-
1
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science (New York, NY) 1956; 123: 309-314.
-
(1956)
Science (New York, NY)
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
2
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
3
-
-
84863011452
-
The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
-
Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012; 15: 157-170.
-
(2012)
Cell Metab
, vol.15
, pp. 157-170
-
-
Yuneva, M.O.1
Fan, T.W.2
Allen, T.D.3
Higashi, R.M.4
Ferraris, D.V.5
Tsukamoto, T.6
-
4
-
-
33748120494
-
PET and PET/CT using 18 F-FDG in the diagnosis and management of cancer patients
-
Endo K, Oriuchi N, Higuchi T, Iida Y, Hanaoka H, Miyakubo M et al. PET and PET/CT using 18 F-FDG in the diagnosis and management of cancer patients. Int J Clin Oncol 2006; 11: 286-296.
-
(2006)
Int J Clin Oncol
, vol.11
, pp. 286-296
-
-
Endo, K.1
Oriuchi, N.2
Higuchi, T.3
Iida, Y.4
Hanaoka, H.5
Miyakubo, M.6
-
5
-
-
0037264633
-
Targeting RAS signalling pathways in cancer therapy
-
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev 2003; 3: 11-22.
-
(2003)
Nat Rev
, vol.3
, pp. 11-22
-
-
Downward, J.1
-
6
-
-
84859171807
-
MYC on the path to cancer
-
Dang CV. MYC on the path to cancer. Cell 2012; 149: 22-35.
-
(2012)
Cell
, vol.149
, pp. 22-35
-
-
Dang, C.V.1
-
8
-
-
80051866908
-
Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth
-
Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 2011; 7: 523.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 523
-
-
Gaglio, D.1
Metallo, C.M.2
Gameiro, P.A.3
Hiller, K.4
Danna, L.S.5
Balestrieri, C.6
-
9
-
-
84856595714
-
K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis
-
Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012; 22: 399-412.
-
(2012)
Cell Res
, vol.22
, pp. 399-412
-
-
Hu, Y.1
Lu, W.2
Chen, G.3
Wang, P.4
Chen, Z.5
Zhou, Y.6
-
10
-
-
73249137166
-
Mitochondrial Complex i decrease is responsible for bioenergetic dysfunction in K-ras transformed cells
-
Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G. Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 2010; 1797: 314-323.
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 314-323
-
-
Baracca, A.1
Chiaradonna, F.2
Sgarbi, G.3
Solaini, G.4
Alberghina, L.5
Lenaz, G.6
-
11
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101-105.
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
-
12
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656-670.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
Hua, S.4
Chu, G.C.5
Fletcher-Sananikone, E.6
-
13
-
-
61849162778
-
Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts
-
Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F. Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One 2009; 4: e4715.
-
(2009)
PLoS One
, vol.4
, pp. e4715
-
-
Gaglio, D.1
Soldati, C.2
Vanoni, M.3
Alberghina, L.4
Chiaradonna, F.5
-
14
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762-765.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
15
-
-
84872376676
-
Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells
-
Murphy TA, Dang CV, Young JD. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 2013; 15: 206-217.
-
(2013)
Metab Eng
, vol.15
, pp. 206-217
-
-
Murphy, T.A.1
Dang, C.V.2
Young, J.D.3
-
16
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natil Acad Sci USA 2008; 105: 18782-18787.
-
(2008)
Proc Natil Acad Sci USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
Deberardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
17
-
-
34347402459
-
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
-
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93-105.
-
(2007)
J Cell Biol
, vol.178
, pp. 93-105
-
-
Yuneva, M.1
Zamboni, N.2
Oefner, P.3
Sachidanandam, R.4
Lazebnik, Y.5
-
18
-
-
84880876347
-
Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism
-
Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 2013; 73: 4429-4438.
-
(2013)
Cancer Res
, vol.73
, pp. 4429-4438
-
-
Fendt, S.M.1
Bell, E.L.2
Keibler, M.A.3
Davidson, S.M.4
Wirth, G.J.5
Fiske, B.6
-
19
-
-
76649126249
-
Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
-
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037-2042.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 2037-2042
-
-
Le, A.1
Cooper, C.R.2
Gouw, A.M.3
Dinavahi, R.4
Maitra, A.5
Deck, L.M.6
-
20
-
-
84900296103
-
Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells
-
Xie H, Hanai J, Ren JG, Kats L, Burgess K, Bhargava P et al. Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab 2014; 19: 795-809.
-
(2014)
Cell Metab
, vol.19
, pp. 795-809
-
-
Xie, H.1
Hanai, J.2
Ren, J.G.3
Kats, L.4
Burgess, K.5
Bhargava, P.6
-
21
-
-
84855453655
-
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110-121.
-
(2012)
Cell Metab
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
22
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9: 712.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 712
-
-
Fan, J.1
Kamphorst, J.J.2
Mathew, R.3
Chung, M.K.4
White, E.5
Shlomi, T.6
-
23
-
-
84888798201
-
Tumor glycolysis as a target for cancer therapy: Progress and prospects
-
Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 2013; 12: 152.
-
(2013)
Mol Cancer
, vol.12
, pp. 152
-
-
Ganapathy-Kanniappan, S.1
Geschwind, J.F.2
-
24
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens
-
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev 2011; 10: 671-684.
-
(2011)
Nat Rev
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
25
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678-3684.
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
Deberardinis, R.J.3
-
26
-
-
84877315835
-
A community-driven global reconstruction of human metabolism
-
Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 2013; 31: 419-425.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 419-425
-
-
Thiele, I.1
Swainston, N.2
Fleming, R.M.3
Hoppe, A.4
Sahoo, S.5
Aurich, M.K.6
-
27
-
-
34447521460
-
Human disease classification in the postgenomic era: A complex systems approach to human pathobiology
-
Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 2007; 3: 124.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 124
-
-
Loscalzo, J.1
Kohane, I.2
Barabasi, A.L.3
-
28
-
-
84873459097
-
Understanding metabolic regulation and its influence on cell physiology
-
Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell 2013; 49: 388-398.
-
(2013)
Mol Cell
, vol.49
, pp. 388-398
-
-
Metallo, C.M.1
Vander Heiden, M.G.2
-
29
-
-
84872271709
-
Profiling metabolic networks to study cancer metabolism
-
Hiller K, Metallo CM. Profiling metabolic networks to study cancer metabolism. Curr Opin Biotechnol 2013; 24: 60-68.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 60-68
-
-
Hiller, K.1
Metallo, C.M.2
-
30
-
-
84858414020
-
Cellular metabolism and disease: What do metabolic outliers teach us?
-
DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132-1144.
-
(2012)
Cell
, vol.148
, pp. 1132-1144
-
-
Deberardinis, R.J.1
Thompson, C.B.2
-
32
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV. Links between metabolism and cancer. Genes Dev 2012; 26: 877-890.
-
(2012)
Genes Dev
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
33
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 2009; 324: 1029-1033.
-
(2009)
Science (New York, NY)
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
34
-
-
84887123920
-
Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer
-
Li B, Simon MC. Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 2013; 19: 5835-5841.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 5835-5841
-
-
Li, B.1
Simon, M.C.2
-
35
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010; 107: 7455-7460.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
Zhang, C.2
Wu, R.3
Sun, Y.4
Levine, A.5
Feng, Z.6
-
36
-
-
77952227625
-
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
-
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010; 107: 7461-7466.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7461-7466
-
-
Suzuki, S.1
Tanaka, T.2
Poyurovsky, M.V.3
Nagano, H.4
Mayama, T.5
Ohkubo, S.6
-
37
-
-
84961390534
-
P73 regulates serine biosynthesis in cancer
-
Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P et al. p73 regulates serine biosynthesis in cancer. Oncogene 2013; 33: 5039-5046.
-
(2013)
Oncogene
, vol.33
, pp. 5039-5046
-
-
Amelio, I.1
Markert, E.K.2
Rufini, A.3
Antonov, A.V.4
Sayan, B.S.5
Tucci, P.6
-
38
-
-
84877127022
-
P63 regulates glutaminase 2 expression
-
Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ et al. p63 regulates glutaminase 2 expression. Cell Cycle (Georgetown, Tex) 2013; 12: 1395-1405.
-
(2013)
Cell Cycle (Georgetown, Tex)
, vol.12
, pp. 1395-1405
-
-
Giacobbe, A.1
Bongiorno-Borbone, L.2
Bernassola, F.3
Terrinoni, A.4
Markert, E.K.5
Levine, A.J.6
-
39
-
-
84890403623
-
GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation
-
Velletri T, Romeo F, Tucci P, Peschiaroli A, Annicchiarico-Petruzzelli M, Niklison-Chirou MV et al. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle (Georgetown, Tex) 2013; 12: 3564-3573.
-
(2013)
Cell Cycle (Georgetown, Tex)
, vol.12
, pp. 3564-3573
-
-
Velletri, T.1
Romeo, F.2
Tucci, P.3
Peschiaroli, A.4
Annicchiarico-Petruzzelli, M.5
Niklison-Chirou, M.V.6
-
40
-
-
84857792910
-
Breathless cancer cells get fat on glutamine
-
Anastasiou D, Cantley LC. Breathless cancer cells get fat on glutamine. Cell Res 2012; 22: 443-446.
-
(2012)
Cell Res
, vol.22
, pp. 443-446
-
-
Anastasiou, D.1
Cantley, L.C.2
-
41
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2011; 481: 380-384.
-
(2011)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
42
-
-
84897537717
-
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
-
Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014; 508: 108-112.
-
(2014)
Nature
, vol.508
, pp. 108-112
-
-
Birsoy, K.1
Possemato, R.2
Lorbeer, F.K.3
Bayraktar, E.C.4
Thiru, P.5
Yucel, B.6
-
43
-
-
84894384742
-
Respiratory complex i is essential to induce a Warburg profile in mitochondria-defective tumor cells
-
Calabrese C, Iommarini L, Kurelac I, Calvaruso MA, Capristo M, Lollini PL et al. Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab 2013; 1: 11.
-
(2013)
Cancer Metab
, vol.1
, pp. 11
-
-
Calabrese, C.1
Iommarini, L.2
Kurelac, I.3
Calvaruso, M.A.4
Capristo, M.5
Lollini, P.L.6
-
44
-
-
18544365990
-
Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer
-
Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002; 30: 406-410.
-
(2002)
Nat Genet
, vol.30
, pp. 406-410
-
-
Tomlinson, I.P.1
Alam, N.A.2
Rowan, A.J.3
Barclay, E.4
Jaeger, E.E.5
Kelsell, D.6
-
45
-
-
0034964421
-
Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocy-toma and to familial paraganglioma
-
Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocy-toma and to familial paraganglioma. Am J Hum Genet 2001; 69: 49-54.
-
(2001)
Am J Hum Genet
, vol.69
, pp. 49-54
-
-
Astuti, D.1
Latif, F.2
Dallol, A.3
Dahia, P.L.4
Douglas, F.5
George, E.6
-
46
-
-
84878152241
-
Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor
-
Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3: 648-657.
-
Cancer Discov
, vol.3
, pp. 648-657
-
-
Killian, J.K.1
Kim, S.Y.2
Miettinen, M.3
Smith, C.4
Merino, M.5
Tsokos, M.6
-
47
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2011; 481: 385-388.
-
(2011)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.H.4
Sullivan, L.B.5
Cheng, T.6
-
48
-
-
84902343371
-
Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
-
Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 2014; 7: 1679-1690.
-
(2014)
Cell Rep
, vol.7
, pp. 1679-1690
-
-
Mullen, A.R.1
Hu, Z.2
Shi, X.3
Jiang, L.4
Boroughs, L.K.5
Kovacs, Z.6
-
49
-
-
84860378609
-
Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation
-
Leonardi R, Subramanian C, Jackowski S, Rock CO. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 2012; 287: 14615-14620.
-
(2012)
J Biol Chem
, vol.287
, pp. 14615-14620
-
-
Leonardi, R.1
Subramanian, C.2
Jackowski, S.3
Rock, C.O.4
-
50
-
-
84877109282
-
Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle
-
Gameiro PA, Laviolette LA, Kelleher JK, Iliopoulos O, Stephanopoulos G. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem 2013; 288: 12967-12977.
-
(2013)
J Biol Chem
, vol.288
, pp. 12967-12977
-
-
Gameiro, P.A.1
Laviolette, L.A.2
Kelleher, J.K.3
Iliopoulos, O.4
Stephanopoulos, G.5
-
51
-
-
78149341677
-
Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes
-
Chun SY, Johnson C, Washburn JG, Cruz-Correa MR, Dang DT, Dang LH. Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes. Mol Cancer 2010; 9: 293.
-
(2010)
Mol Cancer
, vol.9
, pp. 293
-
-
Chun, S.Y.1
Johnson, C.2
Washburn, J.G.3
Cruz-Correa, M.R.4
Dang, D.T.5
Dang, L.H.6
-
52
-
-
84856609056
-
K-Ras and mitochondria: Dangerous liaisons
-
Neuzil J, Rohlena J, Dong LF. K-Ras and mitochondria: dangerous liaisons. Cell Res 2011; 22: 285-287.
-
(2011)
Cell Res
, vol.22
, pp. 285-287
-
-
Neuzil, J.1
Rohlena, J.2
Dong, L.F.3
-
53
-
-
77951432631
-
The causes of cancer revisited: 'Mitochondrial malignancy' and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy
-
Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R. The causes of cancer revisited: 'mitochondrial malignancy' and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31:145-170.
-
(2010)
Mol Aspects Med
, vol.31
, pp. 145-170
-
-
Ralph, S.J.1
Rodriguez-Enriquez, S.2
Neuzil, J.3
Saavedra, E.4
Moreno-Sanchez, R.5
-
54
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107: 8788-8793.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
-
55
-
-
84896778081
-
Metabolism addiction in pancreatic cancer
-
Blum R, Kloog Y. Metabolism addiction in pancreatic cancer. Cell Death Dis 2014; 5: e1065.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1065
-
-
Blum, R.1
Kloog, Y.2
-
56
-
-
84864858864
-
ATP-citrate lyase: A key player in cancer metabolism
-
Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 2012; 72: 3709-3714.
-
(2012)
Cancer Res
, vol.72
, pp. 3709-3714
-
-
Zaidi, N.1
Swinnen, J.V.2
Smans, K.3
-
57
-
-
34748912615
-
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
-
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763-777.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 763-777
-
-
Menendez, J.A.1
Lupu, R.2
-
58
-
-
26644441651
-
ATP citrate lyase inhibition can suppress tumor cell growth
-
Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005; 8: 311-321.
-
(2005)
Cancer Cell
, vol.8
, pp. 311-321
-
-
Hatzivassiliou, G.1
Zhao, F.2
Bauer, D.E.3
Andreadis, C.4
Shaw, A.N.5
Dhanak, D.6
-
60
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510: 298-302.
-
(2014)
Nature
, vol.510
, pp. 298-302
-
-
Fan, J.1
Ye, J.2
Kamphorst, J.J.3
Shlomi, T.4
Thompson, C.B.5
Rabinowitz, J.D.6
-
61
-
-
80053922625
-
Metabolic flux and the regulation of mammalian cell growth
-
Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab 2011; 14: 443-451.
-
(2011)
Cell Metab
, vol.14
, pp. 443-451
-
-
Locasale, J.W.1
Cantley, L.C.2
-
62
-
-
80052258995
-
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
-
Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43: 869-874.
-
(2011)
Nat Genet
, vol.43
, pp. 869-874
-
-
Locasale, J.W.1
Grassian, A.R.2
Melman, T.3
Lyssiotis, C.A.4
Mattaini, K.R.5
Bass, A.J.6
-
63
-
-
80051923932
-
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
-
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346-350.
-
(2011)
Nature
, vol.476
, pp. 346-350
-
-
Possemato, R.1
Marks, K.M.2
Shaul, Y.D.3
Pacold, M.E.4
Kim, D.5
Birsoy, K.6
-
64
-
-
84897392385
-
Serine and glycine metabolism in cancer
-
Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and glycine metabolism in cancer. Trends Biochem Sci 2014; 39:191-198.
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 191-198
-
-
Amelio, I.1
Cutruzzola, F.2
Antonov, A.3
Agostini, M.4
Melino, G.5
-
65
-
-
84904504373
-
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells
-
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell2014; 55: 253-263.
-
(2014)
Mol Cell
, vol.55
, pp. 253-263
-
-
Lewis, C.A.1
Parker, S.J.2
Fiske, B.P.3
McCloskey, D.4
Gui, D.Y.5
Green, C.R.6
-
66
-
-
33845727585
-
Silico experimentation with a model of hepatic mitochondrial folate metabolism
-
Nijhout HF, Reed MC, Lam SL, Shane B, Gregory 3rd JF, Ulrich CM. In silico experimentation with a model of hepatic mitochondrial folate metabolism. Theor Biol Med Model 2006; 3: 40.
-
(2006)
Theor Biol Med Model
, vol.3
, pp. 40
-
-
Nijhout, H.F.1
Reed, M.C.2
Lam, S.L.3
Shane, B.4
Gregory, J.F.5
Ulrich, C.M.6
-
67
-
-
84915746768
-
Serine catabolism regulates mitochondrial redox control during hypoxia
-
e-pub ahead of print 3 September 2014;
-
Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 2014; e-pub ahead of print 3 September 2014; doi:10.1158/2159-8290.CD-14-0250.
-
(2014)
Cancer Discov
-
-
Ye, J.1
Fan, J.2
Venneti, S.3
Wan, Y.W.4
Pawel, B.R.5
Zhang, J.6
-
68
-
-
84904969433
-
The pentose phosphate pathway and cancer
-
Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci 2014; 39: 347-354.
-
(2014)
Trends Biochem Sci
, vol.39
, pp. 347-354
-
-
Patra, K.C.1
Hay, N.2
-
69
-
-
79951472959
-
Proteome half-life dynamics in living human cells
-
Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T et al. Proteome half-life dynamics in living human cells. Science (New York, NY) 2011; 331: 764-768.
-
(2011)
Science (New York, NY)
, vol.331
, pp. 764-768
-
-
Eden, E.1
Geva-Zatorsky, N.2
Issaeva, I.3
Cohen, A.4
Dekel, E.5
Danon, T.6
-
70
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 2013; 17: 491-506.
-
(2013)
Cell Metab
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
71
-
-
4944242891
-
Polyamines and cancer: Old molecules, new understanding
-
Gerner EW, Meyskens Jr FL. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 2004; 4: 781-792.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 781-792
-
-
Gerner, E.W.1
Meyskens, Jr.F.L.2
-
73
-
-
84863090408
-
Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells
-
Bowlby SC, Thomas MJ, D'Agostino Jr RB, Kridel SJ. Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells. PLoS One 2012; 7: e40195.
-
(2012)
PLoS One
, vol.7
, pp. e40195
-
-
Bowlby, S.C.1
Thomas, M.J.2
D'Agostino, Jr.R.B.3
Kridel, S.J.4
-
74
-
-
62649156291
-
Nampt: Linking NAD biology, metabolism and cancer
-
Garten A, Petzold S, Korner A, Imai S, Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab 2009; 20:130-138.
-
(2009)
Trends Endocrinol Metab
, vol.20
, pp. 130-138
-
-
Garten, A.1
Petzold, S.2
Korner, A.3
Imai, S.4
Kiess, W.5
-
75
-
-
84888262057
-
Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens
-
Matheny CJ, Wei MC, Bassik MC, Donnelly AJ, Kampmann M, Iwasaki M et al. Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens. Chem Biol2013; 20:1352-1363.
-
(2013)
Chem Biol
, vol.20
, pp. 1352-1363
-
-
Matheny, C.J.1
Wei, M.C.2
Bassik, M.C.3
Donnelly, A.J.4
Kampmann, M.5
Iwasaki, M.6
-
76
-
-
84892175612
-
Targeting of NAD metabolism in pancreatic cancer cells: Potential novel therapy for pancreatic tumors
-
Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT et al. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 2013; 20:120-130.
-
(2013)
Clin Cancer Res
, vol.20
, pp. 120-130
-
-
Chini, C.C.1
Guerrico, A.M.2
Nin, V.3
Camacho-Pereira, J.4
Escande, C.5
Barbosa, M.T.6
-
77
-
-
84873291018
-
Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: Metabolic basis and potential clinical implications
-
Tan B, Young DA, Lu ZH, Wang T, Meier TI, Shepard RL et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J Biol Chem 2013; 288: 3500-3511.
-
(2013)
J Biol Chem
, vol.288
, pp. 3500-3511
-
-
Tan, B.1
Young, D.A.2
Lu, Z.H.3
Wang, T.4
Meier, T.I.5
Shepard, R.L.6
-
78
-
-
0842333189
-
Antiangiogenic potency of FK866/K22.175 a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma
-
Drevs J, Loser R, Rattel B, Esser N. Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res 2003; 23: 4853-4858.
-
(2003)
Anticancer Res
, vol.23
, pp. 4853-4858
-
-
Drevs, J.1
Loser, R.2
Rattel, B.3
Esser, N.4
-
79
-
-
84874635096
-
Mitochondrial complex i activity and NAD+/NADH balance regulate breast cancer progression
-
Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 2013; 123:1068-1081.
-
(2013)
J Clin Invest
, vol.123
, pp. 1068-1081
-
-
Santidrian, A.F.1
Matsuno-Yagi, A.2
Ritland, M.3
Seo, B.B.4
Leboeuf, S.E.5
Gay, L.J.6
-
80
-
-
79957549799
-
Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation
-
Nikiforov A, Dolle C, Niere M, Ziegler M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem 2011; 286: 21767-21778.
-
(2011)
J Biol Chem
, vol.286
, pp. 21767-21778
-
-
Nikiforov, A.1
Dolle, C.2
Niere, M.3
Ziegler, M.4
-
81
-
-
0242526050
-
FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis
-
Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 2003; 63: 7436-7442.
-
(2003)
Cancer Res
, vol.63
, pp. 7436-7442
-
-
Hasmann, M.1
Schemainda, I.2
-
82
-
-
84883738070
-
CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells
-
Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 2013; 288: 25938-25949.
-
(2013)
J Biol Chem
, vol.288
, pp. 25938-25949
-
-
Grozio, A.1
Sociali, G.2
Sturla, L.3
Caffa, I.4
Soncini, D.5
Salis, A.6
-
83
-
-
77958569431
-
Inhibition of nicotinamide phosphoribosyltransferase: Cellular bioenergetics reveals a mitochondrial insensitive NAD pool
-
Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 2010; 285: 34106-34114.
-
(2010)
J Biol Chem
, vol.285
, pp. 34106-34114
-
-
Pittelli, M.1
Formentini, L.2
Faraco, G.3
Lapucci, A.4
Rapizzi, E.5
Cialdai, F.6
-
84
-
-
84864286442
-
Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors
-
Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487: 505-509.
-
(2012)
Nature
, vol.487
, pp. 505-509
-
-
Wilson, T.R.1
Fridlyand, J.2
Yan, Y.3
Penuel, E.4
Burton, L.5
Chan, E.6
-
85
-
-
84903690620
-
A systems biology road map for the discovery of drugs targeting cancer cell metabolism
-
Alberghina L, Gaglio D, Moresco RM, Gilardi MC, Messa C, Vanoni M. A systems biology road map for the discovery of drugs targeting cancer cell metabolism. Curr Pharm Des 2014; 20: 2648-2666.
-
(2014)
Curr Pharm des
, vol.20
, pp. 2648-2666
-
-
Alberghina, L.1
Gaglio, D.2
Moresco, R.M.3
Gilardi, M.C.4
Messa, C.5
Vanoni, M.6
-
86
-
-
84862016091
-
Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
-
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15: 827-837.
-
(2012)
Cell Metab
, vol.15
, pp. 827-837
-
-
Marin-Valencia, I.1
Yang, C.2
Mashimo, T.3
Cho, S.4
Baek, H.5
Yang, X.L.6
-
88
-
-
34548789512
-
Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES)
-
Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007; 406: 407-414.
-
(2007)
Biochem J
, vol.406
, pp. 407-414
-
-
Robinson, M.M.1
McBryant, S.J.2
Tsukamoto, T.3
Rojas, C.4
Ferraris, D.V.5
Hamilton, S.K.6
-
89
-
-
78549283855
-
Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
-
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010; 70: 8981-8987.
-
(2010)
Cancer Res
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.J.1
Bennett, B.D.2
Joshi, A.D.3
Gao, P.4
Thomas, A.G.5
Ferraris, D.V.6
-
90
-
-
84875890762
-
Targeting cellular metabolism to improve cancer therapeutics
-
Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4: e532.
-
(2013)
Cell Death Dis
, vol.4
, pp. e532
-
-
Zhao, Y.1
Butler, E.B.2
Tan, M.3
-
91
-
-
84904645105
-
Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
-
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 2014; 13: 890-901.
-
(2014)
Mol Cancer Ther
, vol.13
, pp. 890-901
-
-
Gross, M.I.1
Demo, S.D.2
Dennison, J.B.3
Chen, L.4
Chernov-Rogan, T.5
Goyal, B.6
-
92
-
-
84887628469
-
13C metabolic flux analysis: Optimal design of isotopic labeling experiments
-
Antoniewicz MR. 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 2013; 24: 1116-1121.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 1116-1121
-
-
Antoniewicz, M.R.1
-
93
-
-
84880771036
-
Using multiple tracers for 13C metabolic flux analysis
-
Antoniewicz MR. Using multiple tracers for 13C metabolic flux analysis. Methods Mol Biol Clifton, NJ 2013; 985: 353-365.
-
(2013)
Methods Mol Biol Clifton, NJ
, vol.985
, pp. 353-365
-
-
Antoniewicz, M.R.1
-
94
-
-
84901411394
-
13C isotopeassisted methods for quantifying glutamine metabolism in cancer cells
-
Zhang J, Ahn WS, Gameiro PA, Keibler MA, Zhang Z, Stephanopoulos G. 13C isotopeassisted methods for quantifying glutamine metabolism in cancer cells. Methods Enzymol 2014; 542: 369-389.
-
(2014)
Methods Enzymol
, vol.542
, pp. 369-389
-
-
Zhang, J.1
Ahn, W.S.2
Gameiro, P.A.3
Keibler, M.A.4
Zhang, Z.5
Stephanopoulos, G.6
-
95
-
-
84897380461
-
Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice
-
Sugiura Y, Honda K, Kajimura M, Suematsu M. Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics 2014; 14: 829-838.
-
(2014)
Proteomics
, vol.14
, pp. 829-838
-
-
Sugiura, Y.1
Honda, K.2
Kajimura, M.3
Suematsu, M.4
-
96
-
-
80053440591
-
Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: Application in sarcoma
-
Kelly AD, Breitkopf SB, Yuan M, Goldsmith J, Spentzos D, Asara JM. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS One 2011; 6: e25357.
-
(2011)
PLoS One
, vol.6
, pp. e25357
-
-
Kelly, A.D.1
Breitkopf, S.B.2
Yuan, M.3
Goldsmith, J.4
Spentzos, D.5
Asara, J.M.6
-
99
-
-
79956032310
-
Mitochondrial complex I: A central regulator of the aging process
-
Stefanatos R, Sanz A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle (Georgetown, Tex 2011; 10: 1528-1532.
-
(2011)
Cell Cycle (Georgetown Tex
, vol.10
, pp. 1528-1532
-
-
Stefanatos, R.1
Sanz, A.2
-
100
-
-
84892417925
-
Geroncogenesis: Metabolic changes during aging as a driver of tumorigenesis
-
Wu LE, Gomes AP, Sinclair DA. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 2014; 25: 12-19.
-
(2014)
Cancer Cell
, vol.25
, pp. 12-19
-
-
Wu, L.E.1
Gomes, A.P.2
Sinclair, D.A.3
-
101
-
-
84907379295
-
A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration
-
Yizhak K, Le Devedec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 2014; 10: 744.
-
(2014)
Mol Syst Biol
, vol.10
, pp. 744
-
-
Yizhak, K.1
Le Devedec, S.E.2
Rogkoti, V.M.3
Baenke, F.4
De Boer, V.C.5
Frezza, C.6
-
102
-
-
84887444816
-
Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells
-
Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 2013; 4: e877.
-
(2013)
Cell Death Dis
, vol.4
, pp. e877
-
-
Tedeschi, P.M.1
Markert, E.K.2
Gounder, M.3
Lin, H.4
Dvorzhinski, D.5
Dolfi, S.C.6
-
103
-
-
84883514161
-
Targeting lactate metabolism for cancer therapeutics
-
Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123: 3685-3692.
-
(2013)
J Clin Invest
, vol.123
, pp. 3685-3692
-
-
Doherty, J.R.1
Cleveland, J.L.2
|