopus 로고
    • Tuning of peroxiredoxin catalysis for various physiological roles
    • Perkins A., et al. Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry 2014, 53:7693-7705.
    • (2014) Biochemistry , vol.53 , pp. 7693-7705
    • Perkins, A.1
  • 15
    • 67849126232 scopus 로고    scopus 로고
    • Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule
    • Reed T.T., et al. Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J. Cell. Mol. Med. 2009, 13:2019-2029.
    • (2009) J. Cell. Mol. Med. , vol.13 , pp. 2019-2029
    • Reed, T.T.1
  • 16
    • 84861999263 scopus 로고    scopus 로고
    • Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain
    • Shichita T., et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 2012, 18:911-917.
    • (2012) Nat. Med. , vol.18 , pp. 911-917
    • Shichita, T.1
  • 17
    • 84860294541 scopus 로고    scopus 로고
    • Peroxiredoxins in parasites
    • Gretes M.C., et al. Peroxiredoxins in parasites. Antioxid. Redox Signal. 2012, 17:608-633.
    • (2012) Antioxid. Redox Signal. , vol.17 , pp. 608-633
    • Gretes, M.C.1
  • 18
    • 23244466487 scopus 로고    scopus 로고
    • Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
    • Parsonage D., et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 2005, 44:10583-10592.
    • (2005) Biochemistry , vol.44 , pp. 10583-10592
    • Parsonage, D.1
  • 19
    • 34249703509 scopus 로고    scopus 로고
    • 2 is not reflected in its reaction with other oxidants and thiol reagents
    • 2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 2007, 282:11885-11892.
    • (2007) J. Biol. Chem. , vol.282 , pp. 11885-11892
    • Peskin, A.V.1
  • 20
    • 64749114296 scopus 로고    scopus 로고
    • The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2
    • Manta B., et al. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 2009, 484:146-154.
    • (2009) Arch. Biochem. Biophys. , vol.484 , pp. 146-154
    • Manta, B.1
  • 21
    • 81755161507 scopus 로고    scopus 로고
    • Extraordinary mus-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q
    • Aden J., et al. Extraordinary mus-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. Biochim. Biophys. Acta 2011, 1814:1880-1890.
    • (2011) Biochim. Biophys. Acta , vol.1814 , pp. 1880-1890
    • Aden, J.1
  • 22
    • 84866648571 scopus 로고    scopus 로고
    • Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes
    • Perkins A., et al. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry 2012, 51:7638-7650.
    • (2012) Biochemistry , vol.51 , pp. 7638-7650
    • Perkins, A.1
  • 23
    • 84865996192 scopus 로고    scopus 로고
    • The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway
    • Fiorillo A., et al. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway. PLoS Negl. Trop. Dis. 2012, 6:e1781.
    • (2012) PLoS Negl. Trop. Dis. , vol.6 , pp. e1781
    • Fiorillo, A.1
  • 24
    • 82755171868 scopus 로고    scopus 로고
    • Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle
    • Cao Z., et al. Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. J. Biol. Chem. 2011, 286:42257-42266.
    • (2011) J. Biol. Chem. , vol.286 , pp. 42257-42266
    • Cao, Z.1
  • 25
    • 84889241342 scopus 로고    scopus 로고
    • The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin
    • Perkins A., et al. The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 2013, 52:8708-8721.
    • (2013) Biochemistry , vol.52 , pp. 8708-8721
    • Perkins, A.1
  • 26
    • 84877886960 scopus 로고    scopus 로고
    • Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
    • Peskin A.V., et al. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J. Biol. Chem. 2013, 288:14170-14177.
    • (2013) J. Biol. Chem. , vol.288 , pp. 14170-14177
    • Peskin, A.V.1
  • 27
    • 79251550085 scopus 로고    scopus 로고
    • Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin
    • Lowther W.T., Haynes A.C. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid. Redox Signal. 2011, 15:99-109.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 99-109
    • Lowther, W.T.1    Haynes, A.C.2
  • 28
    • 84862777700 scopus 로고    scopus 로고
    • Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
    • Day A.M., et al. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol. Cell 2012, 45:398-408.
    • (2012) Mol. Cell , vol.45 , pp. 398-408
    • Day, A.M.1
  • 29
    • 77956207316 scopus 로고    scopus 로고
    • Changing paradigms in thiology from antioxidant defense toward redox regulation
    • Flohé L. Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol. 2010, 473:1-39.
    • (2010) Methods Enzymol. , vol.473 , pp. 1-39
    • Flohé, L.1
  • 30
    • 84856789179 scopus 로고    scopus 로고
    • Peroxiredoxins as molecular triage agents, sacrificing themselves to enhance cell survival during a peroxide attack
    • Karplus P.A., Poole L.B. Peroxiredoxins as molecular triage agents, sacrificing themselves to enhance cell survival during a peroxide attack. Mol. Cell 2012, 45:275-278.
    • (2012) Mol. Cell , vol.45 , pp. 275-278
    • Karplus, P.A.1    Poole, L.B.2
  • 33
    • 84923301607 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum
    • Teixeira F., et al. Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E616-E624.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E616-E624
    • Teixeira, F.1
  • 34
    • 79551493261 scopus 로고    scopus 로고
    • Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis
    • Nelson K.J., et al. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 2011, 79:947-964.
    • (2011) Proteins , vol.79 , pp. 947-964
    • Nelson, K.J.1
  • 35
    • 64149085448 scopus 로고    scopus 로고
    • Typical 2-Cys peroxiredoxins - structures, mechanisms and functions
    • Hall A., et al. Typical 2-Cys peroxiredoxins - structures, mechanisms and functions. FEBS J. 2009, 276:2469-2477.
    • (2009) FEBS J. , vol.276 , pp. 2469-2477
    • Hall, A.1
  • 36
    • 0037222255 scopus 로고    scopus 로고
    • Structure, mechanism and regulation of peroxiredoxins
    • Wood Z.A., et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28:32-40.
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 32-40
    • Wood, Z.A.1
  • 37
    • 84856940017 scopus 로고    scopus 로고
    • Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides
    • Rhee S.G., et al. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012, 287:4403-4410.
    • (2012) J. Biol. Chem. , vol.287 , pp. 4403-4410
    • Rhee, S.G.1
  • 38
    • 0141717106 scopus 로고    scopus 로고
    • Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS/MS
    • Budde H., et al. Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS/MS. Biol. Chem. 2003, 384:1305-1309.
    • (2003) Biol. Chem. , vol.384 , pp. 1305-1309
    • Budde, H.1
  • 39
    • 34248550556 scopus 로고    scopus 로고
    • Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system
    • Jönsson T.J., et al. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Biochemistry 2007, 46:5709-5721.
    • (2007) Biochemistry , vol.46 , pp. 5709-5721
    • Jönsson, T.J.1
  • 40
    • 84861219003 scopus 로고    scopus 로고
    • Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species
    • Lian F.M., et al. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species. J. Biol. Chem. 2012, 287:17077-17087.
    • (2012) J. Biol. Chem. , vol.287 , pp. 17077-17087
    • Lian, F.M.1
  • 42
    • 78649529306 scopus 로고    scopus 로고
    • Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces
    • Marino S.M., Gladyshev V.N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 2010, 404:902-916.
    • (2010) J. Mol. Biol. , vol.404 , pp. 902-916
    • Marino, S.M.1    Gladyshev, V.N.2
  • 43
    • 84923919258 scopus 로고    scopus 로고
    • The basics of thiols and cysteines in redox biology and chemistry
    • Poole L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80:148-157.
    • (2015) Free Radic. Biol. Med. , vol.80 , pp. 148-157
    • Poole, L.B.1
  • 44
    • 84858279884 scopus 로고    scopus 로고
    • Overview of peroxiredoxins in oxidant defense and redox regulation
    • 7.9.1-7.9.15
    • Poole L.B., et al. Overview of peroxiredoxins in oxidant defense and redox regulation. Curr. Protoc. Toxicol. 2011, 2011. 7.9.1-7.9.15.
    • (2011) Curr. Protoc. Toxicol. , vol.2011
    • Poole, L.B.1
  • 45
    • 79954542342 scopus 로고    scopus 로고
    • Factors affecting protein thiol reactivity and specificity in peroxide reduction
    • Ferrer-Sueta G., et al. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 2011, 24:434-450.
    • (2011) Chem. Res. Toxicol. , vol.24 , pp. 434-450
    • Ferrer-Sueta, G.1
  • 46
    • 0001317229 scopus 로고
    • Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman's reagent
    • Whitesides G.M., et al. Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman's reagent. J. Org. Chem. 1977, 42:332-338.
    • (1977) J. Org. Chem. , vol.42 , pp. 332-338
    • Whitesides, G.M.1
  • 47
    • 0032865515 scopus 로고    scopus 로고
    • Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
    • Winterbourn C.C., Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 1999, 27:322-328.
    • (1999) Free Radic. Biol. Med. , vol.27 , pp. 322-328
    • Winterbourn, C.C.1    Metodiewa, D.2
  • 48
    • 79958059617 scopus 로고    scopus 로고
    • Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
    • Hall A., et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 2011, 15:795-815.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 795-815
    • Hall, A.1
  • 49
    • 77956171017 scopus 로고    scopus 로고
    • Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
    • Hall A., et al. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 2010, 402:194-209.
    • (2010) J. Mol. Biol. , vol.402 , pp. 194-209
    • Hall, A.1
  • 50
    • 84907518566 scopus 로고    scopus 로고
    • Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine
    • Portillo-Ledesma S., et al. Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine. Biochemistry 2014, 53:6113-6125.
    • (2014) Biochemistry , vol.53 , pp. 6113-6125
    • Portillo-Ledesma, S.1
  • 51
    • 84905573259 scopus 로고    scopus 로고
    • The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step
    • Zeida A., et al. The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step. Chem. Commun. (Camb.) 2014, 50:10070-10073.
    • (2014) Chem. Commun. (Camb.) , vol.50 , pp. 10070-10073
    • Zeida, A.1
  • 52
    • 75649122929 scopus 로고    scopus 로고
    • Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide
    • Nakamura T., et al. Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 2010, 147:109-115.
    • (2010) J. Biochem. , vol.147 , pp. 109-115
    • Nakamura, T.1
  • 53
    • 79955967159 scopus 로고    scopus 로고
    • Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study
    • Nagy P., et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 2011, 286:18048-18055.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18048-18055
    • Nagy, P.1
  • 54
    • 84868194009 scopus 로고    scopus 로고
    • Disulfide biochemistry in 2-Cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin
    • Tairum C.A., et al. Disulfide biochemistry in 2-Cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J. Mol. Biol. 2012, 424:28-41.
    • (2012) J. Mol. Biol. , vol.424 , pp. 28-41
    • Tairum, C.A.1
  • 55
    • 38749120994 scopus 로고    scopus 로고
    • Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite
    • Trujillo M., et al. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell. Biochem. 2007, 44:83-113.
    • (2007) Subcell. Biochem. , vol.44 , pp. 83-113
    • Trujillo, M.1
  • 56
    • 78650992200 scopus 로고    scopus 로고
    • Peroxiredoxins in plants and cyanobacteria
    • Dietz K.J. Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 2011, 15:1129-1159.
    • (2011) Antioxid. Redox Signal. , vol.15 , pp. 1129-1159
    • Dietz, K.J.1
  • 57
    • 84871127131 scopus 로고    scopus 로고
    • Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress
    • Bang Y.J., et al. Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress. J. Biol. Chem. 2012, 287:42516-42524.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42516-42524
    • Bang, Y.J.1
  • 58
    • 77952396492 scopus 로고    scopus 로고
    • Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity
    • Horta B.B., et al. Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity. J. Biol. Chem. 2010, 285:16051-16065.
    • (2010) J. Biol. Chem. , vol.285 , pp. 16051-16065
    • Horta, B.B.1
  • 59
    • 80054771975 scopus 로고    scopus 로고
    • Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin
    • Reeves S.A., et al. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry 2011, 50:8970-8981.
    • (2011) Biochemistry , vol.50 , pp. 8970-8981
    • Reeves, S.A.1
  • 60
    • 0030861413 scopus 로고    scopus 로고
    • A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata
    • Nogoceke E., et al. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol. Chem. 1997, 378:827-836.
    • (1997) Biol. Chem. , vol.378 , pp. 827-836
    • Nogoceke, E.1
  • 61
    • 33845917628 scopus 로고    scopus 로고
    • Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
    • Ogusucu R., et al. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 2007, 42:326-334.
    • (2007) Free Radic. Biol. Med. , vol.42 , pp. 326-334
    • Ogusucu, R.1
  • 62
    • 67650079177 scopus 로고    scopus 로고
    • Redox potential and peroxide reactivity of human peroxiredoxin 3
    • Cox A.G., et al. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 2009, 48:6495-6501.
    • (2009) Biochemistry , vol.48 , pp. 6495-6501
    • Cox, A.G.1
  • 63
    • 57049161455 scopus 로고    scopus 로고
    • a values for the bacterial peroxiredoxin AhpC
    • a values for the bacterial peroxiredoxin AhpC. Biochemistry 2008, 47:12860-12868.
    • (2008) Biochemistry , vol.47 , pp. 12860-12868
    • Nelson, K.J.1
  • 64
    • 84923342260 scopus 로고    scopus 로고
    • Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC
    • Parsonage D., et al. Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 2015, 54:1567-1575.
    • (2015) Biochemistry , vol.54 , pp. 1567-1575
    • Parsonage, D.1
  • 65
    • 80052731725 scopus 로고    scopus 로고
    • Kinetic studies of peroxiredoxin 6 from Arenicola marina: rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide
    • Loumaye E., et al. Kinetic studies of peroxiredoxin 6 from Arenicola marina: rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide. Arch. Biochem. Biophys. 2011, 514:1-7.
    • (2011) Arch. Biochem. Biophys. , vol.514 , pp. 1-7
    • Loumaye, E.1
  • 66
    • 35448954324 scopus 로고    scopus 로고
    • Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation
    • Trujillo M., et al. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 2007, 467:95-106.
    • (2007) Arch. Biochem. Biophys. , vol.467 , pp. 95-106
    • Trujillo, M.1
  • 67
    • 70350050576 scopus 로고    scopus 로고
    • Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics
    • Hugo M., et al. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 2009, 48:9416-9426.
    • (2009) Biochemistry , vol.48 , pp. 9416-9426
    • Hugo, M.1
  • 68
    • 79959341904 scopus 로고    scopus 로고
    • Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation
    • Reyes A.M., et al. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Free Radic. Biol. Med. 2011, 51:464-473.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 464-473
    • Reyes, A.M.1
  • 69
    • 0034648827 scopus 로고    scopus 로고
    • Peroxynitrite reductase activity of bacterial peroxiredoxins
    • Bryk R., et al. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 2000, 407:211-215.
    • (2000) Nature , vol.407 , pp. 211-215
    • Bryk, R.1
  • 70
    • 0028973482 scopus 로고
    • 2 for platelet-derived growth factor signal transduction
    • 2 for platelet-derived growth factor signal transduction. Science 1995, 270:296-299.
    • (1995) Science , vol.270 , pp. 296-299
    • Sundaresan, M.1
  • 71
    • 65349113056 scopus 로고    scopus 로고
    • Signaling components of redox active endosomes: the redoxosomes
    • Oakley F.D., et al. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal. 2009, 11:1313-1333.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1313-1333
    • Oakley, F.D.1
  • 72
    • 84905985979 scopus 로고    scopus 로고
    • Nox4: a hydrogen peroxide-generating oxygen sensor
    • Nisimoto Y., et al. Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry 2014, 53:5111-5120.
    • (2014) Biochemistry , vol.53 , pp. 5111-5120
    • Nisimoto, Y.1
  • 73
    • 65349157681 scopus 로고    scopus 로고
    • Compartmentalization of redox signaling through NADPH oxidase-derived ROS
    • Ushio-Fukai M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal. 2009, 11:1289-1299.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1289-1299
    • Ushio-Fukai, M.1
  • 74
    • 15044362438 scopus 로고    scopus 로고
    • Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins
    • Rhee S.G., et al. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 2005, 17:183-189.
    • (2005) Curr. Opin. Cell Biol. , vol.17 , pp. 183-189
    • Rhee, S.G.1
  • 75
    • 80053476859 scopus 로고    scopus 로고
    • Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity
    • Haque A., et al. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 2011, 147:185-198.
    • (2011) Cell , vol.147 , pp. 185-198
    • Haque, A.1
  • 76
    • 75749136883 scopus 로고    scopus 로고
    • Signaling functions of reactive oxygen species
    • Forman H.J., et al. Signaling functions of reactive oxygen species. Biochemistry 2010, 49:835-842.
    • (2010) Biochemistry , vol.49 , pp. 835-842
    • Forman, H.J.1
  • 78
    • 33645096801 scopus 로고    scopus 로고
    • Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts
    • Chen C.H., et al. Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol. Pharmacol. 2006, 69:1347-1355.
    • (2006) Mol. Pharmacol. , vol.69 , pp. 1347-1355
    • Chen, C.H.1
  • 79
    • 76749102420 scopus 로고    scopus 로고
    • 2 accumulation for cell signaling
    • 2 accumulation for cell signaling. Cell 2010, 140:517-528.
    • (2010) Cell , vol.140 , pp. 517-528
    • Woo, H.A.1
  • 80
    • 78649466688 scopus 로고    scopus 로고
    • Does cellular hydrogen peroxide diffuse or act locally?
    • Mishina N.M., et al. Does cellular hydrogen peroxide diffuse or act locally?. Antioxid. Redox Signal. 2011, 14:1-7.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1-7
    • Mishina, N.M.1
  • 81
    • 79251603273 scopus 로고    scopus 로고
    • Hydrogen peroxide probes directed to different cellular compartments
    • Malinouski M., et al. Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 2011, 6:e14564.
    • (2011) PLoS ONE , vol.6 , pp. e14564
    • Malinouski, M.1
  • 82
    • 84898402832 scopus 로고    scopus 로고
    • 2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling
    • 2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling. Free Radic. Biol. Med. 2014, 71C:49-60.
    • (2014) Free Radic. Biol. Med. , vol.71C , pp. 49-60
    • Klomsiri, C.1
  • 83
    • 83655163927 scopus 로고    scopus 로고
    • Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity
    • Paulsen C.E., et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 2011, 8:57-64.
    • (2011) Nat. Chem. Biol. , vol.8 , pp. 57-64
    • Paulsen, C.E.1
  • 84
    • 84885672872 scopus 로고    scopus 로고
    • Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation
    • Haynes A.C., et al. Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation. J. Biol. Chem. 2013, 288:29714-29723.
    • (2013) J. Biol. Chem. , vol.288 , pp. 29714-29723
    • Haynes, A.C.1
  • 85
    • 84879877885 scopus 로고    scopus 로고
    • Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates
    • Nelson K.J., et al. Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates. Methods Enzymol. 2013, 527:21-40.
    • (2013) Methods Enzymol. , vol.527 , pp. 21-40
    • Nelson, K.J.1
  • 86
    • 84924930301 scopus 로고    scopus 로고
    • Redox biology: signaling via a peroxiredoxin sensor
    • Winterbourn C.C., Hampton M.B. Redox biology: signaling via a peroxiredoxin sensor. Nat. Chem. Biol. 2015, 11:5-6.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 5-6
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 87
    • 84861964383 scopus 로고    scopus 로고
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 2012, 46:584-594.
    • (2012) Mol. Cell , vol.46 , pp. 584-594
    • Kil, I.S.1
  • 88
    • 84901717301 scopus 로고    scopus 로고
    • Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase
    • Randall L.M., et al. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J. Biol. Chem. 2014, 289:15536-15543.
    • (2014) J. Biol. Chem. , vol.289 , pp. 15536-15543
    • Randall, L.M.1
  • 89
    • 84863012241 scopus 로고    scopus 로고
    • Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators
    • Chae H.Z., et al. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid. Redox Signal. 2012, 16:506-523.
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 506-523
    • Chae, H.Z.1
  • 90
    • 84890195550 scopus 로고    scopus 로고
    • 2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle
    • 2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep. 2013, 5:1413-1424.
    • (2013) Cell Rep. , vol.5 , pp. 1413-1424
    • Calvo, I.A.1
  • 91
    • 79952582563 scopus 로고    scopus 로고
    • Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide
    • Fomenko D.E., et al. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2729-2734.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2729-2734
    • Fomenko, D.E.1
  • 92
    • 2542464938 scopus 로고    scopus 로고
    • Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
    • Jang H.H., et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 2004, 117:625-635.
    • (2004) Cell , vol.117 , pp. 625-635
    • Jang, H.H.1
  • 93
    • 33845303974 scopus 로고    scopus 로고
    • Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery
    • Phalen T.J., et al. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 2006, 175:779-789.
    • (2006) J. Cell Biol. , vol.175 , pp. 779-789
    • Phalen, T.J.1
  • 94
    • 84904260132 scopus 로고    scopus 로고
    • Molecular mechanisms of the circadian clockwork in mammals
    • Robinson I., Reddy A.B. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. 2014, 588:2477-2483.
    • (2014) FEBS Lett. , vol.588 , pp. 2477-2483
    • Robinson, I.1    Reddy, A.B.2
  • 95
    • 84901599371 scopus 로고    scopus 로고
    • Circadian redox and metabolic oscillations in mammalian systems
    • O'Neill J.S., Feeney K.A. Circadian redox and metabolic oscillations in mammalian systems. Antioxid. Redox Signal. 2014, 20:2966-2981.
    • (2014) Antioxid. Redox Signal. , vol.20 , pp. 2966-2981
    • O'Neill, J.S.1    Feeney, K.A.2
  • 96
    • 84906322941 scopus 로고    scopus 로고
    • Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
    • Cho C.S., et al. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:12043-12048.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 12043-12048
    • Cho, C.S.1
  • 98
    • 84876719258 scopus 로고    scopus 로고
    • Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology
    • van der Kamp M.W., Mulholland A.J. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013, 52:2708-2728.
    • (2013) Biochemistry , vol.52 , pp. 2708-2728
    • van der Kamp, M.W.1    Mulholland, A.J.2
  • 99
    • 84890128084 scopus 로고    scopus 로고
    • Quantification of thiols and disulfides
    • Winther J.R., Thorpe C. Quantification of thiols and disulfides. Biochim. Biophys. Acta 2014, 1840:838-846.
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 838-846
    • Winther, J.R.1    Thorpe, C.2
  • 100
    • 8344281472 scopus 로고    scopus 로고
    • Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor
    • Copley S.D., et al. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 2004, 43:13981-13995.
    • (2004) Biochemistry , vol.43 , pp. 13981-13995
    • Copley, S.D.1
  • 101
    • 0242579195 scopus 로고    scopus 로고
    • Structure-based active site profiles for genome analysis and functional family subclassification
    • Cammer S.A., et al. Structure-based active site profiles for genome analysis and functional family subclassification. J. Mol. Biol. 2003, 334:387-401.
    • (2003) J. Mol. Biol. , vol.334 , pp. 387-401
    • Cammer, S.A.1
  • 102
    • 78651278810 scopus 로고    scopus 로고
    • PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family
    • Soito L., et al. PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 2011, 39:D332-D337.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D332-D337
    • Soito, L.1
  • 103
    • 84863230834 scopus 로고    scopus 로고
    • Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin
    • Saccoccia F., et al. Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 2012, 20:429-439.
    • (2012) Structure , vol.20 , pp. 429-439
    • Saccoccia, F.1
  • 104
    • 0037197672 scopus 로고    scopus 로고
    • Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins
    • Wood Z.A., et al. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 2002, 41:5493-5504.
    • (2002) Biochemistry , vol.41 , pp. 5493-5504
    • Wood, Z.A.1
  • 105
    • 78349305451 scopus 로고    scopus 로고
    • Evolutionary origin of a secondary structure: pi-helices as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality
    • Cooley R.B., et al. Evolutionary origin of a secondary structure: pi-helices as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality. J. Mol. Biol. 2010, 404:232-246.
    • (2010) J. Mol. Biol. , vol.404 , pp. 232-246
    • Cooley, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.