메뉴 건너뛰기




Volumn 5, Issue 12, 2014, Pages

Redox control of glutamine utilization in cancer

Author keywords

[No Author keywords available]

Indexed keywords

GLUTAMINE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE (PHOSPHATE) TRANSHYDROGENASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SERINE; AMINO ACID; ANTINEOPLASTIC AGENT; LIPID; MITOCHONDRIAL PROTEIN; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; NNT PROTEIN, HUMAN;

EID: 84926618247     PISSN: None     EISSN: 20414889     Source Type: Journal    
DOI: 10.1038/cddis.2014.513     Document Type: Article
Times cited : (120)

References (103)
  • 1
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science (New York, NY) 1956; 123: 309-314.
    • (1956) Science (New York, NY) , vol.123 , pp. 309-314
    • Warburg, O.1
  • 2
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20.
    • (2008) Cell Metab , vol.7 , pp. 11-20
    • Deberardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 3
    • 84863011452 scopus 로고    scopus 로고
    • The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
    • Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012; 15: 157-170.
    • (2012) Cell Metab , vol.15 , pp. 157-170
    • Yuneva, M.O.1    Fan, T.W.2    Allen, T.D.3    Higashi, R.M.4    Ferraris, D.V.5    Tsukamoto, T.6
  • 4
    • 33748120494 scopus 로고    scopus 로고
    • PET and PET/CT using 18 F-FDG in the diagnosis and management of cancer patients
    • Endo K, Oriuchi N, Higuchi T, Iida Y, Hanaoka H, Miyakubo M et al. PET and PET/CT using 18 F-FDG in the diagnosis and management of cancer patients. Int J Clin Oncol 2006; 11: 286-296.
    • (2006) Int J Clin Oncol , vol.11 , pp. 286-296
    • Endo, K.1    Oriuchi, N.2    Higuchi, T.3    Iida, Y.4    Hanaoka, H.5    Miyakubo, M.6
  • 5
    • 0037264633 scopus 로고    scopus 로고
    • Targeting RAS signalling pathways in cancer therapy
    • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev 2003; 3: 11-22.
    • (2003) Nat Rev , vol.3 , pp. 11-22
    • Downward, J.1
  • 6
    • 84859171807 scopus 로고    scopus 로고
    • MYC on the path to cancer
    • Dang CV. MYC on the path to cancer. Cell 2012; 149: 22-35.
    • (2012) Cell , vol.149 , pp. 22-35
    • Dang, C.V.1
  • 9
    • 84856595714 scopus 로고    scopus 로고
    • K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis
    • Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012; 22: 399-412.
    • (2012) Cell Res , vol.22 , pp. 399-412
    • Hu, Y.1    Lu, W.2    Chen, G.3    Wang, P.4    Chen, Z.5    Zhou, Y.6
  • 10
    • 73249137166 scopus 로고    scopus 로고
    • Mitochondrial Complex i decrease is responsible for bioenergetic dysfunction in K-ras transformed cells
    • Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G. Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta 2010; 1797: 314-323.
    • (2010) Biochim Biophys Acta , vol.1797 , pp. 314-323
    • Baracca, A.1    Chiaradonna, F.2    Sgarbi, G.3    Solaini, G.4    Alberghina, L.5    Lenaz, G.6
  • 11
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101-105.
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1    Lyssiotis, C.A.2    Ying, H.3    Wang, X.4    Hua, S.5    Ligorio, M.6
  • 12
    • 84860321700 scopus 로고    scopus 로고
    • Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656-670.
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1    Kimmelman, A.C.2    Lyssiotis, C.A.3    Hua, S.4    Chu, G.C.5    Fletcher-Sananikone, E.6
  • 13
    • 61849162778 scopus 로고    scopus 로고
    • Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts
    • Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F. Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One 2009; 4: e4715.
    • (2009) PLoS One , vol.4 , pp. e4715
    • Gaglio, D.1    Soldati, C.2    Vanoni, M.3    Alberghina, L.4    Chiaradonna, F.5
  • 14
    • 64749116346 scopus 로고    scopus 로고
    • C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
    • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762-765.
    • (2009) Nature , vol.458 , pp. 762-765
    • Gao, P.1    Tchernyshyov, I.2    Chang, T.C.3    Lee, Y.S.4    Kita, K.5    Ochi, T.6
  • 15
    • 84872376676 scopus 로고    scopus 로고
    • Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells
    • Murphy TA, Dang CV, Young JD. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 2013; 15: 206-217.
    • (2013) Metab Eng , vol.15 , pp. 206-217
    • Murphy, T.A.1    Dang, C.V.2    Young, J.D.3
  • 16
    • 57749088701 scopus 로고    scopus 로고
    • Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
    • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natil Acad Sci USA 2008; 105: 18782-18787.
    • (2008) Proc Natil Acad Sci USA , vol.105 , pp. 18782-18787
    • Wise, D.R.1    Deberardinis, R.J.2    Mancuso, A.3    Sayed, N.4    Zhang, X.Y.5    Pfeiffer, H.K.6
  • 17
    • 34347402459 scopus 로고    scopus 로고
    • Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
    • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93-105.
    • (2007) J Cell Biol , vol.178 , pp. 93-105
    • Yuneva, M.1    Zamboni, N.2    Oefner, P.3    Sachidanandam, R.4    Lazebnik, Y.5
  • 18
    • 84880876347 scopus 로고    scopus 로고
    • Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism
    • Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res 2013; 73: 4429-4438.
    • (2013) Cancer Res , vol.73 , pp. 4429-4438
    • Fendt, S.M.1    Bell, E.L.2    Keibler, M.A.3    Davidson, S.M.4    Wirth, G.J.5    Fiske, B.6
  • 19
    • 76649126249 scopus 로고    scopus 로고
    • Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
    • Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037-2042.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 2037-2042
    • Le, A.1    Cooper, C.R.2    Gouw, A.M.3    Dinavahi, R.4    Maitra, A.5    Deck, L.M.6
  • 20
    • 84900296103 scopus 로고    scopus 로고
    • Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells
    • Xie H, Hanai J, Ren JG, Kats L, Burgess K, Bhargava P et al. Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab 2014; 19: 795-809.
    • (2014) Cell Metab , vol.19 , pp. 795-809
    • Xie, H.1    Hanai, J.2    Ren, J.G.3    Kats, L.4    Burgess, K.5    Bhargava, P.6
  • 21
    • 84855453655 scopus 로고    scopus 로고
    • Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
    • Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110-121.
    • (2012) Cell Metab , vol.15 , pp. 110-121
    • Le, A.1    Lane, A.N.2    Hamaker, M.3    Bose, S.4    Gouw, A.5    Barbi, J.6
  • 22
    • 84890209181 scopus 로고    scopus 로고
    • Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
    • Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9: 712.
    • (2013) Mol Syst Biol , vol.9 , pp. 712
    • Fan, J.1    Kamphorst, J.J.2    Mathew, R.3    Chung, M.K.4    White, E.5    Shlomi, T.6
  • 23
    • 84888798201 scopus 로고    scopus 로고
    • Tumor glycolysis as a target for cancer therapy: Progress and prospects
    • Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 2013; 12: 152.
    • (2013) Mol Cancer , vol.12 , pp. 152
    • Ganapathy-Kanniappan, S.1    Geschwind, J.F.2
  • 24
    • 80052242132 scopus 로고    scopus 로고
    • Targeting cancer metabolism: A therapeutic window opens
    • Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev 2011; 10: 671-684.
    • (2011) Nat Rev , vol.10 , pp. 671-684
    • Vander Heiden, M.G.1
  • 25
    • 84883497454 scopus 로고    scopus 로고
    • Glutamine and cancer: Cell biology, physiology, and clinical opportunities
    • Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678-3684.
    • (2013) J Clin Invest , vol.123 , pp. 3678-3684
    • Hensley, C.T.1    Wasti, A.T.2    Deberardinis, R.J.3
  • 27
    • 34447521460 scopus 로고    scopus 로고
    • Human disease classification in the postgenomic era: A complex systems approach to human pathobiology
    • Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 2007; 3: 124.
    • (2007) Mol Syst Biol , vol.3 , pp. 124
    • Loscalzo, J.1    Kohane, I.2    Barabasi, A.L.3
  • 28
    • 84873459097 scopus 로고    scopus 로고
    • Understanding metabolic regulation and its influence on cell physiology
    • Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell 2013; 49: 388-398.
    • (2013) Mol Cell , vol.49 , pp. 388-398
    • Metallo, C.M.1    Vander Heiden, M.G.2
  • 29
    • 84872271709 scopus 로고    scopus 로고
    • Profiling metabolic networks to study cancer metabolism
    • Hiller K, Metallo CM. Profiling metabolic networks to study cancer metabolism. Curr Opin Biotechnol 2013; 24: 60-68.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 60-68
    • Hiller, K.1    Metallo, C.M.2
  • 30
    • 84858414020 scopus 로고    scopus 로고
    • Cellular metabolism and disease: What do metabolic outliers teach us?
    • DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132-1144.
    • (2012) Cell , vol.148 , pp. 1132-1144
    • Deberardinis, R.J.1    Thompson, C.B.2
  • 32
    • 84860512005 scopus 로고    scopus 로고
    • Links between metabolism and cancer
    • Dang CV. Links between metabolism and cancer. Genes Dev 2012; 26: 877-890.
    • (2012) Genes Dev , vol.26 , pp. 877-890
    • Dang, C.V.1
  • 33
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY) 2009; 324: 1029-1033.
    • (2009) Science (New York, NY) , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 34
    • 84887123920 scopus 로고    scopus 로고
    • Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer
    • Li B, Simon MC. Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 2013; 19: 5835-5841.
    • (2013) Clin Cancer Res , vol.19 , pp. 5835-5841
    • Li, B.1    Simon, M.C.2
  • 35
    • 77952212178 scopus 로고    scopus 로고
    • Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
    • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010; 107: 7455-7460.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7455-7460
    • Hu, W.1    Zhang, C.2    Wu, R.3    Sun, Y.4    Levine, A.5    Feng, Z.6
  • 36
    • 77952227625 scopus 로고    scopus 로고
    • Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
    • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010; 107: 7461-7466.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7461-7466
    • Suzuki, S.1    Tanaka, T.2    Poyurovsky, M.V.3    Nagano, H.4    Mayama, T.5    Ohkubo, S.6
  • 40
    • 84857792910 scopus 로고    scopus 로고
    • Breathless cancer cells get fat on glutamine
    • Anastasiou D, Cantley LC. Breathless cancer cells get fat on glutamine. Cell Res 2012; 22: 443-446.
    • (2012) Cell Res , vol.22 , pp. 443-446
    • Anastasiou, D.1    Cantley, L.C.2
  • 41
  • 42
    • 84897537717 scopus 로고    scopus 로고
    • Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
    • Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014; 508: 108-112.
    • (2014) Nature , vol.508 , pp. 108-112
    • Birsoy, K.1    Possemato, R.2    Lorbeer, F.K.3    Bayraktar, E.C.4    Thiru, P.5    Yucel, B.6
  • 44
    • 18544365990 scopus 로고    scopus 로고
    • Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer
    • Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002; 30: 406-410.
    • (2002) Nat Genet , vol.30 , pp. 406-410
    • Tomlinson, I.P.1    Alam, N.A.2    Rowan, A.J.3    Barclay, E.4    Jaeger, E.E.5    Kelsell, D.6
  • 45
    • 0034964421 scopus 로고    scopus 로고
    • Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocy-toma and to familial paraganglioma
    • Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocy-toma and to familial paraganglioma. Am J Hum Genet 2001; 69: 49-54.
    • (2001) Am J Hum Genet , vol.69 , pp. 49-54
    • Astuti, D.1    Latif, F.2    Dallol, A.3    Dahia, P.L.4    Douglas, F.5    George, E.6
  • 46
    • 84878152241 scopus 로고    scopus 로고
    • Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor
    • Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3: 648-657.
    • Cancer Discov , vol.3 , pp. 648-657
    • Killian, J.K.1    Kim, S.Y.2    Miettinen, M.3    Smith, C.4    Merino, M.5    Tsokos, M.6
  • 47
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2011; 481: 385-388.
    • (2011) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1    Wheaton, W.W.2    Jin, E.S.3    Chen, P.H.4    Sullivan, L.B.5    Cheng, T.6
  • 48
    • 84902343371 scopus 로고    scopus 로고
    • Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
    • Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 2014; 7: 1679-1690.
    • (2014) Cell Rep , vol.7 , pp. 1679-1690
    • Mullen, A.R.1    Hu, Z.2    Shi, X.3    Jiang, L.4    Boroughs, L.K.5    Kovacs, Z.6
  • 49
    • 84860378609 scopus 로고    scopus 로고
    • Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation
    • Leonardi R, Subramanian C, Jackowski S, Rock CO. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 2012; 287: 14615-14620.
    • (2012) J Biol Chem , vol.287 , pp. 14615-14620
    • Leonardi, R.1    Subramanian, C.2    Jackowski, S.3    Rock, C.O.4
  • 50
    • 84877109282 scopus 로고    scopus 로고
    • Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle
    • Gameiro PA, Laviolette LA, Kelleher JK, Iliopoulos O, Stephanopoulos G. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem 2013; 288: 12967-12977.
    • (2013) J Biol Chem , vol.288 , pp. 12967-12977
    • Gameiro, P.A.1    Laviolette, L.A.2    Kelleher, J.K.3    Iliopoulos, O.4    Stephanopoulos, G.5
  • 51
    • 78149341677 scopus 로고    scopus 로고
    • Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes
    • Chun SY, Johnson C, Washburn JG, Cruz-Correa MR, Dang DT, Dang LH. Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes. Mol Cancer 2010; 9: 293.
    • (2010) Mol Cancer , vol.9 , pp. 293
    • Chun, S.Y.1    Johnson, C.2    Washburn, J.G.3    Cruz-Correa, M.R.4    Dang, D.T.5    Dang, L.H.6
  • 52
    • 84856609056 scopus 로고    scopus 로고
    • K-Ras and mitochondria: Dangerous liaisons
    • Neuzil J, Rohlena J, Dong LF. K-Ras and mitochondria: dangerous liaisons. Cell Res 2011; 22: 285-287.
    • (2011) Cell Res , vol.22 , pp. 285-287
    • Neuzil, J.1    Rohlena, J.2    Dong, L.F.3
  • 53
    • 77951432631 scopus 로고    scopus 로고
    • The causes of cancer revisited: 'Mitochondrial malignancy' and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy
    • Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R. The causes of cancer revisited: 'mitochondrial malignancy' and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31:145-170.
    • (2010) Mol Aspects Med , vol.31 , pp. 145-170
    • Ralph, S.J.1    Rodriguez-Enriquez, S.2    Neuzil, J.3    Saavedra, E.4    Moreno-Sanchez, R.5
  • 55
    • 84896778081 scopus 로고    scopus 로고
    • Metabolism addiction in pancreatic cancer
    • Blum R, Kloog Y. Metabolism addiction in pancreatic cancer. Cell Death Dis 2014; 5: e1065.
    • (2014) Cell Death Dis , vol.5 , pp. e1065
    • Blum, R.1    Kloog, Y.2
  • 56
    • 84864858864 scopus 로고    scopus 로고
    • ATP-citrate lyase: A key player in cancer metabolism
    • Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 2012; 72: 3709-3714.
    • (2012) Cancer Res , vol.72 , pp. 3709-3714
    • Zaidi, N.1    Swinnen, J.V.2    Smans, K.3
  • 57
    • 34748912615 scopus 로고    scopus 로고
    • Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
    • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763-777.
    • (2007) Nat Rev Cancer , vol.7 , pp. 763-777
    • Menendez, J.A.1    Lupu, R.2
  • 61
    • 80053922625 scopus 로고    scopus 로고
    • Metabolic flux and the regulation of mammalian cell growth
    • Locasale JW, Cantley LC. Metabolic flux and the regulation of mammalian cell growth. Cell Metab 2011; 14: 443-451.
    • (2011) Cell Metab , vol.14 , pp. 443-451
    • Locasale, J.W.1    Cantley, L.C.2
  • 63
    • 80051923932 scopus 로고    scopus 로고
    • Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
    • Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346-350.
    • (2011) Nature , vol.476 , pp. 346-350
    • Possemato, R.1    Marks, K.M.2    Shaul, Y.D.3    Pacold, M.E.4    Kim, D.5    Birsoy, K.6
  • 65
    • 84904504373 scopus 로고    scopus 로고
    • Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells
    • Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell2014; 55: 253-263.
    • (2014) Mol Cell , vol.55 , pp. 253-263
    • Lewis, C.A.1    Parker, S.J.2    Fiske, B.P.3    McCloskey, D.4    Gui, D.Y.5    Green, C.R.6
  • 67
    • 84915746768 scopus 로고    scopus 로고
    • Serine catabolism regulates mitochondrial redox control during hypoxia
    • e-pub ahead of print 3 September 2014;
    • Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 2014; e-pub ahead of print 3 September 2014; doi:10.1158/2159-8290.CD-14-0250.
    • (2014) Cancer Discov
    • Ye, J.1    Fan, J.2    Venneti, S.3    Wan, Y.W.4    Pawel, B.R.5    Zhang, J.6
  • 68
    • 84904969433 scopus 로고    scopus 로고
    • The pentose phosphate pathway and cancer
    • Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci 2014; 39: 347-354.
    • (2014) Trends Biochem Sci , vol.39 , pp. 347-354
    • Patra, K.C.1    Hay, N.2
  • 70
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 2013; 17: 491-506.
    • (2013) Cell Metab , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 71
    • 4944242891 scopus 로고    scopus 로고
    • Polyamines and cancer: Old molecules, new understanding
    • Gerner EW, Meyskens Jr FL. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 2004; 4: 781-792.
    • (2004) Nat Rev Cancer , vol.4 , pp. 781-792
    • Gerner, E.W.1    Meyskens, Jr.F.L.2
  • 73
    • 84863090408 scopus 로고    scopus 로고
    • Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells
    • Bowlby SC, Thomas MJ, D'Agostino Jr RB, Kridel SJ. Nicotinamide phosphoribosyl transferase (Nampt) is required for de novo lipogenesis in tumor cells. PLoS One 2012; 7: e40195.
    • (2012) PLoS One , vol.7 , pp. e40195
    • Bowlby, S.C.1    Thomas, M.J.2    D'Agostino, Jr.R.B.3    Kridel, S.J.4
  • 75
    • 84888262057 scopus 로고    scopus 로고
    • Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens
    • Matheny CJ, Wei MC, Bassik MC, Donnelly AJ, Kampmann M, Iwasaki M et al. Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens. Chem Biol2013; 20:1352-1363.
    • (2013) Chem Biol , vol.20 , pp. 1352-1363
    • Matheny, C.J.1    Wei, M.C.2    Bassik, M.C.3    Donnelly, A.J.4    Kampmann, M.5    Iwasaki, M.6
  • 76
    • 84892175612 scopus 로고    scopus 로고
    • Targeting of NAD metabolism in pancreatic cancer cells: Potential novel therapy for pancreatic tumors
    • Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT et al. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 2013; 20:120-130.
    • (2013) Clin Cancer Res , vol.20 , pp. 120-130
    • Chini, C.C.1    Guerrico, A.M.2    Nin, V.3    Camacho-Pereira, J.4    Escande, C.5    Barbosa, M.T.6
  • 77
    • 84873291018 scopus 로고    scopus 로고
    • Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: Metabolic basis and potential clinical implications
    • Tan B, Young DA, Lu ZH, Wang T, Meier TI, Shepard RL et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J Biol Chem 2013; 288: 3500-3511.
    • (2013) J Biol Chem , vol.288 , pp. 3500-3511
    • Tan, B.1    Young, D.A.2    Lu, Z.H.3    Wang, T.4    Meier, T.I.5    Shepard, R.L.6
  • 78
    • 0842333189 scopus 로고    scopus 로고
    • Antiangiogenic potency of FK866/K22.175 a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma
    • Drevs J, Loser R, Rattel B, Esser N. Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma. Anticancer Res 2003; 23: 4853-4858.
    • (2003) Anticancer Res , vol.23 , pp. 4853-4858
    • Drevs, J.1    Loser, R.2    Rattel, B.3    Esser, N.4
  • 80
    • 79957549799 scopus 로고    scopus 로고
    • Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation
    • Nikiforov A, Dolle C, Niere M, Ziegler M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem 2011; 286: 21767-21778.
    • (2011) J Biol Chem , vol.286 , pp. 21767-21778
    • Nikiforov, A.1    Dolle, C.2    Niere, M.3    Ziegler, M.4
  • 81
    • 0242526050 scopus 로고    scopus 로고
    • FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis
    • Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res 2003; 63: 7436-7442.
    • (2003) Cancer Res , vol.63 , pp. 7436-7442
    • Hasmann, M.1    Schemainda, I.2
  • 82
    • 84883738070 scopus 로고    scopus 로고
    • CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells
    • Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 2013; 288: 25938-25949.
    • (2013) J Biol Chem , vol.288 , pp. 25938-25949
    • Grozio, A.1    Sociali, G.2    Sturla, L.3    Caffa, I.4    Soncini, D.5    Salis, A.6
  • 83
    • 77958569431 scopus 로고    scopus 로고
    • Inhibition of nicotinamide phosphoribosyltransferase: Cellular bioenergetics reveals a mitochondrial insensitive NAD pool
    • Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 2010; 285: 34106-34114.
    • (2010) J Biol Chem , vol.285 , pp. 34106-34114
    • Pittelli, M.1    Formentini, L.2    Faraco, G.3    Lapucci, A.4    Rapizzi, E.5    Cialdai, F.6
  • 84
    • 84864286442 scopus 로고    scopus 로고
    • Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors
    • Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487: 505-509.
    • (2012) Nature , vol.487 , pp. 505-509
    • Wilson, T.R.1    Fridlyand, J.2    Yan, Y.3    Penuel, E.4    Burton, L.5    Chan, E.6
  • 86
    • 84862016091 scopus 로고    scopus 로고
    • Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
    • Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15: 827-837.
    • (2012) Cell Metab , vol.15 , pp. 827-837
    • Marin-Valencia, I.1    Yang, C.2    Mashimo, T.3    Cho, S.4    Baek, H.5    Yang, X.L.6
  • 88
    • 34548789512 scopus 로고    scopus 로고
    • Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES)
    • Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007; 406: 407-414.
    • (2007) Biochem J , vol.406 , pp. 407-414
    • Robinson, M.M.1    McBryant, S.J.2    Tsukamoto, T.3    Rojas, C.4    Ferraris, D.V.5    Hamilton, S.K.6
  • 89
    • 78549283855 scopus 로고    scopus 로고
    • Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
    • Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010; 70: 8981-8987.
    • (2010) Cancer Res , vol.70 , pp. 8981-8987
    • Seltzer, M.J.1    Bennett, B.D.2    Joshi, A.D.3    Gao, P.4    Thomas, A.G.5    Ferraris, D.V.6
  • 90
    • 84875890762 scopus 로고    scopus 로고
    • Targeting cellular metabolism to improve cancer therapeutics
    • Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4: e532.
    • (2013) Cell Death Dis , vol.4 , pp. e532
    • Zhao, Y.1    Butler, E.B.2    Tan, M.3
  • 92
    • 84887628469 scopus 로고    scopus 로고
    • 13C metabolic flux analysis: Optimal design of isotopic labeling experiments
    • Antoniewicz MR. 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 2013; 24: 1116-1121.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 1116-1121
    • Antoniewicz, M.R.1
  • 93
    • 84880771036 scopus 로고    scopus 로고
    • Using multiple tracers for 13C metabolic flux analysis
    • Antoniewicz MR. Using multiple tracers for 13C metabolic flux analysis. Methods Mol Biol Clifton, NJ 2013; 985: 353-365.
    • (2013) Methods Mol Biol Clifton, NJ , vol.985 , pp. 353-365
    • Antoniewicz, M.R.1
  • 95
    • 84897380461 scopus 로고    scopus 로고
    • Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice
    • Sugiura Y, Honda K, Kajimura M, Suematsu M. Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics 2014; 14: 829-838.
    • (2014) Proteomics , vol.14 , pp. 829-838
    • Sugiura, Y.1    Honda, K.2    Kajimura, M.3    Suematsu, M.4
  • 96
    • 80053440591 scopus 로고    scopus 로고
    • Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: Application in sarcoma
    • Kelly AD, Breitkopf SB, Yuan M, Goldsmith J, Spentzos D, Asara JM. Metabolomic profiling from formalin-fixed, paraffin-embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLoS One 2011; 6: e25357.
    • (2011) PLoS One , vol.6 , pp. e25357
    • Kelly, A.D.1    Breitkopf, S.B.2    Yuan, M.3    Goldsmith, J.4    Spentzos, D.5    Asara, J.M.6
  • 99
    • 79956032310 scopus 로고    scopus 로고
    • Mitochondrial complex I: A central regulator of the aging process
    • Stefanatos R, Sanz A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle (Georgetown, Tex 2011; 10: 1528-1532.
    • (2011) Cell Cycle (Georgetown Tex , vol.10 , pp. 1528-1532
    • Stefanatos, R.1    Sanz, A.2
  • 100
    • 84892417925 scopus 로고    scopus 로고
    • Geroncogenesis: Metabolic changes during aging as a driver of tumorigenesis
    • Wu LE, Gomes AP, Sinclair DA. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 2014; 25: 12-19.
    • (2014) Cancer Cell , vol.25 , pp. 12-19
    • Wu, L.E.1    Gomes, A.P.2    Sinclair, D.A.3
  • 101
    • 84907379295 scopus 로고    scopus 로고
    • A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration
    • Yizhak K, Le Devedec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 2014; 10: 744.
    • (2014) Mol Syst Biol , vol.10 , pp. 744
    • Yizhak, K.1    Le Devedec, S.E.2    Rogkoti, V.M.3    Baenke, F.4    De Boer, V.C.5    Frezza, C.6
  • 102
    • 84887444816 scopus 로고    scopus 로고
    • Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells
    • Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 2013; 4: e877.
    • (2013) Cell Death Dis , vol.4 , pp. e877
    • Tedeschi, P.M.1    Markert, E.K.2    Gounder, M.3    Lin, H.4    Dvorzhinski, D.5    Dolfi, S.C.6
  • 103
    • 84883514161 scopus 로고    scopus 로고
    • Targeting lactate metabolism for cancer therapeutics
    • Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123: 3685-3692.
    • (2013) J Clin Invest , vol.123 , pp. 3685-3692
    • Doherty, J.R.1    Cleveland, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.