-
1
-
-
0039970620
-
Experiences with plasmochin in malaria
-
Cordes W. Experiences with plasmochin in malaria. 15th Annual Report 1926, 66-71.
-
(1926)
15th Annual Report
, pp. 66-71
-
-
Cordes, W.1
-
2
-
-
0000616920
-
Enzymatic deficiency in primaquine-sensitive erythrocytes
-
Alving A.S., et al. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 1956, 124:484-485.
-
(1956)
Science
, vol.124
, pp. 484-485
-
-
Alving, A.S.1
-
3
-
-
0037073492
-
The pentose phosphate pathway
-
Horecker B.L. The pentose phosphate pathway. J. Biol. Chem. 2002, 277:47965-47971.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 47965-47971
-
-
Horecker, B.L.1
-
4
-
-
0037795745
-
The oxidative pentose phosphate pathway: structure and organisation
-
Kruger N.J., von Schaewen A. The oxidative pentose phosphate pathway: structure and organisation. Curr. Opin. Plant Biol. 2003, 6:236-246.
-
(2003)
Curr. Opin. Plant Biol.
, vol.6
, pp. 236-246
-
-
Kruger, N.J.1
von Schaewen, A.2
-
5
-
-
84863486244
-
The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate
-
Riganti C., et al. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 2012, 53:421-436.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 421-436
-
-
Riganti, C.1
-
6
-
-
0016043671
-
Regulation of the pentose phosphate cycle
-
Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle. Biochem. J. 1974, 138:425-435.
-
(1974)
Biochem. J.
, vol.138
, pp. 425-435
-
-
Eggleston, L.V.1
Krebs, H.A.2
-
7
-
-
0344223439
-
Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle
-
Rais B., et al. Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle. FEBS Lett. 1999, 456:113-118.
-
(1999)
FEBS Lett.
, vol.456
, pp. 113-118
-
-
Rais, B.1
-
8
-
-
0031750794
-
Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action
-
Boros L.G., et al. Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action. Med. Hypotheses 1998, 50:501-506.
-
(1998)
Med. Hypotheses
, vol.50
, pp. 501-506
-
-
Boros, L.G.1
-
9
-
-
0031974007
-
Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?
-
Boros L.G., et al. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?. Med. Hypotheses 1998, 50:55-59.
-
(1998)
Med. Hypotheses
, vol.50
, pp. 55-59
-
-
Boros, L.G.1
-
10
-
-
0014487357
-
Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes
-
Cohen P., Rosemeyer M.A. Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes. Eur. J. Biochem. 1969, 8:8-15.
-
(1969)
Eur. J. Biochem.
, vol.8
, pp. 8-15
-
-
Cohen, P.1
Rosemeyer, M.A.2
-
11
-
-
0016787692
-
Multiple molecular forms of glucose-6-phosphate dehydrogenase in normal, preneoplastic, and neoplastic mammary tissues of mice
-
Hilf R., et al. Multiple molecular forms of glucose-6-phosphate dehydrogenase in normal, preneoplastic, and neoplastic mammary tissues of mice. Cancer Res. 1975, 35:2109-2116.
-
(1975)
Cancer Res.
, vol.35
, pp. 2109-2116
-
-
Hilf, R.1
-
12
-
-
0013843012
-
Histochemical comparison of oxidative enzymes in adrenal glands of mammals
-
Okano K., et al. Histochemical comparison of oxidative enzymes in adrenal glands of mammals. Histochemie 1965, 4:494-501.
-
(1965)
Histochemie
, vol.4
, pp. 494-501
-
-
Okano, K.1
-
13
-
-
20344373410
-
Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity
-
Park J., et al. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol. 2005, 25:5146-5157.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 5146-5157
-
-
Park, J.1
-
14
-
-
0015217256
-
Rat liver glucose 6-phosphate dehydrogenase. Regulation by carbohydrate diet and insulin
-
Rudack D., et al. Rat liver glucose 6-phosphate dehydrogenase. Regulation by carbohydrate diet and insulin. J. Biol. Chem. 1971, 246:1249-1254.
-
(1971)
J. Biol. Chem.
, vol.246
, pp. 1249-1254
-
-
Rudack, D.1
-
15
-
-
0026780928
-
Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia
-
Jonas S.K., et al. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia. Br. J. Cancer 1992, 66:185-191.
-
(1992)
Br. J. Cancer
, vol.66
, pp. 185-191
-
-
Jonas, S.K.1
-
16
-
-
0034654509
-
+ molecule and provides insights into enzyme deficiency
-
+ molecule and provides insights into enzyme deficiency. Structure 2000, 8:293-303.
-
(2000)
Structure
, vol.8
, pp. 293-303
-
-
Au, S.W.1
-
17
-
-
0025732028
-
The role of NADPH in the regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in rat adipose tissue
-
Ayala A., et al. The role of NADPH in the regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in rat adipose tissue. Mol. Cell. Biochem. 1991, 105:1-5.
-
(1991)
Mol. Cell. Biochem.
, vol.105
, pp. 1-5
-
-
Ayala, A.1
-
18
-
-
0025851376
-
Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity
-
Stanton R.C., et al. Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J. Biol. Chem. 1991, 266:12442-12448.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 12442-12448
-
-
Stanton, R.C.1
-
19
-
-
0028229095
-
Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells
-
Tian W.N., et al. Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J. Biol. Chem. 1994, 269:14798-14805.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 14798-14805
-
-
Tian, W.N.1
-
20
-
-
66349107721
-
Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells
-
Pan S., et al. Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2009, 29:895-901.
-
(2009)
Arterioscler. Thromb. Vasc. Biol.
, vol.29
, pp. 895-901
-
-
Pan, S.1
-
21
-
-
0023955912
-
Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100kb of DNA
-
Toniolo D., et al. Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100kb of DNA. EMBO J. 1988, 7:401-406.
-
(1988)
EMBO J.
, vol.7
, pp. 401-406
-
-
Toniolo, D.1
-
22
-
-
0034704167
-
High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells
-
Zhang Z., et al. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 2000, 275:40042-40047.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 40042-40047
-
-
Zhang, Z.1
-
23
-
-
26844519964
-
Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex
-
Xu Y., et al. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am. J. Physiol. Renal Physiol. 2005, 289:F1040-F1047.
-
(2005)
Am. J. Physiol. Renal Physiol.
, vol.289
-
-
Xu, Y.1
-
24
-
-
33846963787
-
Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity
-
Leopold J.A., et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 2007, 13:189-197.
-
(2007)
Nat. Med.
, vol.13
, pp. 189-197
-
-
Leopold, J.A.1
-
25
-
-
0000923421
-
Identification of a gluconolactonase
-
Brodie A.F., Lipmann F. Identification of a gluconolactonase. J. Biol. Chem. 1955, 212:677-685.
-
(1955)
J. Biol. Chem.
, vol.212
, pp. 677-685
-
-
Brodie, A.F.1
Lipmann, F.2
-
26
-
-
0022363712
-
6-Phosphogluconolactonase deficiency, a hereditary erythrocyte enzyme deficiency: possible interaction with glucose-6-phosphate dehydrogenase deficiency
-
Beutler E., et al. 6-Phosphogluconolactonase deficiency, a hereditary erythrocyte enzyme deficiency: possible interaction with glucose-6-phosphate dehydrogenase deficiency. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:3876-3878.
-
(1985)
Proc. Natl. Acad. Sci. U.S.A.
, vol.82
, pp. 3876-3878
-
-
Beutler, E.1
-
27
-
-
84864284168
-
Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence
-
Sukhatme V.P., Chan B. Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence. FEBS Lett. 2012, 586:2389-2395.
-
(2012)
FEBS Lett.
, vol.586
, pp. 2389-2395
-
-
Sukhatme, V.P.1
Chan, B.2
-
28
-
-
0028786549
-
Purification and characterization of a novel xylulose-5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase
-
Nishimura M., Uyeda K. Purification and characterization of a novel xylulose-5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate, 2-kinase:fructose-2,6-bisphosphatase. J. Biol. Chem. 1995, 270:26341-26346.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 26341-26346
-
-
Nishimura, M.1
Uyeda, K.2
-
29
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149:656-670.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
-
30
-
-
0026762799
-
Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5Å resolution
-
Lindqvist Y., et al. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5Å resolution. EMBO J. 1992, 11:2373-2379.
-
(1992)
EMBO J.
, vol.11
, pp. 2373-2379
-
-
Lindqvist, Y.1
-
31
-
-
0030758923
-
Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation
-
Boros L.G., et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997, 57:4242-4248.
-
(1997)
Cancer Res.
, vol.57
, pp. 4242-4248
-
-
Boros, L.G.1
-
32
-
-
77955408416
-
Fructose induces transketolase flux to promote pancreatic cancer growth
-
Liu H., et al. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010, 70:6368-6376.
-
(2010)
Cancer Res.
, vol.70
, pp. 6368-6376
-
-
Liu, H.1
-
33
-
-
21244460340
-
Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer
-
Coy J.F., et al. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin. Lab. 2005, 51:257-273.
-
(2005)
Clin. Lab.
, vol.51
, pp. 257-273
-
-
Coy, J.F.1
-
34
-
-
33344456073
-
Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted
-
Langbein S., et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br. J. Cancer 2006, 94:578-585.
-
(2006)
Br. J. Cancer
, vol.94
, pp. 578-585
-
-
Langbein, S.1
-
35
-
-
84872246572
-
Is transketolase-like protein, TKTL1, transketolase?
-
Meshalkina L.E., et al. Is transketolase-like protein, TKTL1, transketolase?. Biochim. Biophys. Acta 2013, 1832:387-390.
-
(2013)
Biochim. Biophys. Acta
, vol.1832
, pp. 387-390
-
-
Meshalkina, L.E.1
-
36
-
-
0017159041
-
Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1). Activities in normal, neoplastic, differentiating, and regenerating liver
-
Heinrich P.C., et al. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1). Activities in normal, neoplastic, differentiating, and regenerating liver. Cancer Res. 1976, 36:3189-3197.
-
(1976)
Cancer Res.
, vol.36
, pp. 3189-3197
-
-
Heinrich, P.C.1
-
37
-
-
67651007563
-
Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine
-
Hanczko R., et al. Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine. J. Clin. Invest. 2009, 119:1546-1557.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1546-1557
-
-
Hanczko, R.1
-
38
-
-
1942506067
-
The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
-
Schwartzenberg-Bar-Yoseph F., et al. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004, 64:2627-2633.
-
(2004)
Cancer Res.
, vol.64
, pp. 2627-2633
-
-
Schwartzenberg-Bar-Yoseph, F.1
-
39
-
-
84869077946
-
Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth
-
Hitosugi T., et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 2012, 22:585-600.
-
(2012)
Cancer Cell
, vol.22
, pp. 585-600
-
-
Hitosugi, T.1
-
40
-
-
11244347171
-
Glycolytic enzymes can modulate cellular life span
-
Kondoh H., et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65:177-185.
-
(2005)
Cancer Res.
, vol.65
, pp. 177-185
-
-
Kondoh, H.1
-
41
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126:107-120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
-
42
-
-
84870918602
-
Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death
-
Cheung E.C., et al. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:20491-20496.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 20491-20496
-
-
Cheung, E.C.1
-
43
-
-
78649973189
-
The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
-
Lowman X.H., et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 2010, 40:823-833.
-
(2010)
Mol. Cell
, vol.40
, pp. 823-833
-
-
Lowman, X.H.1
-
44
-
-
79551580561
-
ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
-
Cosentino C., et al. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 2011, 30:546-555.
-
(2011)
EMBO J.
, vol.30
, pp. 546-555
-
-
Cosentino, C.1
-
45
-
-
79952280229
-
P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
-
Jiang P., et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13:310-316.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 310-316
-
-
Jiang, P.1
-
46
-
-
84881453767
-
TAp73 enhances the pentose phosphate pathway and supports cell proliferation
-
Du W., et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 2013, 15:991-1000.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 991-1000
-
-
Du, W.1
-
47
-
-
84881557242
-
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
-
Patra K.C., et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013, 24:213-228.
-
(2013)
Cancer Cell
, vol.24
, pp. 213-228
-
-
Patra, K.C.1
-
48
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
49
-
-
84867057027
-
Distinct mTORC1 pathways for transcription and cleavage of SREBP-1c
-
Quinn W.J., Birnbaum M.J. Distinct mTORC1 pathways for transcription and cleavage of SREBP-1c. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15974-15975.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15974-15975
-
-
Quinn, W.J.1
Birnbaum, M.J.2
-
50
-
-
78751703950
-
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
-
Taguchi K., et al. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011, 16:123-140.
-
(2011)
Genes Cells
, vol.16
, pp. 123-140
-
-
Taguchi, K.1
-
51
-
-
84863764614
-
Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
-
Mitsuishi Y., et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012, 22:66-79.
-
(2012)
Cancer Cell
, vol.22
, pp. 66-79
-
-
Mitsuishi, Y.1
-
52
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
DeNicola G.M., et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475:106-109.
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
DeNicola, G.M.1
-
53
-
-
84878681301
-
The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism
-
Mitsuishi Y., et al. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front. Oncol. 2012, 2:200.
-
(2012)
Front. Oncol.
, vol.2
, pp. 200
-
-
Mitsuishi, Y.1
-
54
-
-
84885944468
-
The emerging role of the Nrf2-Keap1 signaling pathway in cancer
-
Jaramillo M.C., Zhang D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013, 27:2179-2191.
-
(2013)
Genes Dev.
, vol.27
, pp. 2179-2191
-
-
Jaramillo, M.C.1
Zhang, D.D.2
-
55
-
-
79952377052
-
Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome
-
Muscarella L.A., et al. Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 2011, 6:317-325.
-
(2011)
Epigenetics
, vol.6
, pp. 317-325
-
-
Muscarella, L.A.1
-
56
-
-
79958702879
-
Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer
-
Muscarella L.A., et al. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics 2011, 6:710-719.
-
(2011)
Epigenetics
, vol.6
, pp. 710-719
-
-
Muscarella, L.A.1
-
57
-
-
84882973107
-
Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy
-
Nogueira V., Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013, 19:4309-4314.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 4309-4314
-
-
Nogueira, V.1
Hay, N.2
-
58
-
-
69949101473
-
Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
-
Schafer Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461:109-113.
-
(2009)
Nature
, vol.461
, pp. 109-113
-
-
Schafer, Z.T.1
-
59
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon S.M., et al. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485:661-665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
-
60
-
-
84893455835
-
The dark face of AMPK as an essential tumor promoter
-
Jeon S.M., Hay N. The dark face of AMPK as an essential tumor promoter. Cell. Logist. 2012, 2:197-202.
-
(2012)
Cell. Logist.
, vol.2
, pp. 197-202
-
-
Jeon, S.M.1
Hay, N.2
-
61
-
-
42549156713
-
Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer
-
Langbein S., et al. Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int. J. Cancer 2008, 122:2422-2428.
-
(2008)
Int. J. Cancer
, vol.122
, pp. 2422-2428
-
-
Langbein, S.1
-
62
-
-
77951242628
-
Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model
-
Lu X., et al. Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. J. Biol. Chem. 2010, 285:9317-9321.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 9317-9321
-
-
Lu, X.1
-
63
-
-
33847755430
-
Adaptation of energy metabolism in breast cancer brain metastases
-
Chen E.I., et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 2007, 67:1472-1486.
-
(2007)
Cancer Res.
, vol.67
, pp. 1472-1486
-
-
Chen, E.I.1
-
64
-
-
0030026778
-
Correlation between glutathione and stimulation of the pentose phosphate cycle in situ in Chinese hamster ovary cells exposed to hydrogen peroxide
-
Przybytkowski E., Averill-Bates D.A. Correlation between glutathione and stimulation of the pentose phosphate cycle in situ in Chinese hamster ovary cells exposed to hydrogen peroxide. Arch. Biochem. Biophys. 1996, 325:91-98.
-
(1996)
Arch. Biochem. Biophys.
, vol.325
, pp. 91-98
-
-
Przybytkowski, E.1
Averill-Bates, D.A.2
-
65
-
-
0034045004
-
Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation
-
Tuttle S., et al. Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation. Radiat. Res. 2000, 153:781-787.
-
(2000)
Radiat. Res.
, vol.153
, pp. 781-787
-
-
Tuttle, S.1
-
66
-
-
0023581728
-
Adriamycin resistance in human tumor cells associated with marked alteration in the regulation of the hexose monophosphate shunt and its response to oxidant stress
-
Yeh G.C., et al. Adriamycin resistance in human tumor cells associated with marked alteration in the regulation of the hexose monophosphate shunt and its response to oxidant stress. Cancer Res. 1987, 47:5994-5999.
-
(1987)
Cancer Res.
, vol.47
, pp. 5994-5999
-
-
Yeh, G.C.1
-
67
-
-
0027239476
-
31P NMR and enzymatic studies
-
31P NMR and enzymatic studies. Anticancer Res. 1993, 13:867-872.
-
(1993)
Anticancer Res.
, vol.13
, pp. 867-872
-
-
Ferretti, A.1
-
68
-
-
4344625883
-
A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells
-
Friesen C., et al. A critical role of glutathione in determining apoptosis sensitivity and resistance in leukemia cells. Cell Death Differ. 2004, 11(Suppl. 1):S73-S85.
-
(2004)
Cell Death Differ.
, vol.11
, Issue.SUPPL. 1
-
-
Friesen, C.1
-
69
-
-
0025289481
-
Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells
-
Gessner T., et al. Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells. Cancer Res. 1990, 50:3921-3927.
-
(1990)
Cancer Res.
, vol.50
, pp. 3921-3927
-
-
Gessner, T.1
-
70
-
-
0026047307
-
Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines
-
Lai G.M., et al. Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int. J. Cancer 1991, 49:688-695.
-
(1991)
Int. J. Cancer
, vol.49
, pp. 688-695
-
-
Lai, G.M.1
-
71
-
-
69449090754
-
Upregulation of glycolytic enzymes in proteins secreted from human colon cancer cells with 5-fluorouracil resistance
-
Shin Y.K., et al. Upregulation of glycolytic enzymes in proteins secreted from human colon cancer cells with 5-fluorouracil resistance. Electrophoresis 2009, 30:2182-2192.
-
(2009)
Electrophoresis
, vol.30
, pp. 2182-2192
-
-
Shin, Y.K.1
-
72
-
-
0018741206
-
NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals
-
Bachur N.R., et al. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proc. Natl. Acad. Sci. U.S.A. 1979, 76:954-957.
-
(1979)
Proc. Natl. Acad. Sci. U.S.A.
, vol.76
, pp. 954-957
-
-
Bachur, N.R.1
-
73
-
-
82755166890
-
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
-
Anastasiou D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334:1278-1283.
-
(2011)
Science
, vol.334
, pp. 1278-1283
-
-
Anastasiou, D.1
-
74
-
-
84865300414
-
Phosphofructokinase 1 glycosylation regulates cell growth and metabolism
-
Yi W., et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 2012, 337:975-980.
-
(2012)
Science
, vol.337
, pp. 975-980
-
-
Yi, W.1
-
75
-
-
84864767268
-
Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival
-
Ros S., et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2012, 2:328-343.
-
(2012)
Cancer Discov.
, vol.2
, pp. 328-343
-
-
Ros, S.1
-
76
-
-
79958281553
-
Riboneogenesis in yeast
-
Clasquin M.F., et al. Riboneogenesis in yeast. Cell 2011, 145:969-980.
-
(2011)
Cell
, vol.145
, pp. 969-980
-
-
Clasquin, M.F.1
|