-
1
-
-
84924136457
-
A primer on peroxiredoxin biochemistry
-
Karplus P.A. A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 2014, 80:183-190.
-
(2014)
Free Radic. Biol. Med.
, vol.80
, pp. 183-190
-
-
Karplus, P.A.1
-
2
-
-
42249088093
-
Reconciling the chemistry and biology of reactive oxygen species
-
Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4:278-286.
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 278-286
-
-
Winterbourn, C.C.1
-
3
-
-
0028226006
-
Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes
-
Chae H.Z., et al. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:7017-7021.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 7017-7021
-
-
Chae, H.Z.1
-
4
-
-
77954935933
-
A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses
-
Adimora N.J., et al. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid. Redox Signal. 2010, 13:731-743.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 731-743
-
-
Adimora, N.J.1
-
5
-
-
0037064080
-
Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
-
Yang K.S., et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 2002, 277:38029-38036.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 38029-38036
-
-
Yang, K.S.1
-
6
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
Wood Z.A., et al. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300:650-653.
-
(2003)
Science
, vol.300
, pp. 650-653
-
-
Wood, Z.A.1
-
7
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
8
-
-
0242668688
-
Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation
-
Woo H.A., et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003, 300:653-656.
-
(2003)
Science
, vol.300
, pp. 653-656
-
-
Woo, H.A.1
-
9
-
-
0242416188
-
ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
-
Biteau B., et al. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425:980-984.
-
(2003)
Nature
, vol.425
, pp. 980-984
-
-
Biteau, B.1
-
10
-
-
0042568938
-
Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression
-
Neumann C.A., et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003, 424:561-565.
-
(2003)
Nature
, vol.424
, pp. 561-565
-
-
Neumann, C.A.1
-
11
-
-
84920829987
-
Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma
-
Gong F., et al. Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma. Med. Oncol. 2015, 32:455.
-
(2015)
Med. Oncol.
, vol.32
, pp. 455
-
-
Gong, F.1
-
12
-
-
84857835586
-
Novel roles of peroxiredoxins in inflammation, cancer and innate immunity
-
Ishii T., et al. Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J. Clin. Biochem. Nutr. 2012, 50:91-105.
-
(2012)
J. Clin. Biochem. Nutr.
, vol.50
, pp. 91-105
-
-
Ishii, T.1
-
13
-
-
84866490309
-
Peroxiredoxins, gerontogenes linking aging to genome instability and cancer
-
Nystrom T., et al. Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev. 2012, 26:2001-2008.
-
(2012)
Genes Dev.
, vol.26
, pp. 2001-2008
-
-
Nystrom, T.1
-
14
-
-
84918511722
-
Tuning of peroxiredoxin catalysis for various physiological roles
-
Perkins A., et al. Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry 2014, 53:7693-7705.
-
(2014)
Biochemistry
, vol.53
, pp. 7693-7705
-
-
Perkins, A.1
-
15
-
-
67849126232
-
Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule
-
Reed T.T., et al. Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J. Cell. Mol. Med. 2009, 13:2019-2029.
-
(2009)
J. Cell. Mol. Med.
, vol.13
, pp. 2019-2029
-
-
Reed, T.T.1
-
16
-
-
84861999263
-
Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain
-
Shichita T., et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 2012, 18:911-917.
-
(2012)
Nat. Med.
, vol.18
, pp. 911-917
-
-
Shichita, T.1
-
17
-
-
84860294541
-
Peroxiredoxins in parasites
-
Gretes M.C., et al. Peroxiredoxins in parasites. Antioxid. Redox Signal. 2012, 17:608-633.
-
(2012)
Antioxid. Redox Signal.
, vol.17
, pp. 608-633
-
-
Gretes, M.C.1
-
18
-
-
23244466487
-
Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
-
Parsonage D., et al. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 2005, 44:10583-10592.
-
(2005)
Biochemistry
, vol.44
, pp. 10583-10592
-
-
Parsonage, D.1
-
19
-
-
34249703509
-
2 is not reflected in its reaction with other oxidants and thiol reagents
-
2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 2007, 282:11885-11892.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11885-11892
-
-
Peskin, A.V.1
-
20
-
-
64749114296
-
The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2
-
Manta B., et al. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 2009, 484:146-154.
-
(2009)
Arch. Biochem. Biophys.
, vol.484
, pp. 146-154
-
-
Manta, B.1
-
21
-
-
81755161507
-
Extraordinary mus-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q
-
Aden J., et al. Extraordinary mus-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. Biochim. Biophys. Acta 2011, 1814:1880-1890.
-
(2011)
Biochim. Biophys. Acta
, vol.1814
, pp. 1880-1890
-
-
Aden, J.1
-
22
-
-
84866648571
-
Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes
-
Perkins A., et al. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry 2012, 51:7638-7650.
-
(2012)
Biochemistry
, vol.51
, pp. 7638-7650
-
-
Perkins, A.1
-
23
-
-
84865996192
-
The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway
-
Fiorillo A., et al. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway. PLoS Negl. Trop. Dis. 2012, 6:e1781.
-
(2012)
PLoS Negl. Trop. Dis.
, vol.6
, pp. e1781
-
-
Fiorillo, A.1
-
24
-
-
82755171868
-
Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle
-
Cao Z., et al. Crystal structure of reduced and of oxidized peroxiredoxin IV enzyme reveals a stable oxidized decamer and a non-disulfide-bonded intermediate in the catalytic cycle. J. Biol. Chem. 2011, 286:42257-42266.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 42257-42266
-
-
Cao, Z.1
-
25
-
-
84889241342
-
The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin
-
Perkins A., et al. The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 2013, 52:8708-8721.
-
(2013)
Biochemistry
, vol.52
, pp. 8708-8721
-
-
Perkins, A.1
-
26
-
-
84877886960
-
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
-
Peskin A.V., et al. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J. Biol. Chem. 2013, 288:14170-14177.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 14170-14177
-
-
Peskin, A.V.1
-
27
-
-
79251550085
-
Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin
-
Lowther W.T., Haynes A.C. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid. Redox Signal. 2011, 15:99-109.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 99-109
-
-
Lowther, W.T.1
Haynes, A.C.2
-
28
-
-
84862777700
-
Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
-
Day A.M., et al. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol. Cell 2012, 45:398-408.
-
(2012)
Mol. Cell
, vol.45
, pp. 398-408
-
-
Day, A.M.1
-
29
-
-
77956207316
-
Changing paradigms in thiology from antioxidant defense toward redox regulation
-
Flohé L. Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol. 2010, 473:1-39.
-
(2010)
Methods Enzymol.
, vol.473
, pp. 1-39
-
-
Flohé, L.1
-
30
-
-
84856789179
-
Peroxiredoxins as molecular triage agents, sacrificing themselves to enhance cell survival during a peroxide attack
-
Karplus P.A., Poole L.B. Peroxiredoxins as molecular triage agents, sacrificing themselves to enhance cell survival during a peroxide attack. Mol. Cell 2012, 45:275-278.
-
(2012)
Mol. Cell
, vol.45
, pp. 275-278
-
-
Karplus, P.A.1
Poole, L.B.2
-
33
-
-
84923301607
-
Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum
-
Teixeira F., et al. Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E616-E624.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E616-E624
-
-
Teixeira, F.1
-
34
-
-
79551493261
-
Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis
-
Nelson K.J., et al. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 2011, 79:947-964.
-
(2011)
Proteins
, vol.79
, pp. 947-964
-
-
Nelson, K.J.1
-
35
-
-
64149085448
-
Typical 2-Cys peroxiredoxins - structures, mechanisms and functions
-
Hall A., et al. Typical 2-Cys peroxiredoxins - structures, mechanisms and functions. FEBS J. 2009, 276:2469-2477.
-
(2009)
FEBS J.
, vol.276
, pp. 2469-2477
-
-
Hall, A.1
-
36
-
-
0037222255
-
Structure, mechanism and regulation of peroxiredoxins
-
Wood Z.A., et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28:32-40.
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 32-40
-
-
Wood, Z.A.1
-
37
-
-
84856940017
-
Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides
-
Rhee S.G., et al. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012, 287:4403-4410.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 4403-4410
-
-
Rhee, S.G.1
-
38
-
-
0141717106
-
Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS/MS
-
Budde H., et al. Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS/MS. Biol. Chem. 2003, 384:1305-1309.
-
(2003)
Biol. Chem.
, vol.384
, pp. 1305-1309
-
-
Budde, H.1
-
39
-
-
34248550556
-
Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system
-
Jönsson T.J., et al. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Biochemistry 2007, 46:5709-5721.
-
(2007)
Biochemistry
, vol.46
, pp. 5709-5721
-
-
Jönsson, T.J.1
-
40
-
-
84861219003
-
Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species
-
Lian F.M., et al. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species. J. Biol. Chem. 2012, 287:17077-17087.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 17077-17087
-
-
Lian, F.M.1
-
42
-
-
78649529306
-
Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces
-
Marino S.M., Gladyshev V.N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 2010, 404:902-916.
-
(2010)
J. Mol. Biol.
, vol.404
, pp. 902-916
-
-
Marino, S.M.1
Gladyshev, V.N.2
-
43
-
-
84923919258
-
The basics of thiols and cysteines in redox biology and chemistry
-
Poole L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80:148-157.
-
(2015)
Free Radic. Biol. Med.
, vol.80
, pp. 148-157
-
-
Poole, L.B.1
-
44
-
-
84858279884
-
Overview of peroxiredoxins in oxidant defense and redox regulation
-
7.9.1-7.9.15
-
Poole L.B., et al. Overview of peroxiredoxins in oxidant defense and redox regulation. Curr. Protoc. Toxicol. 2011, 2011. 7.9.1-7.9.15.
-
(2011)
Curr. Protoc. Toxicol.
, vol.2011
-
-
Poole, L.B.1
-
45
-
-
79954542342
-
Factors affecting protein thiol reactivity and specificity in peroxide reduction
-
Ferrer-Sueta G., et al. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 2011, 24:434-450.
-
(2011)
Chem. Res. Toxicol.
, vol.24
, pp. 434-450
-
-
Ferrer-Sueta, G.1
-
46
-
-
0001317229
-
Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman's reagent
-
Whitesides G.M., et al. Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman's reagent. J. Org. Chem. 1977, 42:332-338.
-
(1977)
J. Org. Chem.
, vol.42
, pp. 332-338
-
-
Whitesides, G.M.1
-
47
-
-
0032865515
-
Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
-
Winterbourn C.C., Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 1999, 27:322-328.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, pp. 322-328
-
-
Winterbourn, C.C.1
Metodiewa, D.2
-
48
-
-
79958059617
-
Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
-
Hall A., et al. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 2011, 15:795-815.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 795-815
-
-
Hall, A.1
-
49
-
-
77956171017
-
Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
-
Hall A., et al. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 2010, 402:194-209.
-
(2010)
J. Mol. Biol.
, vol.402
, pp. 194-209
-
-
Hall, A.1
-
50
-
-
84907518566
-
Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine
-
Portillo-Ledesma S., et al. Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine. Biochemistry 2014, 53:6113-6125.
-
(2014)
Biochemistry
, vol.53
, pp. 6113-6125
-
-
Portillo-Ledesma, S.1
-
51
-
-
84905573259
-
The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step
-
Zeida A., et al. The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step. Chem. Commun. (Camb.) 2014, 50:10070-10073.
-
(2014)
Chem. Commun. (Camb.)
, vol.50
, pp. 10070-10073
-
-
Zeida, A.1
-
52
-
-
75649122929
-
Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide
-
Nakamura T., et al. Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J. Biochem. 2010, 147:109-115.
-
(2010)
J. Biochem.
, vol.147
, pp. 109-115
-
-
Nakamura, T.1
-
53
-
-
79955967159
-
Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study
-
Nagy P., et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. J. Biol. Chem. 2011, 286:18048-18055.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18048-18055
-
-
Nagy, P.1
-
54
-
-
84868194009
-
Disulfide biochemistry in 2-Cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin
-
Tairum C.A., et al. Disulfide biochemistry in 2-Cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J. Mol. Biol. 2012, 424:28-41.
-
(2012)
J. Mol. Biol.
, vol.424
, pp. 28-41
-
-
Tairum, C.A.1
-
55
-
-
38749120994
-
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite
-
Trujillo M., et al. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Subcell. Biochem. 2007, 44:83-113.
-
(2007)
Subcell. Biochem.
, vol.44
, pp. 83-113
-
-
Trujillo, M.1
-
56
-
-
78650992200
-
Peroxiredoxins in plants and cyanobacteria
-
Dietz K.J. Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 2011, 15:1129-1159.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 1129-1159
-
-
Dietz, K.J.1
-
57
-
-
84871127131
-
Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress
-
Bang Y.J., et al. Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress. J. Biol. Chem. 2012, 287:42516-42524.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42516-42524
-
-
Bang, Y.J.1
-
58
-
-
77952396492
-
Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity
-
Horta B.B., et al. Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity. J. Biol. Chem. 2010, 285:16051-16065.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 16051-16065
-
-
Horta, B.B.1
-
59
-
-
80054771975
-
Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin
-
Reeves S.A., et al. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry 2011, 50:8970-8981.
-
(2011)
Biochemistry
, vol.50
, pp. 8970-8981
-
-
Reeves, S.A.1
-
60
-
-
0030861413
-
A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata
-
Nogoceke E., et al. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol. Chem. 1997, 378:827-836.
-
(1997)
Biol. Chem.
, vol.378
, pp. 827-836
-
-
Nogoceke, E.1
-
61
-
-
33845917628
-
Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
-
Ogusucu R., et al. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 2007, 42:326-334.
-
(2007)
Free Radic. Biol. Med.
, vol.42
, pp. 326-334
-
-
Ogusucu, R.1
-
62
-
-
67650079177
-
Redox potential and peroxide reactivity of human peroxiredoxin 3
-
Cox A.G., et al. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 2009, 48:6495-6501.
-
(2009)
Biochemistry
, vol.48
, pp. 6495-6501
-
-
Cox, A.G.1
-
63
-
-
57049161455
-
a values for the bacterial peroxiredoxin AhpC
-
a values for the bacterial peroxiredoxin AhpC. Biochemistry 2008, 47:12860-12868.
-
(2008)
Biochemistry
, vol.47
, pp. 12860-12868
-
-
Nelson, K.J.1
-
64
-
-
84923342260
-
Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC
-
Parsonage D., et al. Dissecting peroxiredoxin catalysis: separating binding, peroxidation, and resolution for a bacterial AhpC. Biochemistry 2015, 54:1567-1575.
-
(2015)
Biochemistry
, vol.54
, pp. 1567-1575
-
-
Parsonage, D.1
-
65
-
-
80052731725
-
Kinetic studies of peroxiredoxin 6 from Arenicola marina: rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide
-
Loumaye E., et al. Kinetic studies of peroxiredoxin 6 from Arenicola marina: rapid oxidation by hydrogen peroxide and peroxynitrite but lack of reduction by hydrogen sulfide. Arch. Biochem. Biophys. 2011, 514:1-7.
-
(2011)
Arch. Biochem. Biophys.
, vol.514
, pp. 1-7
-
-
Loumaye, E.1
-
66
-
-
35448954324
-
Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation
-
Trujillo M., et al. Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 2007, 467:95-106.
-
(2007)
Arch. Biochem. Biophys.
, vol.467
, pp. 95-106
-
-
Trujillo, M.1
-
67
-
-
70350050576
-
Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics
-
Hugo M., et al. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 2009, 48:9416-9426.
-
(2009)
Biochemistry
, vol.48
, pp. 9416-9426
-
-
Hugo, M.1
-
68
-
-
79959341904
-
Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation
-
Reyes A.M., et al. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Free Radic. Biol. Med. 2011, 51:464-473.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 464-473
-
-
Reyes, A.M.1
-
69
-
-
0034648827
-
Peroxynitrite reductase activity of bacterial peroxiredoxins
-
Bryk R., et al. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 2000, 407:211-215.
-
(2000)
Nature
, vol.407
, pp. 211-215
-
-
Bryk, R.1
-
70
-
-
0028973482
-
2 for platelet-derived growth factor signal transduction
-
2 for platelet-derived growth factor signal transduction. Science 1995, 270:296-299.
-
(1995)
Science
, vol.270
, pp. 296-299
-
-
Sundaresan, M.1
-
71
-
-
65349113056
-
Signaling components of redox active endosomes: the redoxosomes
-
Oakley F.D., et al. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal. 2009, 11:1313-1333.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1313-1333
-
-
Oakley, F.D.1
-
72
-
-
84905985979
-
Nox4: a hydrogen peroxide-generating oxygen sensor
-
Nisimoto Y., et al. Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry 2014, 53:5111-5120.
-
(2014)
Biochemistry
, vol.53
, pp. 5111-5120
-
-
Nisimoto, Y.1
-
73
-
-
65349157681
-
Compartmentalization of redox signaling through NADPH oxidase-derived ROS
-
Ushio-Fukai M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal. 2009, 11:1289-1299.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 1289-1299
-
-
Ushio-Fukai, M.1
-
74
-
-
15044362438
-
Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins
-
Rhee S.G., et al. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 2005, 17:183-189.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 183-189
-
-
Rhee, S.G.1
-
75
-
-
80053476859
-
Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity
-
Haque A., et al. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 2011, 147:185-198.
-
(2011)
Cell
, vol.147
, pp. 185-198
-
-
Haque, A.1
-
76
-
-
75749136883
-
Signaling functions of reactive oxygen species
-
Forman H.J., et al. Signaling functions of reactive oxygen species. Biochemistry 2010, 49:835-842.
-
(2010)
Biochemistry
, vol.49
, pp. 835-842
-
-
Forman, H.J.1
-
78
-
-
33645096801
-
Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts
-
Chen C.H., et al. Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol. Pharmacol. 2006, 69:1347-1355.
-
(2006)
Mol. Pharmacol.
, vol.69
, pp. 1347-1355
-
-
Chen, C.H.1
-
79
-
-
76749102420
-
2 accumulation for cell signaling
-
2 accumulation for cell signaling. Cell 2010, 140:517-528.
-
(2010)
Cell
, vol.140
, pp. 517-528
-
-
Woo, H.A.1
-
80
-
-
78649466688
-
Does cellular hydrogen peroxide diffuse or act locally?
-
Mishina N.M., et al. Does cellular hydrogen peroxide diffuse or act locally?. Antioxid. Redox Signal. 2011, 14:1-7.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 1-7
-
-
Mishina, N.M.1
-
81
-
-
79251603273
-
Hydrogen peroxide probes directed to different cellular compartments
-
Malinouski M., et al. Hydrogen peroxide probes directed to different cellular compartments. PLoS ONE 2011, 6:e14564.
-
(2011)
PLoS ONE
, vol.6
, pp. e14564
-
-
Malinouski, M.1
-
82
-
-
84898402832
-
2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling
-
2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling. Free Radic. Biol. Med. 2014, 71C:49-60.
-
(2014)
Free Radic. Biol. Med.
, vol.71C
, pp. 49-60
-
-
Klomsiri, C.1
-
83
-
-
83655163927
-
Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity
-
Paulsen C.E., et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 2011, 8:57-64.
-
(2011)
Nat. Chem. Biol.
, vol.8
, pp. 57-64
-
-
Paulsen, C.E.1
-
84
-
-
84885672872
-
Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation
-
Haynes A.C., et al. Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation. J. Biol. Chem. 2013, 288:29714-29723.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29714-29723
-
-
Haynes, A.C.1
-
85
-
-
84879877885
-
Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates
-
Nelson K.J., et al. Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates. Methods Enzymol. 2013, 527:21-40.
-
(2013)
Methods Enzymol.
, vol.527
, pp. 21-40
-
-
Nelson, K.J.1
-
86
-
-
84924930301
-
Redox biology: signaling via a peroxiredoxin sensor
-
Winterbourn C.C., Hampton M.B. Redox biology: signaling via a peroxiredoxin sensor. Nat. Chem. Biol. 2015, 11:5-6.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 5-6
-
-
Winterbourn, C.C.1
Hampton, M.B.2
-
87
-
-
84861964383
-
2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 2012, 46:584-594.
-
(2012)
Mol. Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
-
88
-
-
84901717301
-
Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase
-
Randall L.M., et al. Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase. J. Biol. Chem. 2014, 289:15536-15543.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 15536-15543
-
-
Randall, L.M.1
-
89
-
-
84863012241
-
Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators
-
Chae H.Z., et al. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid. Redox Signal. 2012, 16:506-523.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 506-523
-
-
Chae, H.Z.1
-
90
-
-
84890195550
-
2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle
-
2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep. 2013, 5:1413-1424.
-
(2013)
Cell Rep.
, vol.5
, pp. 1413-1424
-
-
Calvo, I.A.1
-
91
-
-
79952582563
-
Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide
-
Fomenko D.E., et al. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2729-2734.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2729-2734
-
-
Fomenko, D.E.1
-
92
-
-
2542464938
-
Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
-
Jang H.H., et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 2004, 117:625-635.
-
(2004)
Cell
, vol.117
, pp. 625-635
-
-
Jang, H.H.1
-
93
-
-
33845303974
-
Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery
-
Phalen T.J., et al. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 2006, 175:779-789.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 779-789
-
-
Phalen, T.J.1
-
94
-
-
84904260132
-
Molecular mechanisms of the circadian clockwork in mammals
-
Robinson I., Reddy A.B. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. 2014, 588:2477-2483.
-
(2014)
FEBS Lett.
, vol.588
, pp. 2477-2483
-
-
Robinson, I.1
Reddy, A.B.2
-
95
-
-
84901599371
-
Circadian redox and metabolic oscillations in mammalian systems
-
O'Neill J.S., Feeney K.A. Circadian redox and metabolic oscillations in mammalian systems. Antioxid. Redox Signal. 2014, 20:2966-2981.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 2966-2981
-
-
O'Neill, J.S.1
Feeney, K.A.2
-
96
-
-
84906322941
-
Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
-
Cho C.S., et al. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:12043-12048.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 12043-12048
-
-
Cho, C.S.1
-
98
-
-
84876719258
-
Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology
-
van der Kamp M.W., Mulholland A.J. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013, 52:2708-2728.
-
(2013)
Biochemistry
, vol.52
, pp. 2708-2728
-
-
van der Kamp, M.W.1
Mulholland, A.J.2
-
99
-
-
84890128084
-
Quantification of thiols and disulfides
-
Winther J.R., Thorpe C. Quantification of thiols and disulfides. Biochim. Biophys. Acta 2014, 1840:838-846.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, pp. 838-846
-
-
Winther, J.R.1
Thorpe, C.2
-
100
-
-
8344281472
-
Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor
-
Copley S.D., et al. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 2004, 43:13981-13995.
-
(2004)
Biochemistry
, vol.43
, pp. 13981-13995
-
-
Copley, S.D.1
-
101
-
-
0242579195
-
Structure-based active site profiles for genome analysis and functional family subclassification
-
Cammer S.A., et al. Structure-based active site profiles for genome analysis and functional family subclassification. J. Mol. Biol. 2003, 334:387-401.
-
(2003)
J. Mol. Biol.
, vol.334
, pp. 387-401
-
-
Cammer, S.A.1
-
102
-
-
78651278810
-
PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family
-
Soito L., et al. PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 2011, 39:D332-D337.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. D332-D337
-
-
Soito, L.1
-
103
-
-
84863230834
-
Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin
-
Saccoccia F., et al. Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure 2012, 20:429-439.
-
(2012)
Structure
, vol.20
, pp. 429-439
-
-
Saccoccia, F.1
-
104
-
-
0037197672
-
Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins
-
Wood Z.A., et al. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 2002, 41:5493-5504.
-
(2002)
Biochemistry
, vol.41
, pp. 5493-5504
-
-
Wood, Z.A.1
-
105
-
-
78349305451
-
Evolutionary origin of a secondary structure: pi-helices as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality
-
Cooley R.B., et al. Evolutionary origin of a secondary structure: pi-helices as cryptic but widespread insertional variations of alpha-helices that enhance protein functionality. J. Mol. Biol. 2010, 404:232-246.
-
(2010)
J. Mol. Biol.
, vol.404
, pp. 232-246
-
-
Cooley, R.B.1
|