메뉴 건너뛰기




Volumn 15, Issue 6, 2014, Pages 411-421

Cellular mechanisms and physiological consequences of redox-dependent signalling

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CYSTEINE; OXIDIZING AGENT; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE;

EID: 84901316606     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3801     Document Type: Review
Times cited : (1595)

References (119)
  • 1
    • 77049308856 scopus 로고
    • Aging: A theory based on free radical and radiation chemistry
    • Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300 (1956).
    • (1956) J. Gerontol. , vol.11 , pp. 298-300
    • Harman, D.1
  • 3
    • 15144343374 scopus 로고    scopus 로고
    • Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation
    • DOI 10.1074/jbc.272.1.217
    • Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217-221 (1997). (Pubitemid 27021147)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.1 , pp. 217-221
    • Bae, Y.S.1    Kang, S.W.2    Seo, M.S.3    Baines, I.C.4    Tckle, E.5    Chock, P.B.6    Rhee, S.G.7
  • 4
    • 76749102420 scopus 로고    scopus 로고
    • 2 accumulation for cell signaling
    • 2 accumulation for cell signaling. Cell 140, 517-528 (2010).
    • (2010) Cell , vol.140 , pp. 517-528
    • Woo, H.A.1
  • 5
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13 (2009).
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 6
    • 0014010888 scopus 로고
    • Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. PH dependency and hydrogen peroxide formation
    • Jensen, P. K. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim. Biophys. Acta 122, 157-166 (1966).
    • (1966) Biochim. Biophys. Acta , vol.122 , pp. 157-166
    • Jensen, P.K.1
  • 7
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand, M. D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45, 466-472 (2010).
    • (2010) Exp. Gerontol. , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 8
    • 84865434841 scopus 로고    scopus 로고
    • Mitochondrial proticity and ROS signaling: Lessons from the uncoupling proteins
    • Mailloux, R. J. & Harper, M. E. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins. Trends Endocrinol. Metab. 23, 451-458 (2012).
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 451-458
    • Mailloux, R.J.1    Harper, M.E.2
  • 9
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158-167 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 11
    • 0033826520 scopus 로고    scopus 로고
    • Role for mitochondrial oxidants as regulators of cellular metabolism
    • Nemoto, S., Takeda, K., Yu, Z. X., Ferrans, V. J. & Finkel, T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol. 20, 7311-7318 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7311-7318
    • Nemoto, S.1    Takeda, K.2    Yu, Z.X.3    Ferrans, V.J.4    Finkel, T.5
  • 12
    • 0032213375 scopus 로고    scopus 로고
    • Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing
    • Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007-3017 (1998). (Pubitemid 28492304)
    • (1998) Blood , vol.92 , Issue.9 , pp. 3007-3017
    • Hampton, M.B.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 13
    • 0029020218 scopus 로고
    • Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes
    • Lo, Y. Y. & Cruz, T. F. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem. 270, 11727-11730 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 11727-11730
    • Lo, Y.Y.1    Cruz, T.F.2
  • 14
    • 0030005713 scopus 로고    scopus 로고
    • Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone
    • Rajagopalan, S. et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916-1923 (1996).
    • (1996) J. Clin. Invest. , vol.97 , pp. 1916-1923
    • Rajagopalan, S.1
  • 16
    • 0029661428 scopus 로고    scopus 로고
    • P22(phox) is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells
    • DOI 10.1074/jbc.271.38.23317
    • phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 271, 23317-23321 (1996). (Pubitemid 26314775)
    • (1996) Journal of Biological Chemistry , vol.271 , Issue.38 , pp. 23317-23321
    • Ushio-Fukai, M.1    Maziar Zafari, A.2    Fukui, T.3    Ishizaka, N.4    Griendling, K.K.5
  • 17
    • 0033517275 scopus 로고    scopus 로고
    • Cell transformation by the superoxide-generating oxidase Mox1
    • Suh, Y. A. et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82 (1999).
    • (1999) Nature , vol.401 , pp. 79-82
    • Suh, Y.A.1
  • 18
    • 77957240694 scopus 로고    scopus 로고
    • Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals
    • Aguirre, J. & Lambeth, J. D. Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic. Biol. Med. 49, 1342-1353 (2010).
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1342-1353
    • Aguirre, J.1    Lambeth, J.D.2
  • 20
    • 84890922670 scopus 로고    scopus 로고
    • The role of iron and reactive oxygen species in cell death
    • Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nature Chem. Biol. 10, 9-17 (2014).
    • (2014) Nature Chem. Biol. , vol.10 , pp. 9-17
    • Dixon, S.J.1    Stockwell, B.R.2
  • 21
    • 84861964383 scopus 로고    scopus 로고
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • 2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584-594 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 584-594
    • Kil, I.S.1
  • 22
    • 84871309537 scopus 로고    scopus 로고
    • Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation
    • Truong, T. H. & Carroll, K. S. Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry 51, 9954-9965 (2012).
    • (2012) Biochemistry , vol.51 , pp. 9954-9965
    • Truong, T.H.1    Carroll, K.S.2
  • 23
    • 0036184190 scopus 로고    scopus 로고
    • Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo
    • DOI 10.1016/S1097-2765(02)00445-8
    • Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387-399 (2002). (Pubitemid 34195563)
    • (2002) Molecular Cell , vol.9 , Issue.2 , pp. 387-399
    • Meng, T.-C.1    Fukada, T.2    Tonks, N.K.3
  • 24
    • 0032554611 scopus 로고    scopus 로고
    • Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: Evidence for a sulfenic acid intermediate and implications for redox regulation
    • DOI 10.1021/bi973035t
    • Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633-5642 (1998). (Pubitemid 28241948)
    • (1998) Biochemistry , vol.37 , Issue.16 , pp. 5633-5642
    • Denu, J.M.1    Tanner, K.G.2
  • 25
    • 83655163927 scopus 로고    scopus 로고
    • Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity
    • Paulsen, C. E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nature Chem. Biol. 8, 57-64 (2012).
    • (2012) Nature Chem. Biol. , vol.8 , pp. 57-64
    • Paulsen, C.E.1
  • 26
    • 84898416421 scopus 로고    scopus 로고
    • Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration
    • Frijhoff, J., Dagnell, M., Godfrey, R. & Ostman, A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid. Redox Signal 20, 1994-2010 (2014).
    • (2014) Antioxid. Redox Signal , vol.20 , pp. 1994-2010
    • Frijhoff, J.1    Dagnell, M.2    Godfrey, R.3    Ostman, A.4
  • 29
    • 0037036460 scopus 로고    scopus 로고
    • Redox regulation of Cdc25C
    • DOI 10.1074/jbc.M201589200
    • Savitsky, P. A. & Finkel, T. Redox regulation of Cdc25C. J. Biol. Chem. 277, 20535-20540 (2002). (Pubitemid 34967353)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.23 , pp. 20535-20540
    • Savitsky, P.A.1    Finkel, T.2
  • 30
    • 84863463209 scopus 로고    scopus 로고
    • Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
    • Jeong, W., Bae, S. H., Toledano, M. B. & Rhee, S. G. Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic. Biol. Med. 53, 447-456 (2012).
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 447-456
    • Jeong, W.1    Bae, S.H.2    Toledano, M.B.3    Rhee, S.G.4
  • 31
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • DOI 10.1126/science.1080405
    • Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653 (2003). (Pubitemid 36520591)
    • (2003) Science , vol.300 , Issue.5619 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 32
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar, R. S. et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464 (2012).
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1
  • 33
    • 46249108461 scopus 로고    scopus 로고
    • Regulation of ROS signal transduction by NADPH oxidase 4 localization
    • DOI 10.1083/jcb.200709049
    • Chen, K., Kirber, M. T., Xiao, H., Yang, Y. & Keaney, J. F. Jr. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181, 1129-1139 (2008). (Pubitemid 351915488)
    • (2008) Journal of Cell Biology , vol.181 , Issue.7 , pp. 1129-1139
    • Chen, K.1    Kirber, M.T.2    Xiao, H.3    Yang, Y.4    Keaney Jr., J.F.5
  • 34
    • 84902287070 scopus 로고    scopus 로고
    • The physiological role of reversible methionine oxidation
    • Drazic, A. & Winter, J. The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbapap. 2014.01.001 (2014).
    • (2014) Biochim. Biophys. Acta
    • Drazic, A.1    Winter, J.2
  • 36
    • 84893385313 scopus 로고    scopus 로고
    • SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics
    • Hung, R. J., Spaeth, C. S., Yesilyurt, H. G. & Terman, J. R. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. Nature Cell Biol. 15, 1445-1454 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 1445-1454
    • Hung, R.J.1    Spaeth, C.S.2    Yesilyurt, H.G.3    Terman, J.R.4
  • 37
    • 84881499141 scopus 로고    scopus 로고
    • MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation
    • Lee, B. C. et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell 51, 397-404 (2013).
    • (2013) Mol. Cell , vol.51 , pp. 397-404
    • Lee, B.C.1
  • 38
    • 0026583944 scopus 로고
    • Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity
    • Xanthoudakis, S. & Curran, T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 11, 653-665 (1992).
    • (1992) EMBO J. , vol.11 , pp. 653-665
    • Xanthoudakis, S.1    Curran, T.2
  • 39
    • 16544369973 scopus 로고    scopus 로고
    • Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path
    • Lee, C. et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nature Struct. Mol. Biol. 11, 1179-1185 (2004).
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 1179-1185
    • Lee, C.1
  • 40
    • 84874253916 scopus 로고    scopus 로고
    • Redox-dependent control of FOXO/DAF-16 by transportin-1
    • Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730-742 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 730-742
    • Putker, M.1
  • 41
    • 78751703950 scopus 로고    scopus 로고
    • Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution
    • Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16, 123-140 (2011).
    • (2011) Genes Cells , vol.16 , pp. 123-140
    • Taguchi, K.1    Motohashi, H.2    Yamamoto, M.3
  • 42
    • 59249083454 scopus 로고    scopus 로고
    • Monitoring starvation-induced reactive oxygen species formation
    • Scherz-Shouval, R. & Elazar, Z. Monitoring starvation-induced reactive oxygen species formation. Methods Enzymol. 452, 119-130 (2009).
    • (2009) Methods Enzymol. , vol.452 , pp. 119-130
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 43
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • DOI 10.1038/sj.emboj.7601623, PII 7601623
    • Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26, 1749-1760 (2007). (Pubitemid 46624042)
    • (2007) EMBO Journal , vol.26 , Issue.7 , pp. 1749-1760
    • Scherz-Shouval, R.1    Shvets, E.2    Fass, E.3    Shorer, H.4    Gil, L.5    Elazar, Z.6
  • 44
    • 84885105969 scopus 로고    scopus 로고
    • A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
    • Zhang, J. et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature Cell Biol. 15, 1186-1196 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 1186-1196
    • Zhang, J.1
  • 45
    • 27644498442 scopus 로고    scopus 로고
    • A direct role for dual oxidase in Drosophila gut immunity
    • DOI 10.1126/science.1117311
    • Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850 (2005). (Pubitemid 41567342)
    • (2005) Science , vol.310 , Issue.5749 , pp. 847-850
    • Ha, E.-M.1    Oh, C.-T.2    Bae, Y.S.3    Lee, W.-J.4
  • 47
    • 84888864785 scopus 로고    scopus 로고
    • Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species
    • Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017-3028 (2013).
    • (2013) EMBO J. , vol.32 , pp. 3017-3028
    • Jones, R.M.1
  • 48
    • 0034284803 scopus 로고    scopus 로고
    • Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination
    • Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560-1563 (2000).
    • (2000) Science , vol.289 , pp. 1560-1563
    • Neish, A.S.1
  • 49
    • 70349617474 scopus 로고    scopus 로고
    • Bacterial-modulated host immunity and stem cell activation for gut homeostasis
    • Lee, W. J. Bacterial-modulated host immunity and stem cell activation for gut homeostasis. Genes Dev. 23, 2260-2265 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2260-2265
    • Lee, W.J.1
  • 50
    • 79955532516 scopus 로고    scopus 로고
    • TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
    • West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476-480 (2011).
    • (2011) Nature , vol.472 , pp. 476-480
    • West, A.P.1
  • 51
    • 79952184583 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS)
    • Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519-533 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 519-533
    • Bulua, A.C.1
  • 52
    • 62449110463 scopus 로고    scopus 로고
    • Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
    • Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770-2775 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 2770-2775
    • Tal, M.C.1
  • 53
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225 (2011).
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3    Tschopp, J.4
  • 54
    • 84874242919 scopus 로고    scopus 로고
    • Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
    • Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225-236 (2013).
    • (2013) Immunity , vol.38 , pp. 225-236
    • Sena, L.A.1
  • 55
    • 84879880775 scopus 로고    scopus 로고
    • ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages
    • Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23, 898-914 (2013).
    • (2013) Cell Res. , vol.23 , pp. 898-914
    • Zhang, Y.1
  • 56
    • 82155171284 scopus 로고    scopus 로고
    • Regulation of reactive oxygen species in stem cells and cancer stem cells
    • Kobayashi, C. I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol. 227, 421-430 (2012).
    • (2012) J. Cell. Physiol. , vol.227 , pp. 421-430
    • Kobayashi, C.I.1    Suda, T.2
  • 57
    • 84870290830 scopus 로고    scopus 로고
    • Redox regulation of stem/progenitor cells and bone marrow niche
    • Urao, N. & Ushio-Fukai, M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic. Biol. Med. 54, 26-39 (2013).
    • (2013) Free Radic. Biol. Med. , vol.54 , pp. 26-39
    • Urao, N.1    Ushio-Fukai, M.2
  • 61
    • 0037136563 scopus 로고    scopus 로고
    • Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress
    • Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316-321 (2002).
    • (2002) Nature , vol.419 , pp. 316-321
    • Kops, G.J.1
  • 62
    • 0037192473 scopus 로고    scopus 로고
    • Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway
    • DOI 10.1126/science.1069004
    • Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450-2452 (2002). (Pubitemid 34270258)
    • (2002) Science , vol.295 , Issue.5564 , pp. 2450-2452
    • Nemoto, S.1    Finkel, T.2
  • 63
    • 67349156082 scopus 로고    scopus 로고
    • Bmi1 regulates mitochondrial function and the DNA damage response pathway
    • Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387-392 (2009).
    • (2009) Nature , vol.459 , pp. 387-392
    • Liu, J.1
  • 64
    • 58849166901 scopus 로고    scopus 로고
    • The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity
    • Chatoo, W. et al. The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J. Neurosci. 29, 529-542 (2009).
    • (2009) J. Neurosci. , vol.29 , pp. 529-542
    • Chatoo, W.1
  • 65
    • 77957551487 scopus 로고    scopus 로고
    • Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress
    • Chuikov, S., Levi, B. P., Smith, M. L. & Morrison, S. J. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nature Cell Biol. 12, 999-1006 (2010).
    • (2010) Nature Cell Biol. , vol.12 , pp. 999-1006
    • Chuikov, S.1    Levi, B.P.2    Smith, M.L.3    Morrison, S.J.4
  • 66
    • 78049499084 scopus 로고    scopus 로고
    • Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity
    • Abbas, H. A. et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell 7, 606-617 (2010).
    • (2010) Cell Stem Cell , vol.7 , pp. 606-617
    • Abbas, H.A.1
  • 67
    • 78650968492 scopus 로고    scopus 로고
    • Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
    • Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59-71 (2011).
    • (2011) Cell Stem Cell , vol.8 , pp. 59-71
    • Le Belle, J.E.1
  • 69
    • 84878846051 scopus 로고    scopus 로고
    • ROS are required for mouse spermatogonial stem cell self-renewal
    • Morimoto, H. et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12, 774-786 (2013).
    • (2013) Cell Stem Cell , vol.12 , pp. 774-786
    • Morimoto, H.1
  • 70
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541 (2009).
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 71
    • 77954833815 scopus 로고    scopus 로고
    • Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells
    • Li, T. S. & Marban, E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28, 1178-1185 (2010).
    • (2010) Stem Cells , vol.28 , pp. 1178-1185
    • Li, T.S.1    Marban, E.2
  • 72
    • 33646858497 scopus 로고    scopus 로고
    • The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through dishevelled
    • Funato, Y., Michiue, T., Asashima, M. & Miki, H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through dishevelled. Nature Cell Biol. 8, 501-508 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 501-508
    • Funato, Y.1    Michiue, T.2    Asashima, M.3    Miki, H.4
  • 73
    • 84860893918 scopus 로고    scopus 로고
    • A crucial role for Nox 1 in redox-dependent regulation of Wnt-β-catenin signaling
    • Kajla, S. et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-β-catenin signaling. FASEB J. 26, 2049-2059 (2012).
    • (2012) FASEB J. , vol.26 , pp. 2049-2059
    • Kajla, S.1
  • 74
    • 84874229027 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development
    • Hamanaka, R. B. et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal 6, ra8 (2013).
    • (2013) Sci. Signal , vol.6
    • Hamanaka, R.B.1
  • 76
    • 79951887419 scopus 로고    scopus 로고
    • Forkhead box o as a sensor, mediator, and regulator of redox signaling
    • de Keizer, P. L., Burgering, B. M. & Dansen, T. B. Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid. Redox Signal 14, 1093-1106 (2011).
    • (2011) Antioxid. Redox Signal , vol.14 , pp. 1093-1106
    • De Keizer, P.L.1    Burgering, B.M.2    Dansen, T.B.3
  • 77
    • 77952634453 scopus 로고    scopus 로고
    • NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon
    • Coant, N. et al. NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol. Cell. Biol. 30, 2636-2650 (2010).
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2636-2650
    • Coant, N.1
  • 78
    • 84878797603 scopus 로고    scopus 로고
    • Epigenetic silencing mediates mitochondria stress-induced longevity
    • Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell. Metab. 17, 954-964 (2013).
    • (2013) Cell. Metab. , vol.17 , pp. 954-964
    • Schroeder, E.A.1    Raimundo, N.2    Shadel, G.S.3
  • 79
    • 84875912087 scopus 로고    scopus 로고
    • Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
    • Lee, J. G., Baek, K., Soetandyo, N. & Ye, Y. Reversible inactivation of deubiquitinases by reactive oxygen species In vitro and in cells. Nature Commun. 4, 1568 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1568
    • Lee, J.G.1    Baek, K.2    Soetandyo, N.3    Ye, Y.4
  • 81
    • 84875886251 scopus 로고    scopus 로고
    • Regulation of A20 and other OTU deubiquitinases by reversible oxidation
    • Kulathu, Y. et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nature Commun. 4, 1569 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1569
    • Kulathu, Y.1
  • 82
    • 0010607277 scopus 로고
    • The effect of vitamin e and β carotene on the incidence of lung cancer and other cancers in male smokers
    • The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group
    • The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and β carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029-1035 (1994).
    • (1994) N. Engl. J. Med. , vol.330 , pp. 1029-1035
  • 83
    • 84875181661 scopus 로고    scopus 로고
    • Oxidants, antioxidants and the current incurability of metastatic cancers
    • Watson, J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 3, 120144 (2013).
    • (2013) Open Biol. , vol.3 , pp. 120144
    • Watson, J.1
  • 85
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283 (2011).
    • (2011) Science , vol.334 , pp. 1278-1283
    • Anastasiou, D.1
  • 86
    • 84864960912 scopus 로고    scopus 로고
    • Autophagy, stress, and cancer metabolism: What doesn't kill you makes you stronger
    • Mathew, R. & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 76, 389-396 (2011).
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 389-396
    • Mathew, R.1    White, E.2
  • 87
    • 70350575440 scopus 로고    scopus 로고
    • Modulation of intracellular ROS levels by TIGAR controls autophagy
    • Bensaad, K., Cheung, E. C. & Vousden, K. H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28, 3015-3026 (2009).
    • (2009) EMBO J. , vol.28 , pp. 3015-3026
    • Bensaad, K.1    Cheung, E.C.2    Vousden, K.H.3
  • 88
    • 66449099090 scopus 로고    scopus 로고
    • Autophagy suppresses tumorigenesis through elimination of p62
    • Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075 (2009).
    • (2009) Cell , vol.137 , pp. 1062-1075
    • Mathew, R.1
  • 89
    • 84859639962 scopus 로고    scopus 로고
    • Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
    • Lee, I. H. et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336, 225-228 (2012).
    • (2012) Science , vol.336 , pp. 225-228
    • Lee, I.H.1
  • 93
    • 0030930366 scopus 로고    scopus 로고
    • A model for p53-induced apoptosis
    • DOI 10.1038/38525
    • Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300-305 (1997). (Pubitemid 27406646)
    • (1997) Nature , vol.389 , Issue.6648 , pp. 300-305
    • Polyak, K.1    Xia, Y.2    Zweier, J.L.3    Kinzler, K.W.4    Vogelstein, B.5
  • 94
    • 78650152988 scopus 로고    scopus 로고
    • P53, ROS and senescence in the control of aging
    • Vigneron, A. & Vousden, K. H. p53, ROS and senescence in the control of aging. Aging 2, 471-474 (2010).
    • (2010) Aging , vol.2 , pp. 471-474
    • Vigneron, A.1    Vousden, K.H.2
  • 95
    • 0033583242 scopus 로고    scopus 로고
    • Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species
    • Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936-7940 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 7936-7940
    • Lee, A.C.1
  • 96
    • 79960060305 scopus 로고    scopus 로고
    • Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
    • De Nicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109 (2011).
    • (2011) Nature , vol.475 , pp. 106-109
    • De Nicola, G.M.1
  • 97
    • 84889575198 scopus 로고    scopus 로고
    • Modulation of oxidative stress as an anticancer strategy
    • Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nature Rev. Drug Discov. 12, 931-947 (2013).
    • (2013) Nature Rev. Drug Discov. , vol.12 , pp. 931-947
    • Gorrini, C.1    Harris, I.S.2    Mak, T.W.3
  • 98
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • DOI 10.1016/j.cell.2005.02.001
    • Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483-495 (2005). (Pubitemid 40269763)
    • (2005) Cell , vol.120 , Issue.4 , pp. 483-495
    • Balaban, R.S.1    Nemoto, S.2    Finkel, T.3
  • 100
    • 37249016870 scopus 로고    scopus 로고
    • A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans
    • DOI 10.1534/genetics.107.080788
    • Yang, W., Li, J. & Hekimi, S. A. Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177, 2063-2074 (2007). (Pubitemid 350276988)
    • (2007) Genetics , vol.177 , Issue.4 , pp. 2063-2074
    • Yang, W.1    Li, J.2    Hekimi, S.3
  • 102
    • 34748850786 scopus 로고    scopus 로고
    • Glucose Restriction Extends Caenorhabditis elegans Life Span by Inducing Mitochondrial Respiration and Increasing Oxidative Stress
    • DOI 10.1016/j.cmet.2007.08.011, PII S1550413107002562
    • Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell. Metab. 6, 280-293 (2007). (Pubitemid 47468090)
    • (2007) Cell Metabolism , vol.6 , Issue.4 , pp. 280-293
    • Schulz, T.J.1    Zarse, K.2    Voigt, A.3    Urban, N.4    Birringer, M.5    Ristow, M.6
  • 103
    • 84859475161 scopus 로고    scopus 로고
    • Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal
    • Zarse, K. et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell. Metab. 15, 451-465 (2012).
    • (2012) Cell. Metab. , vol.15 , pp. 451-465
    • Zarse, K.1
  • 105
    • 26944501617 scopus 로고    scopus 로고
    • Evolutionary conservation of the clk-1-dependent mechanism of longevity: Loss of mclk1 increases cellular fitness and lifespan in mice
    • DOI 10.1101/gad.1352905
    • Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424-2434 (2005). (Pubitemid 41483690)
    • (2005) Genes and Development , vol.19 , Issue.20 , pp. 2424-2434
    • Liu, X.1    Jiang, N.2    Hughes, B.3    Bigras, E.4    Shoubridge, E.5    Hekimi, S.6
  • 107
    • 84864065342 scopus 로고    scopus 로고
    • Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2
    • Baker, B. M., Nargund, A. M., Sun, T. & Haynes, C. M. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet. 8, e1002760 (2012).
    • (2012) PLoS Genet. , vol.8
    • Baker, B.M.1    Nargund, A.M.2    Sun, T.3    Haynes, C.M.4
  • 108
    • 79958068191 scopus 로고    scopus 로고
    • Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling
    • Pan, Y., Schroeder, E. A., Ocampo, A., Barrientos, A. & Shadel, G. S. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell. Metab. 13, 668-678 (2011).
    • (2011) Cell. Metab. , vol.13 , pp. 668-678
    • Pan, Y.1    Schroeder, E.A.2    Ocampo, A.3    Barrientos, A.4    Shadel, G.S.5
  • 109
    • 66649109663 scopus 로고    scopus 로고
    • Antioxidants prevent health-promoting effects of physical exercise in humans
    • Ristow, M. et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl Acad. Sci. USA 106, 8665-8670 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 8665-8670
    • Ristow, M.1
  • 110
    • 79952144564 scopus 로고    scopus 로고
    • 2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix
    • 2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell. Metab. 13, 340-350 (2011).
    • (2011) Cell. Metab. , vol.13 , pp. 340-350
    • Cocheme, H.M.1
  • 111
    • 84891778532 scopus 로고    scopus 로고
    • Methods for detection of mitochondrial and cellular reactive oxygen species
    • Dikalov, S. I. & Harrison, D. G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal 20, 372-382 (2014).
    • (2014) Antioxid. Redox Signal , vol.20 , pp. 372-382
    • Dikalov, S.I.1    Harrison, D.G.2
  • 113
    • 34247255302 scopus 로고    scopus 로고
    • Molecular imaging of hydrogen peroxide produced for cell signaling
    • DOI 10.1038/nchembio871, PII NCHEMBIO871
    • Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol. 3, 263-267 (2007). (Pubitemid 46625830)
    • (2007) Nature Chemical Biology , vol.3 , Issue.5 , pp. 263-267
    • Miller, E.W.1    Tulyanthan, O.2    Isacoff, E.Y.3    Chang, C.J.4
  • 114
    • 33645283923 scopus 로고    scopus 로고
    • Genetically encoded fluorescent indicator for intracellular hydrogen peroxide
    • Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods 3, 281-286 (2006).
    • (2006) Nature Methods , vol.3 , pp. 281-286
    • Belousov, V.V.1
  • 116
    • 84856940017 scopus 로고    scopus 로고
    • Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides
    • Rhee, S. G., Woo, H. A., Kil, I. S. & Bae, S. H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 4403-4410
    • Rhee, S.G.1    Woo, H.A.2    Kil, I.S.3    Bae, S.H.4
  • 117
    • 84872550003 scopus 로고    scopus 로고
    • SOD1 integrates signals from oxygen and glucose to repress respiration
    • Reddi, A. R. & Culotta, V. C. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 152, 224-235 (2013).
    • (2013) Cell , vol.152 , pp. 224-235
    • Reddi, A.R.1    Culotta, V.C.2
  • 118
    • 84879026707 scopus 로고    scopus 로고
    • SIRT3 regulation of mitochondrial oxidative stress
    • Bause, A. S. & Haigis, M. C. SIRT3 regulation of mitochondrial oxidative stress. Exp. Gerontol. 48, 634-639 (2013).
    • (2013) Exp. Gerontol. , vol.48 , pp. 634-639
    • Bause, A.S.1    Haigis, M.C.2
  • 119
    • 77957652745 scopus 로고    scopus 로고
    • Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling
    • Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681-15686 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 15681-15686
    • Miller, E.W.1    Dickinson, B.C.2    Chang, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.