메뉴 건너뛰기




Volumn 39, Issue 8, 2014, Pages 347-354

The pentose phosphate pathway and cancer

Author keywords

[No Author keywords available]

Indexed keywords

6 AMINONICOTINAMIDE; 6 PHOSPHOGLUCONOLACTONASE; ANTHRACYCLINE DERIVATIVE; ANTINEOPLASTIC AGENT; DOXORUBICIN; ESTERASE; FLUOROURACIL; GLUCOSE 6 PHOSPHATE DEHYDROGENASE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; PRASTERONE; PROTEIN P53; RAS PROTEIN; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; RIBULOSE PHOSPHATE EPIMERASE; RIBULOSE PHOSPHATE ISOMERASE; TRANSALDOLASE; TRANSCRIPTION FACTOR NRF2; TRANSKETOLASE; UNCLASSIFIED DRUG;

EID: 84904969433     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2014.06.005     Document Type: Review
Times cited : (1028)

References (76)
  • 1
    • 0039970620 scopus 로고
    • Experiences with plasmochin in malaria
    • Cordes W. Experiences with plasmochin in malaria. 15th Annual Report 1926, 66-71.
    • (1926) 15th Annual Report , pp. 66-71
    • Cordes, W.1
  • 2
    • 0000616920 scopus 로고
    • Enzymatic deficiency in primaquine-sensitive erythrocytes
    • Alving A.S., et al. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 1956, 124:484-485.
    • (1956) Science , vol.124 , pp. 484-485
    • Alving, A.S.1
  • 3
    • 0037073492 scopus 로고    scopus 로고
    • The pentose phosphate pathway
    • Horecker B.L. The pentose phosphate pathway. J. Biol. Chem. 2002, 277:47965-47971.
    • (2002) J. Biol. Chem. , vol.277 , pp. 47965-47971
    • Horecker, B.L.1
  • 4
    • 0037795745 scopus 로고    scopus 로고
    • The oxidative pentose phosphate pathway: structure and organisation
    • Kruger N.J., von Schaewen A. The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol. 2003, 6:236-246.
    • (2003) Curr. Opin. Plant Biol. , vol.6 , pp. 236-246
    • Kruger, N.J.1    von Schaewen, A.2
  • 5
    • 84863486244 scopus 로고    scopus 로고
    • The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate
    • Riganti C., et al. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 2012, 53:421-436.
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 421-436
    • Riganti, C.1
  • 6
    • 0016043671 scopus 로고
    • Regulation of the pentose phosphate cycle
    • Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle. Biochem. J. 1974, 138:425-435.
    • (1974) Biochem. J. , vol.138 , pp. 425-435
    • Eggleston, L.V.1    Krebs, H.A.2
  • 7
    • 0344223439 scopus 로고    scopus 로고
    • Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle
    • Rais B., et al. Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle. FEBS Lett. 1999, 456:113-118.
    • (1999) FEBS Lett. , vol.456 , pp. 113-118
    • Rais, B.1
  • 8
    • 0031750794 scopus 로고    scopus 로고
    • Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action
    • Boros L.G., et al. Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action. Med. Hypotheses 1998, 50:501-506.
    • (1998) Med. Hypotheses , vol.50 , pp. 501-506
    • Boros, L.G.1
  • 9
    • 0031974007 scopus 로고    scopus 로고
    • Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?
    • Boros L.G., et al. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?. Med. Hypotheses 1998, 50:55-59.
    • (1998) Med. Hypotheses , vol.50 , pp. 55-59
    • Boros, L.G.1
  • 10
    • 0014487357 scopus 로고
    • Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes
    • Cohen P., Rosemeyer M.A. Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes. Eur. J. Biochem. 1969, 8:8-15.
    • (1969) Eur. J. Biochem. , vol.8 , pp. 8-15
    • Cohen, P.1    Rosemeyer, M.A.2
  • 11
    • 0016787692 scopus 로고
    • Multiple molecular forms of glucose-6-phosphate dehydrogenase in normal, preneoplastic, and neoplastic mammary tissues of mice
    • Hilf R., et al. Multiple molecular forms of glucose-6-phosphate dehydrogenase in normal, preneoplastic, and neoplastic mammary tissues of mice. Cancer Res. 1975, 35:2109-2116.
    • (1975) Cancer Res. , vol.35 , pp. 2109-2116
    • Hilf, R.1
  • 12
    • 0013843012 scopus 로고
    • Histochemical comparison of oxidative enzymes in adrenal glands of mammals
    • Okano K., et al. Histochemical comparison of oxidative enzymes in adrenal glands of mammals. Histochemie 1965, 4:494-501.
    • (1965) Histochemie , vol.4 , pp. 494-501
    • Okano, K.1
  • 13
    • 20344373410 scopus 로고    scopus 로고
    • Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity
    • Park J., et al. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol. 2005, 25:5146-5157.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 5146-5157
    • Park, J.1
  • 14
    • 0015217256 scopus 로고
    • Rat liver glucose 6-phosphate dehydrogenase. Regulation by carbohydrate diet and insulin
    • Rudack D., et al. Rat liver glucose 6-phosphate dehydrogenase. Regulation by carbohydrate diet and insulin. J. Biol. Chem. 1971, 246:1249-1254.
    • (1971) J. Biol. Chem. , vol.246 , pp. 1249-1254
    • Rudack, D.1
  • 15
    • 0026780928 scopus 로고
    • Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia
    • Jonas S.K., et al. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia. Br. J. Cancer 1992, 66:185-191.
    • (1992) Br. J. Cancer , vol.66 , pp. 185-191
    • Jonas, S.K.1
  • 16
    • 0034654509 scopus 로고    scopus 로고
    • + molecule and provides insights into enzyme deficiency
    • + molecule and provides insights into enzyme deficiency. Structure 2000, 8:293-303.
    • (2000) Structure , vol.8 , pp. 293-303
    • Au, S.W.1
  • 17
    • 0025732028 scopus 로고
    • The role of NADPH in the regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in rat adipose tissue
    • Ayala A., et al. The role of NADPH in the regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in rat adipose tissue. Mol. Cell. Biochem. 1991, 105:1-5.
    • (1991) Mol. Cell. Biochem. , vol.105 , pp. 1-5
    • Ayala, A.1
  • 18
    • 0025851376 scopus 로고
    • Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity
    • Stanton R.C., et al. Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J. Biol. Chem. 1991, 266:12442-12448.
    • (1991) J. Biol. Chem. , vol.266 , pp. 12442-12448
    • Stanton, R.C.1
  • 19
    • 0028229095 scopus 로고
    • Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells
    • Tian W.N., et al. Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J. Biol. Chem. 1994, 269:14798-14805.
    • (1994) J. Biol. Chem. , vol.269 , pp. 14798-14805
    • Tian, W.N.1
  • 20
    • 66349107721 scopus 로고    scopus 로고
    • Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells
    • Pan S., et al. Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2009, 29:895-901.
    • (2009) Arterioscler. Thromb. Vasc. Biol. , vol.29 , pp. 895-901
    • Pan, S.1
  • 21
    • 0023955912 scopus 로고
    • Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100kb of DNA
    • Toniolo D., et al. Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100kb of DNA. EMBO J. 1988, 7:401-406.
    • (1988) EMBO J. , vol.7 , pp. 401-406
    • Toniolo, D.1
  • 22
    • 0034704167 scopus 로고    scopus 로고
    • High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells
    • Zhang Z., et al. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 2000, 275:40042-40047.
    • (2000) J. Biol. Chem. , vol.275 , pp. 40042-40047
    • Zhang, Z.1
  • 23
    • 26844519964 scopus 로고    scopus 로고
    • Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex
    • Xu Y., et al. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am. J. Physiol. Renal Physiol. 2005, 289:F1040-F1047.
    • (2005) Am. J. Physiol. Renal Physiol. , vol.289
    • Xu, Y.1
  • 24
    • 33846963787 scopus 로고    scopus 로고
    • Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity
    • Leopold J.A., et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 2007, 13:189-197.
    • (2007) Nat. Med. , vol.13 , pp. 189-197
    • Leopold, J.A.1
  • 25
    • 0000923421 scopus 로고
    • Identification of a gluconolactonase
    • Brodie A.F., Lipmann F. Identification of a gluconolactonase. J. Biol. Chem. 1955, 212:677-685.
    • (1955) J. Biol. Chem. , vol.212 , pp. 677-685
    • Brodie, A.F.1    Lipmann, F.2
  • 26
    • 0022363712 scopus 로고
    • 6-Phosphogluconolactonase deficiency, a hereditary erythrocyte enzyme deficiency: possible interaction with glucose-6-phosphate dehydrogenase deficiency
    • Beutler E., et al. 6-Phosphogluconolactonase deficiency, a hereditary erythrocyte enzyme deficiency: possible interaction with glucose-6-phosphate dehydrogenase deficiency. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:3876-3878.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 3876-3878
    • Beutler, E.1
  • 27
    • 84864284168 scopus 로고    scopus 로고
    • Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence
    • Sukhatme V.P., Chan B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett. 2012, 586:2389-2395.
    • (2012) FEBS Lett. , vol.586 , pp. 2389-2395
    • Sukhatme, V.P.1    Chan, B.2
  • 28
    • 0028786549 scopus 로고
    • Purification and characterization of a novel xylulose-5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase
    • Nishimura M., Uyeda K. Purification and characterization of a novel xylulose-5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase. J. Biol. Chem. 1995, 270:26341-26346.
    • (1995) J. Biol. Chem. , vol.270 , pp. 26341-26346
    • Nishimura, M.1    Uyeda, K.2
  • 29
    • 84860321700 scopus 로고    scopus 로고
    • Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying H., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149:656-670.
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1
  • 30
    • 0026762799 scopus 로고
    • Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5Å resolution
    • Lindqvist Y., et al. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5Å resolution. EMBO J. 1992, 11:2373-2379.
    • (1992) EMBO J. , vol.11 , pp. 2373-2379
    • Lindqvist, Y.1
  • 31
    • 0030758923 scopus 로고    scopus 로고
    • Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation
    • Boros L.G., et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997, 57:4242-4248.
    • (1997) Cancer Res. , vol.57 , pp. 4242-4248
    • Boros, L.G.1
  • 32
    • 77955408416 scopus 로고    scopus 로고
    • Fructose induces transketolase flux to promote pancreatic cancer growth
    • Liu H., et al. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010, 70:6368-6376.
    • (2010) Cancer Res. , vol.70 , pp. 6368-6376
    • Liu, H.1
  • 33
    • 21244460340 scopus 로고    scopus 로고
    • Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer
    • Coy J.F., et al. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin. Lab. 2005, 51:257-273.
    • (2005) Clin. Lab. , vol.51 , pp. 257-273
    • Coy, J.F.1
  • 34
    • 33344456073 scopus 로고    scopus 로고
    • Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted
    • Langbein S., et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br. J. Cancer 2006, 94:578-585.
    • (2006) Br. J. Cancer , vol.94 , pp. 578-585
    • Langbein, S.1
  • 35
    • 84872246572 scopus 로고    scopus 로고
    • Is transketolase-like protein, TKTL1, transketolase?
    • Meshalkina L.E., et al. Is transketolase-like protein, TKTL1, transketolase?. Biochim. Biophys. Acta 2013, 1832:387-390.
    • (2013) Biochim. Biophys. Acta , vol.1832 , pp. 387-390
    • Meshalkina, L.E.1
  • 36
    • 0017159041 scopus 로고
    • Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1). Activities in normal, neoplastic, differentiating, and regenerating liver
    • Heinrich P.C., et al. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1). Activities in normal, neoplastic, differentiating, and regenerating liver. Cancer Res. 1976, 36:3189-3197.
    • (1976) Cancer Res. , vol.36 , pp. 3189-3197
    • Heinrich, P.C.1
  • 37
    • 67651007563 scopus 로고    scopus 로고
    • Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine
    • Hanczko R., et al. Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine. J. Clin. Invest. 2009, 119:1546-1557.
    • (2009) J. Clin. Invest. , vol.119 , pp. 1546-1557
    • Hanczko, R.1
  • 38
    • 1942506067 scopus 로고    scopus 로고
    • The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
    • Schwartzenberg-Bar-Yoseph F., et al. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004, 64:2627-2633.
    • (2004) Cancer Res. , vol.64 , pp. 2627-2633
    • Schwartzenberg-Bar-Yoseph, F.1
  • 39
    • 84869077946 scopus 로고    scopus 로고
    • Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth
    • Hitosugi T., et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 2012, 22:585-600.
    • (2012) Cancer Cell , vol.22 , pp. 585-600
    • Hitosugi, T.1
  • 40
    • 11244347171 scopus 로고    scopus 로고
    • Glycolytic enzymes can modulate cellular life span
    • Kondoh H., et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65:177-185.
    • (2005) Cancer Res. , vol.65 , pp. 177-185
    • Kondoh, H.1
  • 41
    • 33745918951 scopus 로고    scopus 로고
    • TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    • Bensaad K., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126:107-120.
    • (2006) Cell , vol.126 , pp. 107-120
    • Bensaad, K.1
  • 42
    • 84870918602 scopus 로고    scopus 로고
    • Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death
    • Cheung E.C., et al. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:20491-20496.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 20491-20496
    • Cheung, E.C.1
  • 43
    • 78649973189 scopus 로고    scopus 로고
    • The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
    • Lowman X.H., et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 2010, 40:823-833.
    • (2010) Mol. Cell , vol.40 , pp. 823-833
    • Lowman, X.H.1
  • 44
    • 79551580561 scopus 로고    scopus 로고
    • ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
    • Cosentino C., et al. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 2011, 30:546-555.
    • (2011) EMBO J. , vol.30 , pp. 546-555
    • Cosentino, C.1
  • 45
    • 79952280229 scopus 로고    scopus 로고
    • P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
    • Jiang P., et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13:310-316.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 310-316
    • Jiang, P.1
  • 46
    • 84881453767 scopus 로고    scopus 로고
    • TAp73 enhances the pentose phosphate pathway and supports cell proliferation
    • Du W., et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 2013, 15:991-1000.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 991-1000
    • Du, W.1
  • 47
    • 84881557242 scopus 로고    scopus 로고
    • Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
    • Patra K.C., et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013, 24:213-228.
    • (2013) Cancer Cell , vol.24 , pp. 213-228
    • Patra, K.C.1
  • 48
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 49
    • 84867057027 scopus 로고    scopus 로고
    • Distinct mTORC1 pathways for transcription and cleavage of SREBP-1c
    • Quinn W.J., Birnbaum M.J. Distinct mTORC1 pathways for transcription and cleavage of SREBP-1c. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15974-15975.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15974-15975
    • Quinn, W.J.1    Birnbaum, M.J.2
  • 50
    • 78751703950 scopus 로고    scopus 로고
    • Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
    • Taguchi K., et al. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011, 16:123-140.
    • (2011) Genes Cells , vol.16 , pp. 123-140
    • Taguchi, K.1
  • 51
    • 84863764614 scopus 로고    scopus 로고
    • Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
    • Mitsuishi Y., et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012, 22:66-79.
    • (2012) Cancer Cell , vol.22 , pp. 66-79
    • Mitsuishi, Y.1
  • 52
    • 79960060305 scopus 로고    scopus 로고
    • Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
    • DeNicola G.M., et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475:106-109.
    • (2011) Nature , vol.475 , pp. 106-109
    • DeNicola, G.M.1
  • 53
    • 84878681301 scopus 로고    scopus 로고
    • The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism
    • Mitsuishi Y., et al. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front. Oncol. 2012, 2:200.
    • (2012) Front. Oncol. , vol.2 , pp. 200
    • Mitsuishi, Y.1
  • 54
    • 84885944468 scopus 로고    scopus 로고
    • The emerging role of the Nrf2-Keap1 signaling pathway in cancer
    • Jaramillo M.C., Zhang D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013, 27:2179-2191.
    • (2013) Genes Dev. , vol.27 , pp. 2179-2191
    • Jaramillo, M.C.1    Zhang, D.D.2
  • 55
    • 79952377052 scopus 로고    scopus 로고
    • Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome
    • Muscarella L.A., et al. Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 2011, 6:317-325.
    • (2011) Epigenetics , vol.6 , pp. 317-325
    • Muscarella, L.A.1
  • 56
    • 79958702879 scopus 로고    scopus 로고
    • Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer
    • Muscarella L.A., et al. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics 2011, 6:710-719.
    • (2011) Epigenetics , vol.6 , pp. 710-719
    • Muscarella, L.A.1
  • 57
    • 84882973107 scopus 로고    scopus 로고
    • Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy
    • Nogueira V., Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013, 19:4309-4314.
    • (2013) Clin. Cancer Res. , vol.19 , pp. 4309-4314
    • Nogueira, V.1    Hay, N.2
  • 58
    • 69949101473 scopus 로고    scopus 로고
    • Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
    • Schafer Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461:109-113.
    • (2009) Nature , vol.461 , pp. 109-113
    • Schafer, Z.T.1
  • 59
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon S.M., et al. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485:661-665.
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.M.1
  • 60
    • 84893455835 scopus 로고    scopus 로고
    • The dark face of AMPK as an essential tumor promoter
    • Jeon S.M., Hay N. The dark face of AMPK as an essential tumor promoter. Cell. Logist. 2012, 2:197-202.
    • (2012) Cell. Logist. , vol.2 , pp. 197-202
    • Jeon, S.M.1    Hay, N.2
  • 61
    • 42549156713 scopus 로고    scopus 로고
    • Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer
    • Langbein S., et al. Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int. J. Cancer 2008, 122:2422-2428.
    • (2008) Int. J. Cancer , vol.122 , pp. 2422-2428
    • Langbein, S.1
  • 62
    • 77951242628 scopus 로고    scopus 로고
    • Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model
    • Lu X., et al. Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. J. Biol. Chem. 2010, 285:9317-9321.
    • (2010) J. Biol. Chem. , vol.285 , pp. 9317-9321
    • Lu, X.1
  • 63
    • 33847755430 scopus 로고    scopus 로고
    • Adaptation of energy metabolism in breast cancer brain metastases
    • Chen E.I., et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 2007, 67:1472-1486.
    • (2007) Cancer Res. , vol.67 , pp. 1472-1486
    • Chen, E.I.1
  • 64
    • 0030026778 scopus 로고    scopus 로고
    • Correlation between glutathione and stimulation of the pentose phosphate cycle in situ in Chinese hamster ovary cells exposed to hydrogen peroxide
    • Przybytkowski E., Averill-Bates D.A. Correlation between glutathione and stimulation of the pentose phosphate cycle in situ in Chinese hamster ovary cells exposed to hydrogen peroxide. Arch. Biochem. Biophys. 1996, 325:91-98.
    • (1996) Arch. Biochem. Biophys. , vol.325 , pp. 91-98
    • Przybytkowski, E.1    Averill-Bates, D.A.2
  • 65
    • 0034045004 scopus 로고    scopus 로고
    • Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation
    • Tuttle S., et al. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation. Radiat. Res. 2000, 153:781-787.
    • (2000) Radiat. Res. , vol.153 , pp. 781-787
    • Tuttle, S.1
  • 66
    • 0023581728 scopus 로고
    • Adriamycin resistance in human tumor cells associated with marked alteration in the regulation of the hexose monophosphate shunt and its response to oxidant stress
    • Yeh G.C., et al. Adriamycin resistance in human tumor cells associated with marked alteration in the regulation of the hexose monophosphate shunt and its response to oxidant stress. Cancer Res. 1987, 47:5994-5999.
    • (1987) Cancer Res. , vol.47 , pp. 5994-5999
    • Yeh, G.C.1
  • 67
    • 0027239476 scopus 로고
    • 31P NMR and enzymatic studies
    • 31P NMR and enzymatic studies. Anticancer Res. 1993, 13:867-872.
    • (1993) Anticancer Res. , vol.13 , pp. 867-872
    • Ferretti, A.1
  • 68
    • 4344625883 scopus 로고    scopus 로고
    • A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells
    • Friesen C., et al. A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ. 2004, 11(Suppl. 1):S73-S85.
    • (2004) Cell Death Differ. , vol.11 , Issue.SUPPL. 1
    • Friesen, C.1
  • 69
    • 0025289481 scopus 로고
    • Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells
    • Gessner T., et al. Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells. Cancer Res. 1990, 50:3921-3927.
    • (1990) Cancer Res. , vol.50 , pp. 3921-3927
    • Gessner, T.1
  • 70
    • 0026047307 scopus 로고
    • Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines
    • Lai G.M., et al. Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int. J. Cancer 1991, 49:688-695.
    • (1991) Int. J. Cancer , vol.49 , pp. 688-695
    • Lai, G.M.1
  • 71
    • 69449090754 scopus 로고    scopus 로고
    • Upregulation of glycolytic enzymes in proteins secreted from human colon cancer cells with 5-fluorouracil resistance
    • Shin Y.K., et al. Upregulation of glycolytic enzymes in proteins secreted from human colon cancer cells with 5-fluorouracil resistance. Electrophoresis 2009, 30:2182-2192.
    • (2009) Electrophoresis , vol.30 , pp. 2182-2192
    • Shin, Y.K.1
  • 72
    • 0018741206 scopus 로고
    • NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals
    • Bachur N.R., et al. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc. Natl. Acad. Sci. U.S.A. 1979, 76:954-957.
    • (1979) Proc. Natl. Acad. Sci. U.S.A. , vol.76 , pp. 954-957
    • Bachur, N.R.1
  • 73
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • Anastasiou D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334:1278-1283.
    • (2011) Science , vol.334 , pp. 1278-1283
    • Anastasiou, D.1
  • 74
    • 84865300414 scopus 로고    scopus 로고
    • Phosphofructokinase 1 glycosylation regulates cell growth and metabolism
    • Yi W., et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 2012, 337:975-980.
    • (2012) Science , vol.337 , pp. 975-980
    • Yi, W.1
  • 75
    • 84864767268 scopus 로고    scopus 로고
    • Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival
    • Ros S., et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2012, 2:328-343.
    • (2012) Cancer Discov. , vol.2 , pp. 328-343
    • Ros, S.1
  • 76
    • 79958281553 scopus 로고    scopus 로고
    • Riboneogenesis in yeast
    • Clasquin M.F., et al. Riboneogenesis in yeast. Cell 2011, 145:969-980.
    • (2011) Cell , vol.145 , pp. 969-980
    • Clasquin, M.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.