-
1
-
-
84894635747
-
Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides
-
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). doi:10.1021/nn500064s
-
(2014)
ACS Nano
, vol.8
, Issue.2
, pp. 1102-1120
-
-
Jariwala, D.1
Sangwan, V.K.2
Lauhon, L.J.3
Marks, T.J.4
Hersam, M.C.5
-
2
-
-
84869074729
-
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
-
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). doi:10.1038/nnano.2012.193
-
(2012)
Nat. Nanotechnol.
, vol.7
, Issue.11
, pp. 699-712
-
-
Wang, Q.H.1
Kalantar-Zadeh, K.2
Kis, A.3
Coleman, J.N.4
Strano, M.S.5
-
3
-
-
84900485544
-
2 using optical spectroscopy
-
2 using optical spectroscopy. Semicond. Sci Tech. 29(6), 064008 (2014). doi:10.1088/0268-1242/29/6/064008
-
(2014)
Semicond. Sci Tech.
, vol.29
, Issue.6
, pp. 064008
-
-
Plechinger, G.1
Mann, J.2
Preciado, E.3
Barroso, D.4
Nguyen, A.5
Eroms, J.6
Schueller, C.7
Bartels, L.8
Korn, T.9
-
8
-
-
85038872277
-
-
Z.M. Wang, MoS2: Materials, Physics, and Devices (Springer, Ney work, 21, pp:1–291, 2014)
-
-
-
-
9
-
-
36849096704
-
2 several molecular layers thick
-
2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966). doi:10.1063/1.1708627
-
(1966)
J. Appl. Phys.
, vol.37
, Issue.4
, pp. 1928-1929
-
-
Frindt, R.1
-
10
-
-
84860329324
-
2 atomic layers with chemical vapor deposition
-
2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
-
(2012)
Adv. Mater.
, vol.24
, Issue.17
, pp. 2320-2325
-
-
Lee, Y.H.1
Zhang, X.Q.2
Zhang, W.3
Chang, M.T.4
Lin, C.T.5
Chang, K.D.6
Yu, Y.C.7
Wang, J.T.W.8
Chang, C.S.9
Li, L.J.10
Lin, T.W.11
-
11
-
-
84861824346
-
Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering
-
H. Pan, Y.W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J. Phys. Chem. C 116(21), 11752–11757 (2012). doi:10.1021/jp3015782
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.21
, pp. 11752-11757
-
-
Pan, H.1
Zhang, Y.W.2
-
12
-
-
84902676737
-
2 and its visible light photocatalytic properties
-
2 and its visible light photocatalytic properties. Mater. Lett. 131, 122–124 (2014). doi:10.1016/j.matlet.2014.05.162
-
(2014)
Mater. Lett
, vol.131
, pp. 122-124
-
-
Zhou, Z.1
Lin, Y.2
Zhang, P.3
Ashalley, E.4
Shafa, M.5
Li, H.6
Wu, J.7
Wang, Z.8
-
14
-
-
84856170872
-
2 phototransistors
-
2 phototransistors. ACS Nano 6(1), 74–80 (2012). doi:10.1021/nn2024557
-
(2012)
ACS Nano
, vol.6
, Issue.1
, pp. 74-80
-
-
Yin, Z.1
Li, H.2
Li, H.3
Jiang, L.4
Shi, Y.5
Sun, Y.6
Lu, G.7
Zhang, Q.8
Chen, X.9
Zhang, H.10
-
15
-
-
84873695431
-
2
-
2. Nano Lett. 13(2), 668–673 (2013). doi:10.1021/nl3043079
-
(2013)
Nano Lett.
, vol.13
, Issue.2
, pp. 668-673
-
-
Perkins, F.K.1
Friedman, A.L.2
Cobas, E.3
Campbell, P.M.4
Jernigan, G.G.5
Jonker, B.T.6
-
18
-
-
83455244314
-
2 microspheres composed of few-layered nanosheets and their lithium storage properties
-
2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 4(1), 95–98 (2012). doi:10.1039/c1nr11552a
-
(2012)
Nanoscale
, vol.4
, Issue.1
, pp. 95-98
-
-
Ding, S.1
Zhang, D.2
Chen, J.S.3
Lou, X.W.4
-
19
-
-
79959807824
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011). doi:10.1021/nn200659w
-
(2011)
ACS Nano
, vol.5
, Issue.6
, pp. 4720-4728
-
-
Chang, K.1
Chen, W.2
-
22
-
-
79959788241
-
Graphene-based materials: synthesis, characterization, properties, and applications
-
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011). doi:10.1002/smll.201002009
-
(2011)
Small
, vol.7
, Issue.14
, pp. 1876-1902
-
-
Huang, X.1
Yin, Z.2
Wu, S.3
Qi, X.4
He, Q.5
Zhang, Q.6
Yan, Q.7
Boey, F.8
Zhang, H.9
-
23
-
-
84863834607
-
2 nanosheet phototransistors with thickness-modulated optical energy gap
-
2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695–3700 (2012). doi:10.1021/nl301485q
-
(2012)
Nano Lett.
, vol.12
, Issue.7
, pp. 3695-3700
-
-
Lee, H.S.1
Min, S.W.2
Chang, Y.G.3
Park, M.K.4
Nam, T.5
Kim, H.6
Kim, J.H.7
Ryu, S.8
Im, S.9
-
24
-
-
84865440970
-
2 nanoribbon transistors: transition from depletion mode to enhancement mode by channel-width trimming
-
2 nanoribbon transistors: transition from depletion mode to enhancement mode by channel-width trimming. IEEE Electr. Device L 33(9), 1273–1275 (2012). doi:10.1109/LED.2012.2202630
-
(2012)
IEEE Electr. Device L
, vol.33
, Issue.9
, pp. 1273-1275
-
-
Liu, H.1
Gu, J.J.2
Ye, P.D.3
-
25
-
-
84905572161
-
2 nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics
-
2 nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics. J. Alloy. Compd. 615, 989–993 (2014). doi:10.1016/j.jallcom.2014.07.016
-
(2014)
J. Alloy. Compd.
, vol.615
, pp. 989-993
-
-
Wang, X.1
Yang, S.2
Yue, Q.3
Wu, F.4
Li, J.5
-
26
-
-
83655172584
-
2
-
2. Nano Lett. 11(12), 5111–5116 (2011). doi:10.1021/nl201874w
-
(2011)
Nano Lett.
, vol.11
, Issue.12
, pp. 5111-5116
-
-
Eda, G.1
Yamaguchi, H.2
Voiry, D.3
Fujita, T.4
Chen, M.5
Chhowalla, M.6
-
29
-
-
83555163728
-
Electrical contacts to one- and two-dimensional nanomaterials
-
F. Leonard, A.A. Talin, Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 6(12), 773–783 (2011). doi:10.1038/nnano.2011.196
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.12
, pp. 773-783
-
-
Leonard, F.1
Talin, A.A.2
-
30
-
-
85006059522
-
Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors
-
Y. Du, L. Yang, H. Liu, P.D. Ye, Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. Appl. Mater. 2(9), 092510 (2014). doi:10.1063/1.4894198
-
(2014)
Appl. Mater.
, vol.2
, Issue.9
, pp. 092510
-
-
Du, Y.1
Yang, L.2
Liu, H.3
Ye, P.D.4
-
33
-
-
84876117532
-
K. Banerjee
-
IEEE Int. Electr. Devices Meet, IEDM
-
J.H. Kang, D. Sarkar, W. Liu, D. Jena, K. Banerjee, A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. 2012 IEEE Int. Electr. Devices Meet. (IEDM) (2012). doi:10.1109/IEDM.2012.6479060
-
(2012)
A computational study of metal-contacts to beyond-graphene 2D semiconductor materials
, vol.2012
-
-
Kang, J.H.1
Sarkar, D.2
Liu, W.3
Jena, D.4
-
35
-
-
84896779852
-
2 transistors with low-resistance molybdenum contacts
-
2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104(9), 093106 (2014). doi:10.1063/1.4866340
-
(2014)
Appl. Phys. Lett.
, vol.104
, Issue.9
, pp. 093106
-
-
Kang, J.1
Liu, W.2
Banerjee, K.3
-
36
-
-
84866104969
-
2 crystals
-
2 crystals. Nat. Commun. 3, 1011 (2012). doi:10.1038/ncomms2018
-
(2012)
Nat. Commun.
, vol.3
, pp. 1011
-
-
Kim, S.1
Konar, A.2
Hwang, W.S.3
Lee, J.H.4
Lee, J.5
Yang, J.6
Jung, C.7
Kim, H.8
Yoo, J.B.9
Choi, J.Y.10
Jin, Y.W.11
Lee, S.Y.12
Jena, D.13
Choi, W.14
Kim, K.15
-
37
-
-
84948696535
-
2 Schottky junctions
-
2 Schottky junctions. Sci. Rep-UK 3, 1634 (2013). doi:10.1038/srep01634
-
(2013)
Sci. Rep-UK
, vol.3
, pp. 1634
-
-
Fontana, M.1
Deppe, T.2
Boyd, A.K.3
Rinzan, M.4
Liu, A.Y.5
Paranjape, M.6
Barbara, P.7
-
38
-
-
84896376786
-
2 P-type transistors and diodes enabled by high work function moox contacts
-
2 P-type transistors and diodes enabled by high work function moox contacts. Nano Lett. 14(3), 1337–1342 (2014). doi:10.1021/nl4043505
-
(2014)
Nano Lett.
, vol.14
, Issue.3
, pp. 1337-1342
-
-
Chuang, S.1
Battaglia, C.2
Azcatl, A.3
McDonnell, S.4
Kang, J.S.5
Yin, X.6
Tosun, M.7
Kapadia, R.8
Fang, H.9
Wallace, R.M.10
Javey, A.11
-
39
-
-
84894132951
-
x contact for silicon solar cells
-
x contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014). doi:10.1021/nl404389u
-
(2014)
Nano Lett.
, vol.14
, Issue.2
, pp. 967-971
-
-
Battaglia, C.1
Yin, X.2
Zheng, M.3
Sharp, I.D.4
Chen, T.5
McDonnell, S.6
Azcatl, A.7
Carraro, C.8
Ma, B.9
Maboudian, R.10
Wallace, R.M.11
Javey, A.12
-
40
-
-
84859795935
-
2 monolayers: a computational study
-
2 monolayers: a computational study. Phy. Rev. Lett. 108(15), 156802 (2012). doi:10.1103/PhysRevLett.108.156802
-
(2012)
Phy. Rev. Lett.
, vol.108
, Issue.15
, pp. 156802
-
-
Popov, I.1
Seifert, G.2
Tomanek, D.3
-
41
-
-
84880154581
-
2 transistors with ferromagnetic contacts
-
2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). doi:10.1021/nl4010157
-
(2013)
Nano Lett.
, vol.13
, Issue.7
, pp. 3106-3110
-
-
Chen, J.-R.1
Odenthal, P.M.2
Swartz, A.G.3
Floyd, G.C.4
Wen, H.5
Luo, K.Y.6
Kawakami, R.K.7
-
42
-
-
84893465925
-
High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts
-
A. Dankert, L. Langouche, M.V. Kamalakar, S.P. Dash, High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014). doi:10.1021/nn404961e
-
(2014)
ACS Nano
, vol.8
, Issue.1
, pp. 476-482
-
-
Dankert, A.1
Langouche, L.2
Kamalakar, M.V.3
Dash, S.P.4
-
43
-
-
84875918227
-
2
-
2. Appl. Phys. Lett. 102(12), 123105 (2013). doi:10.1063/1.4799172
-
(2013)
Appl. Phys. Lett.
, vol.102
, Issue.12
, pp. 123105
-
-
Pradhan, N.R.1
Rhodes, D.2
Zhang, Q.3
Talapatra, S.4
Terrones, M.5
Ajayan, P.M.6
Balicas, L.7
-
46
-
-
84906674861
-
Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities
-
N.R. Pradhan, D. Rhodes, Y. Xin, S. Memaran, L. Bhaskaran, M. Siddiq, S. Hill, P.M. Ajayan, L. Balicas, Ambipolar molybdenum diselenide field-effect transistors: field-effect and hall mobilities. ACS Nano 8(8), 7923–7929 (2014). doi:10.1021/nn501693d
-
(2014)
ACS Nano
, vol.8
, Issue.8
, pp. 7923-7929
-
-
Pradhan, N.R.1
Rhodes, D.2
Xin, Y.3
Memaran, S.4
Bhaskaran, L.5
Siddiq, M.6
Hill, S.7
Ajayan, P.M.8
Balicas, L.9
-
47
-
-
84879650910
-
2 transistors with graphene electrodes
-
2 transistors with graphene electrodes. Small 9(19), 3295–3300 (2013). doi:10.1002/smll.201300134
-
(2013)
Small
, vol.9
, Issue.19
, pp. 3295-3300
-
-
Yoon, J.1
Park, W.2
Bae, G.Y.3
Kim, Y.4
Jang, H.S.5
Hyun, Y.6
Lim, S.K.7
Kahng, Y.H.8
Hong, W.K.9
Lee, B.H.10
Ko, H.C.11
-
48
-
-
85027951220
-
2 transistors
-
2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). doi:10.1038/nmat4080
-
(2014)
Nat. Mater.
, vol.13
, Issue.12
, pp. 1128-1134
-
-
Kappera, R.1
Voiry, D.2
Yalcin, S.E.3
Branch, B.4
Gupta, G.5
Mohite, A.D.6
Chhowalla, M.7
-
49
-
-
84877961084
-
2 field-effect transistors prepared by chemical vapor deposition
-
2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102(19), 193107 (2013). doi:10.1063/1.4804546
-
(2013)
Appl. Phys. Lett.
, vol.102
, Issue.19
, pp. 193107
-
-
Amani, M.1
Chin, M.L.2
Birdwell, A.G.3
O’Regan, T.P.4
Najmaei, S.5
Liu, Z.6
Ajayan, P.M.7
Lou, J.8
Dubey, M.9
-
50
-
-
84866027034
-
2 transistors
-
2 transistors. Nano Lett. 12(9), 4674–4680 (2012). doi:10.1021/nl302015v
-
(2012)
Nano Lett.
, vol.12
, Issue.9
, pp. 4674-4680
-
-
Wang, H.1
Yu, L.2
Lee, Y.H.3
Shi, Y.4
Hsu, A.5
Chin, M.L.6
Li, L.-J.7
Dubey, M.8
Kong, J.9
Palacios, T.10
-
51
-
-
84884223228
-
2
-
2. Appl. Phys. Lett. 103(11), 113505 (2013). doi:10.1063/1.4821344
-
(2013)
Appl. Phys. Lett.
, vol.103
, Issue.11
, pp. 113505
-
-
Zeng, L.1
Xin, Z.2
Chen, S.3
Du, G.4
Kang, J.5
Liu, X.6
-
52
-
-
34047094264
-
Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering
-
D. Jena, A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98(13), 136805 (2007). doi:10.1103/PhysRevLett.98.136805
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.13
, pp. 136805
-
-
Jena, D.1
Konar, A.2
-
53
-
-
84859800724
-
The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition
-
H. Liu, K. Xu, X. Zhang, P.D. Ye, The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition. Appl. Phys. Lett. 100(15), 152115 (2012). doi:10.1063/1.3703595
-
(2012)
Appl. Phys. Lett.
, vol.100
, Issue.15
, pp. 152115
-
-
Liu, H.1
Xu, K.2
Zhang, X.3
Ye, P.D.4
-
54
-
-
72249107106
-
2 gate dielectrics
-
2 gate dielectrics. J. Electrochem. Soc. 157(1), G26–G31 (2010). doi:10.1149/1.3258664
-
(2010)
J. Electrochem. Soc.
, vol.157
, Issue.1
, pp. 26-31
-
-
Swerts, J.1
Peys, N.2
Nyns, L.3
Delabie, A.4
Franquet, A.5
Maes, J.W.6
Van Elshocht, S.7
De Gendt, S.8
-
55
-
-
84879096715
-
2 by oxygen plasma pretreatment
-
2 by oxygen plasma pretreatment. ACS Appl. Mater. Inter. 5(11), 4739–4744 (2013). doi:10.1021/am303261c
-
(2013)
ACS Appl. Mater. Inter.
, vol.5
, Issue.11
, pp. 4739-4744
-
-
Yang, J.1
Kim, S.2
Choi, W.3
Park, S.H.4
Jung, Y.5
Cho, M.H.6
Kim, H.7
-
56
-
-
84897886364
-
2 functionalization for ultra-thin atomic layer deposited dielectrics
-
2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 104(11), 111601 (2014). doi:10.1063/1.4869149
-
(2014)
Appl. Phys. Lett.
, vol.104
, Issue.11
, pp. 111601
-
-
Azcatl, A.1
McDonnell, S.2
Santosh, K.C.3
Peng, X.4
Dong, H.5
Qin, X.6
Addou, R.7
Mordi, G.I.8
Lu, N.9
Kim, J.10
Kim, M.J.11
Cho, K.12
Wallace, R.M.13
-
57
-
-
84906243387
-
2 using trimethylaluminum and ozone
-
2 using trimethylaluminum and ozone. ACS Appl. Mater. Inter. 6(15), 11834–11838 (2014). doi:10.1021/am5032105
-
(2014)
ACS Appl. Mater. Inter.
, vol.6
, Issue.15
, pp. 11834-11838
-
-
Cheng, L.1
Qin, X.2
Lucero, A.T.3
Azcatl, A.4
Huang, J.5
Wallace, R.M.6
Cho, K.7
Kim, J.8
-
58
-
-
84884795947
-
2 field-effect transistors: reduction in sheet and contact resistances
-
2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electr. Device L 34(10), 1328–1330 (2013). doi:10.1109/LED.2013.2277311
-
(2013)
IEEE Electr. Device L
, vol.34
, Issue.10
, pp. 1328-1330
-
-
Du, Y.1
Liu, H.2
Neal, A.T.3
Si, M.4
Ye, P.D.5
-
59
-
-
84901675771
-
Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate
-
J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X.A. Zhang, L. Wang, H. Zhang, A.T.S. Wee, W. Chen, Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323–5329 (2014). doi:10.1021/nn501580c
-
(2014)
ACS Nano
, vol.8
, Issue.5
, pp. 5323-5329
-
-
Lin, J.D.1
Han, C.2
Wang, F.3
Wang, R.4
Xiang, D.5
Qin, S.6
Zhang, X.A.7
Wang, L.8
Zhang, H.9
Wee, A.T.S.10
Chen, W.11
-
60
-
-
84877256117
-
Degenerate n-doping of few-layer transition metal dichalcogenides by potassium
-
H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13(5), 1991–1995 (2013). doi:10.1021/nl400044m
-
(2013)
Nano Lett.
, vol.13
, Issue.5
, pp. 1991-1995
-
-
Fang, H.1
Tosun, M.2
Seol, G.3
Chang, T.C.4
Takei, K.5
Guo, J.6
Javey, A.7
-
62
-
-
84910125463
-
2
-
2. Nano Lett. 14(11), 6275–6280 (2014). doi:10.1021/nl502603d
-
(2014)
Nano Lett.
, vol.14
, Issue.11
, pp. 6275-6280
-
-
Yang, L.1
Majumdar, K.2
Liu, H.3
Du, Y.4
Wu, H.5
Hatzistergos, M.6
Hung, P.Y.7
Tieckelmann, R.8
Tsai, W.9
Hobbs, C.10
Ye, P.D.11
-
63
-
-
79953758358
-
High-frequency, scaled graphene transistors on diamond-like carbon
-
Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011). doi:10.1038/nature09979
-
(2011)
Nature
, vol.472
, Issue.7341
, pp. 74-78
-
-
Wu, Y.1
Lin, Y.2
Bol, A.A.3
Jenkins, K.A.4
Xia, F.5
Farmer, D.B.6
Zhu, Y.7
Avouris, P.8
-
64
-
-
0002432598
-
The Schottky effect in low frequency circuits
-
J.B. Johnson, The Schottky effect in low frequency circuits. Phys. Rev. 26(1), 71 (1925). doi:10.1103/PhysRev.26.71
-
(1925)
Phys. Rev.
, vol.26
, Issue.1
, pp. 71
-
-
Johnson, J.B.1
-
66
-
-
0028548483
-
Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures
-
J.M. Chang, A.A. Abidi, C.R. Viswanathan, Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures. IEEE Trans. Electron Devices 41(11), 1965–1971 (1994). doi:10.1109/16.333812
-
(1994)
IEEE Trans. Electron Devices
, vol.41
, Issue.11
, pp. 1965-1971
-
-
Chang, J.M.1
Abidi, A.A.2
Viswanathan, C.R.3
-
67
-
-
80054983584
-
2 field-effect transistors
-
2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011). doi:10.1021/nn202852j
-
(2011)
ACS Nano
, vol.5
, Issue.10
, pp. 7707-7712
-
-
Ghatak, S.1
Pal, A.N.2
Ghosh, A.3
-
69
-
-
77956174687
-
Low-frequency noise measurements of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfAlO gate dielectric
-
C. Kayis, J.H. Leach, C.Y. Zhu, M. Wu, X. Li, U. Oezguer, H. Morkoc, X. Yang, V. Misra, P.H. Handel, Low-frequency noise measurements of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfAlO gate dielectric. IEEE Electr. Device L. 31(9), 1041–1043 (2010). doi:10.1109/LED.2010.2055823
-
(2010)
IEEE Electr. Device L.
, vol.31
, Issue.9
, pp. 1041-1043
-
-
Kayis, C.1
Leach, J.H.2
Zhu, C.Y.3
Wu, M.4
Li, X.5
Oezguer, U.6
Morkoc, H.7
Yang, X.8
Misra, V.9
Handel, P.H.10
-
70
-
-
85038866606
-
Noise and Fluctuations Control in Electronic Devices (American Scientific Publishers
-
A.A. Balandin, Noise and Fluctuations Control in Electronic Devices (American Scientific Publishers, Los Angeles, pp.1–411, 2002)
-
(2002)
Los Angeles
, pp. 1-411
-
-
Balandin, A.A.1
-
71
-
-
4344692282
-
2 gate dielectric n-channel metal-oxide-semiconductor field-effect transistors
-
2 gate dielectric n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 85(6), 1057–1059 (2004). doi:10.1063/1.1779967
-
(2004)
Appl. Phys. Lett.
, vol.85
, Issue.6
, pp. 1057-1059
-
-
Simoen, E.1
Mercha, A.2
Claeys, C.3
Young, E.4
-
72
-
-
84903452381
-
2 transistor
-
2 transistor. ACS Nano 8(6), 5633–5640 (2014). doi:10.1021/nn4066473
-
(2014)
ACS Nano
, vol.8
, Issue.6
, pp. 5633-5640
-
-
Xie, X.1
Sarkar, D.2
Liu, W.3
Kang, J.4
Marinov, O.5
Deen, M.J.6
Banerjee, K.7
-
73
-
-
84884249788
-
2 transistors
-
2 transistors. Nano Lett. 13(9), 4351–4355 (2013). doi:10.1021/nl402150r
-
(2013)
Nano Lett.
, vol.13
, Issue.9
, pp. 4351-4355
-
-
Sangwan, V.K.1
Arnold, H.N.2
Jariwala, D.3
Marks, T.J.4
Lauhon, L.J.5
Hersam, M.C.6
-
75
-
-
84899645978
-
2 transistors: relative contributions of the channel and contacts
-
2 transistors: relative contributions of the channel and contacts. Appl. Phys. Lett. 104(15), 153104 (2014). doi:10.1063/1.4871374
-
(2014)
Appl. Phys. Lett.
, vol.104
, Issue.15
, pp. 153104
-
-
Renteria, J.1
Samnakay, R.2
Rumyantsev, S.L.3
Jiang, C.4
Goli, P.5
Shur, M.S.6
Balandin, A.A.7
-
77
-
-
84883740799
-
2
-
2. Nat. Nanotechnol. 8(9), 634–638 (2013). doi:10.1038/nnano.2013.151
-
(2013)
Nat. Nanotechnol.
, vol.8
, Issue.9
, pp. 634-638
-
-
Jones, A.M.1
Yu, H.2
Ghimire, N.J.3
Wu, S.4
Aivazian, G.5
Ross, J.S.6
Zhao, B.7
Yan, J.8
Mandrus, D.G.9
Xiao, D.10
Yao, W.11
Xu, X.12
-
78
-
-
85099670597
-
-
2 on h-BN. arXiv:1411.2086 (2014)
-
(2014)
2 on h-BN. arXiv
, vol.1411
, pp. 2086
-
-
Pradhan, N.R.1
Memaran, S.2
Lu, D.R.Z.3
Ludwig, J.4
Zhou, Q.5
Ajayan, P.6
Smirnov, D.7
Balicas, L.8
-
79
-
-
84904158342
-
Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors
-
H.M. Li, D.Y. Lee, M.S. Choi, D. Qu, X. Liu, C.H. Ra, W.J. Yoo, Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors. SCI Rep-UK 4, 4041 (2014). doi:10.1038/srep04041
-
(2014)
SCI Rep-UK
, vol.4
, pp. 4041
-
-
Li, H.M.1
Lee, D.Y.2
Choi, M.S.3
Qu, D.4
Liu, X.5
Ra, C.H.6
Yoo, W.J.7
-
80
-
-
84917707395
-
2 gas environments
-
2 gas environments. ACS Appl. Mater. Interface 6(23), 21645–21651 (2014). doi:10.1021/am506716a
-
(2014)
ACS Appl. Mater. Interface
, vol.6
, Issue.23
, pp. 21645-21651
-
-
Khan, M.F.1
Iqbal, M.W.2
Iqbal, M.Z.3
Shehzad, M.A.4
Seo, Y.5
Eom, J.6
-
81
-
-
84897911591
-
2 field-effect transistors
-
2 field-effect transistors. Nanotechnology 25(15), 155201 (2014). doi:10.1088/0957-4484/25/15/155201
-
(2014)
Nanotechnology
, vol.25
, Issue.15
, pp. 155201
-
-
Cho, K.1
Kim, T.Y.2
Park, W.3
Park, J.4
Kim, D.5
Jang, J.6
Jeong, H.7
Hong, S.8
Lee, T.9
-
82
-
-
84882796855
-
2 metal-semiconductor-metal photodetectors: photogain and radiation resistance
-
2 metal-semiconductor-metal photodetectors: photogain and radiation resistance. IEEE J. Sel. Top. Quantum 20(1), 3800206 (2014). doi:10.1109/JSTQE.2013.2268383
-
(2014)
IEEE J. Sel. Top. Quantum
, vol.20
, Issue.1
, pp. 3800206
-
-
Tsai, D.S.1
Lien, D.H.2
Tsai, M.L.3
Su, S.H.4
Chen, K.M.5
Ke, J.J.6
Yu, Y.C.7
Li, L.J.8
He, J.H.9
-
83
-
-
84893363672
-
2 with resonant plasmonic nanoshells
-
2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104(3), 031112 (2014). doi:10.1063/1.4862745
-
(2014)
Appl. Phys. Lett.
, vol.104
, Issue.3
, pp. 031112
-
-
Sobhani, A.1
Lauchner, A.2
Najmaei, S.3
Ayala-Orozco, C.4
Wen, F.5
Lou, J.6
Halas, N.J.7
-
84
-
-
84926231488
-
2 heterostructures
-
2 heterostructures. Nat. Nanotechnol. 9(9), 682–686 (2014). doi:10.1038/nnano.2014.167
-
(2014)
Nat. Nanotechnol.
, vol.9
, Issue.9
, pp. 682-686
-
-
Hong, X.1
Kim, J.2
Shi, S.F.3
Zhang, Y.4
Jin, C.5
Sun, Y.6
Tongay, S.7
Wu, J.8
Zhang, Y.9
Wang, F.10
-
85
-
-
84915778459
-
2 heterostructure transistors
-
2 heterostructure transistors. Adv. Funct. Mater. 24(44), 7025–7031 (2014). doi:10.1002/adfm.201401504
-
(2014)
Adv. Funct. Mater.
, vol.24
, Issue.44
, pp. 7025-7031
-
-
Huo, N.1
Kang, J.2
Wei, Z.3
Li, S.S.4
Li, J.5
Wei, S.H.6
-
86
-
-
84899415979
-
2 field-effect transistor for next-generation label-free biosensors
-
2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992–4003 (2014). doi:10.1021/nn5009148
-
(2014)
ACS Nano
, vol.8
, Issue.4
, pp. 3992-4003
-
-
Sarkar, D.1
Liu, W.2
Xie, X.3
Anselmo, A.C.4
Mitragotri, S.5
Banerjee, K.6
-
87
-
-
84896972895
-
2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution
-
2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6), 1101–1105 (2014). doi:10.1002/smll.201302081
-
(2014)
Small
, vol.10
, Issue.6
, pp. 1101-1105
-
-
Wang, L.1
Wang, Y.2
Wong, J.I.3
Palacios, T.4
Kong, J.5
Yang, H.Y.6
-
88
-
-
84901649888
-
2 transistors
-
2 transistors. ACS Nano 8(5), 5304–5314 (2014). doi:10.1021/nn5015215
-
(2014)
ACS Nano
, vol.8
, Issue.5
, pp. 5304-5314
-
-
Liu, B.1
Chen, L.2
Liu, G.3
Abbas, A.N.4
Fathi, M.5
Zhou, C.6
-
89
-
-
84880831944
-
Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers
-
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013). doi:10.1038/nmat3673
-
(2013)
Nat. Mater.
, vol.12
, Issue.8
, pp. 754-759
-
-
Najmaei, S.1
Liu, Z.2
Zhou, W.3
Zou, X.4
Shi, G.5
Lei, S.6
Yakobson, B.I.7
Idrobo, J.C.8
Ajayan, P.M.9
Lou, J.10
-
90
-
-
84855440960
-
2 film-based field-effect transistors for sensing NO at room temperature
-
2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). doi:10.1002/smll.201101016
-
(2012)
Small
, vol.8
, Issue.1
, pp. 63-67
-
-
Li, H.1
Yin, Z.2
He, Q.3
Li, H.4
Huang, X.5
Lu, G.6
Fam, D.W.H.7
Tok, A.I.Y.8
Zhang, Q.9
Zhang, H.10
-
91
-
-
84879648335
-
2 transistors
-
2 transistors. ACS Nano 7(6), 4879–4891 (2013). doi:10.1021/nn400026u
-
(2013)
ACS Nano
, vol.7
, Issue.6
, pp. 4879-4891
-
-
Late, D.J.1
Huang, Y.K.2
Liu, B.3
Acharya, J.4
Shirodkar, S.N.5
Luo, J.6
Yan, A.7
Charles, D.8
Waghmare, U.V.9
Dravid, V.P.10
Rao, C.N.R.11
-
92
-
-
84908217423
-
2 field effect transistor devices
-
2 field effect transistor devices. Solid State Electron. 101, 2–7 (2014). doi:10.1016/j.sse.2014.06.013
-
(2014)
Solid State Electron.
, vol.101
, pp. 2-7
-
-
Friedman, A.L.1
Perkins, F.K.2
Cobas, E.3
Jernigan, G.G.4
Campbell, P.M.5
Hanbicki, A.T.6
Jonker, B.T.7
-
93
-
-
84922641585
-
2 biosensors enable highly sensitive detection of biomolecules
-
2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014). doi:10.1038/srep07352
-
(2014)
Sci. Rep.
, vol.4
, pp. 7352
-
-
Lee, J.1
Dak, P.2
Lee, Y.3
Park, H.4
Choi, W.5
Alam, M.A.6
Kim, S.7
-
94
-
-
66249125983
-
Multibit storage of organic thin-film field-effect transistors
-
Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, Multibit storage of organic thin-film field-effect transistors. Adv. Mater. 21(19), 1954–1959 (2009). doi:10.1002/adma.200802430
-
(2009)
Adv. Mater.
, vol.21
, Issue.19
, pp. 1954-1959
-
-
Guo, Y.1
Di, C.2
Ye, S.3
Sun, X.4
Zheng, J.5
Wen, Y.6
Wu, W.7
Yu, G.8
Liu, Y.9
-
95
-
-
78449313624
-
Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor
-
J.I. Sohn, S.S. Choi, S.M. Morris, J.S. Bendall, H.J. Coles, W.K. Hong, G. Jo, T. Lee, M.E. Welland, Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett. 10(11), 4316–4320 (2010). doi:10.1021/nl1013713
-
(2010)
Nano Lett.
, vol.10
, Issue.11
, pp. 4316-4320
-
-
Sohn, J.I.1
Choi, S.S.2
Morris, S.M.3
Bendall, J.S.4
Coles, H.J.5
Hong, W.K.6
Jo, G.7
Lee, T.8
Welland, M.E.9
-
96
-
-
42149105894
-
Write strategies for 2 and 4-bit multi-level phase-change memory
-
T. Nirschl, J.B. Philipp, T.D. Flapp, G.W. Burr, B. Rajendran, M.H. Leeo, A. Schrott, M. Yang, M. Breitwisch, C.F. Chen, E. Joseph, M. Lamorey, R. Cheek, S.H. Chen, S. Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R. Bergmann, H.L. Lung, C. Lam, Write strategies for 2 and 4-bit multi-level phase-change memory. IEEE Electr. Devices Meet. (pp: 461–464, 10–12 Dec. 2007). doi:10.1109/IEDM.2007.4418973
-
(2007)
IEEE Electr. Devices Meet. (pp: 461–464
, pp. 10-12
-
-
Nirschl, T.1
Philipp, J.B.2
Flapp, T.D.3
Burr, G.W.4
Rajendran, B.5
Leeo, M.H.6
Schrott, A.7
Yang, M.8
Breitwisch, M.9
Chen, C.F.10
Joseph, E.11
Lamorey, M.12
Cheek, R.13
Chen, S.H.14
Zaidi, S.15
Raoux, S.16
Chen, Y.C.17
Zhu, Y.18
Bergmann, R.19
Lung, H.L.20
Lam, C.21
more..
-
97
-
-
84899452328
-
2 transistors
-
2 transistors. ACS Nano 8(4), 4023–4032 (2014). doi:10.1021/nn501181t
-
(2014)
ACS Nano
, vol.8
, Issue.4
, pp. 4023-4032
-
-
Chen, M.1
Nam, H.2
Wi, S.3
Priessnitz, G.4
Gunawan, I.M.5
Liang, X.6
-
98
-
-
84908006497
-
2 nanoflake floating gates for multilevel organic flash memory
-
2 nanoflake floating gates for multilevel organic flash memory. Nanoscale 6(21), 12315–12323 (2014). doi:10.1039/C4NR03448A
-
(2014)
Nanoscale
, vol.6
, Issue.21
, pp. 12315-12323
-
-
Kang, M.1
Kim, Y.A.2
Yun, J.M.3
Khim, D.4
Kim, J.5
Noh, Y.Y.6
Baeg, K.J.7
Kim, D.Y.8
|