메뉴 건너뛰기




Volumn 79, Issue , 2010, Pages 89-130

Eukaryotic chromosome DNA replication: Where, when, and how?

Author keywords

DNA helicase; prereplicative complex; replication fork; replication origin; replication stress; replication timing

Indexed keywords

DNA;

EID: 77953632048     PISSN: 00664154     EISSN: 00664154     Source Type: Book Series    
DOI: 10.1146/annurev.biochem.052308.103205     Document Type: Review
Times cited : (395)

References (312)
  • 1
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71:333-74
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 333-74
    • Bell, S.P.1    Dutta, A.2
  • 2
    • 0026607331 scopus 로고
    • ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex
    • Bell SP, Stillman B. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128-34
    • (1992) Nature , vol.357 , pp. 128-34
    • Bell, S.P.1    Stillman, B.2
  • 3
    • 0024279916 scopus 로고
    • A yeast replication origin consists of multiple copies of a small conserved sequence
    • Palzkill TG, Newlon CS. 1988. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell 53:441-50
    • (1988) Cell , vol.53 , pp. 441-50
    • Palzkill, T.G.1    Newlon, C.S.2
  • 4
    • 0026508417 scopus 로고
    • A yeast chromosomal origin of DNA replication defined by multiple functional elements
    • Marahrens Y, Stillman B. 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817-23
    • (1992) Science , vol.255 , pp. 817-23
    • Marahrens, Y.1    Stillman, B.2
  • 5
    • 0030924440 scopus 로고    scopus 로고
    • The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence
    • Theis JF, Newlon CS. 1997. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc. Natl. Acad. Sci. USA 94:10786-91
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 10786-91
    • Theis, J.F.1    Newlon, C.S.2
  • 6
    • 0033055057 scopus 로고    scopus 로고
    • The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks
    • Chuang RY, Kelly TJ. 1999. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl. Acad. Sci. USA 96:2656-61
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2656-61
    • Chuang, R.Y.1    Kelly, T.J.2
  • 7
    • 0042125189 scopus 로고    scopus 로고
    • Sequence-independent DNA binding and replication initiation by the human origin recognition complex
    • Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC. 2003. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17:1894-908
    • (2003) Genes Dev. , vol.17 , pp. 1894-908
    • Vashee, S.1    Cvetic, C.2    Lu, W.3    Simancek, P.4    Kelly, T.J.5    Walter, J.C.6
  • 8
    • 0842307053 scopus 로고    scopus 로고
    • An episomal mammalian replicon: Sequence-independent binding of the origin recognition complex
    • Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R. 2004. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J. 23:191-201
    • (2004) EMBO J. , vol.23 , pp. 191-201
    • Schaarschmidt, D.1    Baltin, J.2    Stehle, I.M.3    Lipps, H.J.4    Knippers, R.5
  • 10
    • 2942628210 scopus 로고    scopus 로고
    • Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin
    • Altman AL, Fanning E. 2004. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol. 24:4138-50
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4138-50
    • Altman, A.L.1    Fanning, E.2
  • 11
    • 1842557591 scopus 로고    scopus 로고
    • The human beta-globin replication initiation region consists of two modular independent replicators
    • Wang L, Lin C-M, Brooks S, Cimbora D, Groudine M, Aladjem MI. 2004. The human beta-globin replication initiation region consists of two modular independent replicators. Mol. Cell. Biol. 24:3373-86
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3373-86
    • Wang, L.1    Lin, C.-M.2    Brooks, S.3    Cimbora, D.4    Groudine, M.5    Aladjem, M.I.6
  • 12
    • 2942655732 scopus 로고    scopus 로고
    • Replication initiation in mammalian cells: Changing preferences
    • Debatisse M, Toledo F, Anglana M. 2004. Replication initiation in mammalian cells: changing preferences. Cell Cycle 3:19-21
    • (2004) Cell Cycle , vol.3 , pp. 19-21
    • Debatisse, M.1    Toledo, F.2    Anglana, M.3
  • 13
    • 23444434202 scopus 로고    scopus 로고
    • A genomic view of eukaryotic DNA replication
    • MacAlpine DM, Bell SP. 2005. A genomic view of eukaryotic DNA replication. Chromosome Res. 13:309-26
    • (2005) Chromosome Res. , vol.13 , pp. 309-26
    • MacAlpine, D.M.1    Bell, S.P.2
  • 14
    • 33746101049 scopus 로고    scopus 로고
    • Genome-wide identification of replication origins in yeast by comparative genomics
    • Nieduszynski CA, Knox Y, Donaldson AD. 2006. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20:1874-79
    • (2006) Genes Dev. , vol.20 , pp. 1874-79
    • Nieduszynski, C.A.1    Knox, Y.2    Donaldson, A.D.3
  • 15
    • 34249739682 scopus 로고    scopus 로고
    • Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication
    • Speck C, Stillman B. 2007. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J. Biol. Chem. 282:11705-14
    • (2007) J. Biol. Chem. , vol.282 , pp. 11705-14
    • Speck, C.1    Stillman, B.2
  • 17
    • 1842509904 scopus 로고    scopus 로고
    • DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
    • Remus D, Beall EL, Botchan MR. 2004. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23:897-907
    • (2004) EMBO J. , vol.23 , pp. 897-907
    • Remus, D.1    Beall, E.L.2    Botchan, M.R.3
  • 18
    • 57649148785 scopus 로고    scopus 로고
    • Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions
    • Houchens CR, Lu W, Chuang RY, Frattini MG, Fuller A, Simancek P, et al. 2008. Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions. J. Biol. Chem. 283:30216-24
    • (2008) J. Biol. Chem. , vol.283 , pp. 30216-24
    • Houchens, C.R.1    Lu, W.2    Chuang, R.Y.3    Frattini, M.G.4    Fuller, A.5    Simancek, P.6
  • 19
    • 0347457073 scopus 로고    scopus 로고
    • Role for a Drosophila Myb-containing protein complex in site-specific DNA replication
    • Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS, Botchan MR. 2002. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420:833-37
    • (2002) Nature , vol.420 , pp. 833-37
    • Beall, E.L.1    Manak, J.R.2    Zhou, S.3    Bell, M.4    Lipsick, J.S.5    Botchan, M.R.6
  • 20
    • 0035092886 scopus 로고    scopus 로고
    • DNA replication control through interaction of E2F-RB and the origin recognition complex
    • Bosco G, Du W, Orr-Weaver TL. 2001. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat. Cell Biol. 3:289-95
    • (2001) Nat. Cell Biol. , vol.3 , pp. 289-95
    • Bosco, G.1    Du, W.2    Orr-Weaver, T.L.3
  • 21
    • 33845212649 scopus 로고    scopus 로고
    • Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin
    • Minami H, Takahashi J, Suto A, Saitoh Y, Tsutsumi K. 2006. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol. Cell. Biol. 26:8770-80
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 8770-80
    • Minami, H.1    Takahashi, J.2    Suto, A.3    Saitoh, Y.4    Tsutsumi, K.5
  • 23
    • 0035861492 scopus 로고    scopus 로고
    • Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins
    • Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, et al. 2001. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294:2357-60
    • (2001) Science , vol.294 , pp. 2357-60
    • Wyrick, J.J.1    Aparicio, J.G.2    Chen, T.3    Barnett, J.D.4    Jennings, E.G.5
  • 24
    • 0346873031 scopus 로고    scopus 로고
    • Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe
    • Segurado M, de Luis A, Antequera F. 2003. Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep. 4:1048-53
    • (2003) EMBO Rep. , vol.4 , pp. 1048-53
    • Segurado, M.1    De Luis, A.2    Antequera, F.3
  • 25
    • 33947110984 scopus 로고    scopus 로고
    • Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast
    • Hayashi M, Katou Y, Itoh T, Tazumi A, Yamada Y, et al. 2007. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26:1327-39
    • (2007) EMBO J. , vol.26 , pp. 1327-39
    • Hayashi, M.1    Katou, Y.2    Itoh, T.3    Tazumi, A.4    Yamada, Y.5
  • 26
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine DM, Rodriguez HK, Bell SP. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18:3094-105
    • (2004) Genes Dev. , vol.18 , pp. 3094-105
    • MacAlpine, D.M.1    Rodriguez, H.K.2    Bell, S.P.3
  • 27
    • 57349149434 scopus 로고    scopus 로고
    • Genome-wide studies highlight indirect links between human replication origins and gene regulation
    • Cadoret J-C, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, et al. 2008. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl. Acad. Sci. USA 105:15837-42
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15837-42
    • Cadoret, J.-C.1    Meisch, F.2    Hassan-Zadeh, V.3    Luyten, I.4    Guillet, C.5
  • 29
    • 76049105950 scopus 로고    scopus 로고
    • Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
    • Karnani N, Taylor CM, Malhotra A, Dutta A. 2010. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21:393-94
    • (2010) Mol. Biol. Cell , vol.21 , pp. 393-94
    • Karnani, N.1    Taylor, C.M.2    Malhotra, A.3    Dutta, A.4
  • 30
    • 0037031834 scopus 로고    scopus 로고
    • MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts
    • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC. 2002. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem. 277:33049-57
    • (2002) J. Biol. Chem. , vol.277 , pp. 33049-57
    • Edwards, M.C.1    Tutter, A.V.2    Cvetic, C.3    Gilbert, C.H.4    Prokhorova, T.A.5    Walter, J.C.6
  • 31
    • 0037319618 scopus 로고    scopus 로고
    • Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem
    • Hyrien O, Marheineke K, Goldar A. 2003. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. BioEssays 25:116-25
    • (2003) BioEssays , vol.25 , pp. 116-25
    • Hyrien, O.1    Marheineke, K.2    Goldar, A.3
  • 32
    • 0032245260 scopus 로고    scopus 로고
    • Distal sequences, but not ori-p/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin
    • Kalejta RF, Li X, Mesner LD, Dijkwel PA, Lin HB, Hamlin JL. 1998. Distal sequences, but not ori-p/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell 2:797-806
    • (1998) Mol. Cell , vol.2 , pp. 797-806
    • Kalejta, R.F.1    Li, X.2    Mesner, L.D.3    Dijkwel, P.A.4    Lin, H.B.5    Hamlin, J.L.6
  • 33
    • 18244367662 scopus 로고    scopus 로고
    • Specific signals at the 3' end of the DHFR gene define one boundary of the downstream origin of replication
    • Mesner LD, Hamlin JL. 2005. Specific signals at the 3' end of the DHFR gene define one boundary of the downstream origin of replication. Genes Dev. 19:1053-66
    • (2005) Genes Dev. , vol.19 , pp. 1053-66
    • Mesner, L.D.1    Hamlin, J.L.2
  • 34
    • 0028971217 scopus 로고
    • Participation of the human beta-globin locus control region in initiation of DNA replication
    • Aladjem MI, Groudine M, Brody LL, Dieken ES, Fournier RE, Wahl GM et al. 1995. Participation of the human beta-globin locus control region in initiation of DNA replication. Science 270:815-19
    • (1995) Science , vol.270 , pp. 815-19
    • Aladjem, M.I.1    Groudine, M.2    Brody, L.L.3    Dieken, E.S.4    Fournier, R.E.5    Wahl, G.M.6
  • 35
    • 33645962818 scopus 로고    scopus 로고
    • Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence
    • Hayashida T, Oda M, Ohsawa K, Yamaguchi A, Hosozawa T, et al. 2006. Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence. J. Immunol. 176:5446-54
    • (2006) J. Immunol. , vol.176 , pp. 5446-54
    • Hayashida, T.1    Oda, M.2    Ohsawa, K.3    Yamaguchi, A.4    Hosozawa, T.5
  • 36
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero P, Bensimon A, Schwob E. 2002. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16:2479-84
    • (2002) Genes Dev. , vol.16 , pp. 2479-84
    • Pasero, P.1    Bensimon, A.2    Schwob, E.3
  • 37
    • 1842682915 scopus 로고    scopus 로고
    • The NAD+-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication
    • Pappas DLJ, Frisch R, Weinreich M. 2004. The NAD+-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Genes Dev. 18:769-81
    • (2004) Genes Dev. , vol.18 , pp. 769-81
    • Pappas, D.L.J.1    Frisch, R.2    Weinreich, M.3
  • 38
    • 43049124410 scopus 로고    scopus 로고
    • An ARS element inhibits DNA replication through a SIR2-dependent mechanism
    • Crampton A, Chang F, Pappas DLJ, Frisch RL, Weinreich M. 2008. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol. Cell 30:156-66
    • (2008) Mol. Cell , vol.30 , pp. 156-66
    • Crampton, A.1    Chang, F.2    Pappas, D.L.J.3    Frisch, R.L.4    Weinreich, M.5
  • 39
    • 31344462362 scopus 로고    scopus 로고
    • Regulation of replication licensing by acetyltrans-ferase Hbo1
    • Iizuka M, Matsui T, Takisawa H, Smith MM. 2006. Regulation of replication licensing by acetyltrans-ferase Hbo1. Mol. Cell. Biol. 26:1098-108
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1098-108
    • Iizuka, M.1    Matsui, T.2    Takisawa, H.3    Smith, M.M.4
  • 40
    • 53549122748 scopus 로고    scopus 로고
    • HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
    • Miotto B, Struhl K. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22:2633-38
    • (2008) Genes Dev. , vol.22 , pp. 2633-38
    • Miotto, B.1    Struhl, K.2
  • 41
    • 0035805606 scopus 로고    scopus 로고
    • Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1
    • Burke TW, Cook JG, Asano M, Nevins JR. 2001. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J. Biol. Chem. 276:15397-408
    • (2001) J. Biol. Chem. , vol.276 , pp. 15397-408
    • Burke, T.W.1    Cook, J.G.2    Asano, M.3    Nevins, J.R.4
  • 42
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal BD, Calvi BR. 2004. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430:372-76
    • (2004) Nature , vol.430 , pp. 372-76
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 45
    • 17844364938 scopus 로고    scopus 로고
    • The requirement of yeast replication origins for prereplication complex proteins is modulated by transcription
    • Nieduszynski CA, Blow JJ, Donaldson AD. 2005. The requirement of yeast replication origins for prereplication complex proteins is modulated by transcription. Nucleic Acids Res. 33:2410-20
    • (2005) Nucleic Acids Res. , vol.33 , pp. 2410-20
    • Nieduszynski, C.A.1    Blow, J.J.2    Donaldson, A.D.3
  • 46
    • 33749411934 scopus 로고    scopus 로고
    • Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae
    • Donato JJ, Chung SC, Tye BK. 2006. Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae. PLoS Genet. 2:e141
    • (2006) PLoS Genet. , vol.2
    • Donato, J.J.1    Chung, S.C.2    Tye, B.K.3
  • 47
    • 0024009977 scopus 로고
    • Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae
    • Snyder M, Sapolsky RJ, Davis RW. 1988. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2184-94
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 2184-94
    • Snyder, M.1    Sapolsky, R.J.2    Davis, R.W.3
  • 48
    • 0028353898 scopus 로고
    • Transcription inhibits the replication of autonomously replicating plasmids in human cells
    • Haase SB, Heinzel SS, Calos MP. 1994. Transcription inhibits the replication of autonomously replicating plasmids in human cells. Mol. Cell. Biol. 14:2516-24
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 2516-24
    • Haase, S.B.1    Heinzel, S.S.2    Calos, M.P.3
  • 49
    • 1542373676 scopus 로고    scopus 로고
    • The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries
    • Saha S, Shan Y, Mesner LD, Hamlin JL. 2004. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev. 18:397-410
    • (2004) Genes Dev. , vol.18 , pp. 397-410
    • Saha, S.1    Shan, Y.2    Mesner, L.D.3    Hamlin, J.L.4
  • 50
    • 0026440765 scopus 로고
    • Transcriptionally driven cruciform formation in vivo
    • Dayn A, Malkhosyan S, Mirkin SM. 1992. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 20:5991-97
    • (1992) Nucleic Acids Res. , vol.20 , pp. 5991-97
    • Dayn, A.1    Malkhosyan, S.2    Mirkin, S.M.3
  • 51
    • 69249215400 scopus 로고    scopus 로고
    • Divergent transcription: A new feature of active promoters
    • Seila AC, Core LJ, Lis JT, Sharp PA. 2009. Divergent transcription: a new feature of active promoters. Cell Cycle 8:2557-64
    • (2009) Cell Cycle , vol.8 , pp. 2557-64
    • Seila, A.C.1    Core, L.J.2    Lis, J.T.3    Sharp, P.A.4
  • 52
    • 0344011592 scopus 로고    scopus 로고
    • Thymine-rich single-stranded DNA activates Mcm4/6/7 helicase on Y-fork and bubble-like substrates
    • You Z, Ishimi Y, Mizuno T, Sugasawa K, Hanaoka F, Masai H. 2003. Thymine-rich single-stranded DNA activates Mcm4/6/7 helicase on Y-fork and bubble-like substrates. EMBOJ. 22:6148-60
    • (2003) EMBOJ. , vol.22 , pp. 6148-60
    • You, Z.1    Ishimi, Y.2    Mizuno, T.3    Sugasawa, K.4    Hanaoka, F.5    Masai, H.6
  • 53
    • 0027731437 scopus 로고
    • Initiation at closely spaced replication origins in a yeast chromosome
    • Brewer BJ, Fangman WL. 1993. Initiation at closely spaced replication origins in a yeast chromosome. Science 262:1728-31
    • (1993) Science , vol.262 , pp. 1728-31
    • Brewer, B.J.1    Fangman, W.L.2
  • 54
    • 0037013261 scopus 로고    scopus 로고
    • Scheduled conversion of replication complex architecture at replication origins of Saccharomyces cerevisiae during the cell cycle
    • Tadokoro R, Fujita M, Miura H, Shirahige K, Yoshikawa H, et al. 2002. Scheduled conversion of replication complex architecture at replication origins of Saccharomyces cerevisiae during the cell cycle. J. Biol. Chem. 277:15881-89
    • (2002) J. Biol. Chem. , vol.277 , pp. 15881-89
    • Tadokoro, R.1    Fujita, M.2    Miura, H.3    Shirahige, K.4    Yoshikawa, H.5
  • 55
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky R, Heilig R, Sonnleitner M, Weissenbach J, Bensimon A. 2006. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell 17:5337-45
    • (2006) Mol. Biol. Cell , vol.17 , pp. 5337-45
    • Lebofsky, R.1    Heilig, R.2    Sonnleitner, M.3    Weissenbach, J.4    Bensimon, A.5
  • 56
    • 33745241143 scopus 로고    scopus 로고
    • Nuclear transcription is essential for specificationof mammalian replication origins
    • Dimitrova DS. 2006. Nuclear transcription is essential for specificationof mammalian replication origins. Genes Cells 11:829-44
    • (2006) Genes Cells , vol.11 , pp. 829-44
    • Dimitrova, D.S.1
  • 57
    • 0017656858 scopus 로고
    • Increase in DNA replication sites in cells held at the beginning of S phase
    • Taylor JH. 1977. Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma 62:291-300
    • (1977) Chromosoma , vol.62 , pp. 291-300
    • Taylor, J.H.1
  • 58
    • 34347240954 scopus 로고    scopus 로고
    • Replication origin plasticity, Taylor-made: Inhibition vs recruitment of origins under conditions of replication stress
    • Gilbert DM. 2007. Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116:341-47
    • (2007) Chromosoma , vol.116 , pp. 341-47
    • Gilbert, D.M.1
  • 59
    • 0042743766 scopus 로고    scopus 로고
    • Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing
    • Anglana M, Apiou F, Bensimon A, Debatisse M. 2003. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385-94
    • (2003) Cell , vol.114 , pp. 385-94
    • Anglana, M.1    Apiou, F.2    Bensimon, A.3    Debatisse, M.4
  • 60
    • 34547814092 scopus 로고    scopus 로고
    • Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells
    • Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A. 2007. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18:3059-67
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3059-67
    • Conti, C.1    Sacca, B.2    Herrick, J.3    Lalou, C.4    Pommier, Y.5    Bensimon, A.6
  • 61
  • 62
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, et al. 2008. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455:557-60
    • (2008) Nature , vol.455 , pp. 557-60
    • Courbet, S.1    Gay, S.2    Arnoult, N.3    Wronka, G.4    Anglana, M.5
  • 63
    • 0029831664 scopus 로고    scopus 로고
    • Two distinct modes of strand unlinking during theta-type DNA replication
    • Hiasa H, Marians KJ. 1996. Two distinct modes of strand unlinking during theta-type DNA replication. J. Biol. Chem. 271:21529-35
    • (1996) J. Biol. Chem. , vol.271 , pp. 21529-35
    • Hiasa, H.1    Marians, K.J.2
  • 65
    • 0037107343 scopus 로고    scopus 로고
    • 1-cyclin expression induces genomic instability bypreventing efficient pre-RC formation
    • 1-cyclin expression induces genomic instability bypreventing efficient pre-RC formation. Genes Dev. 16:2639-49
    • (2002) Genes Dev. , vol.16 , pp. 2639-49
    • Tanaka, S.1    Diffley, J.F.X.2
  • 66
    • 0037179866 scopus 로고    scopus 로고
    • Cell type-specific responses of human cells to inhibition of replication licensing
    • Shreeram S, Sparks A, Lane DP, Blow JJ. 2002. Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene 21:6624-32
    • (2002) Oncogene , vol.21 , pp. 6624-32
    • Shreeram, S.1    Sparks, A.2    Lane, D.P.3    Blow, J.J.4
  • 67
    • 33747432986 scopus 로고    scopus 로고
    • Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
    • Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, et al. 2006. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173:673-83
    • (2006) J. Cell Biol. , vol.173 , pp. 673-83
    • Woodward, A.M.1    Gohler, T.2    Luciani, M.G.3    Oehlmann, M.4    Ge, X.5
  • 68
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge XQ, Jackson DA, Blow JJ. 2007. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21:3331-41
    • (2007) Genes Dev. , vol.21 , pp. 3331-41
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 69
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra A, Schwob E, Mendez J. 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl. Acad. Sci. USA 105:8956-61
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 8956-61
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 70
    • 64049108074 scopus 로고    scopus 로고
    • A model for DNA replication showing how dormant origins safeguard against replication fork failure
    • Blow JJ, Ge XQ. 2009. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep. 10:406-12
    • (2009) EMBO Rep. , vol.10 , pp. 406-12
    • Blow, J.J.1    Ge, X.Q.2
  • 71
    • 64249120749 scopus 로고    scopus 로고
    • Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
    • Doksani Y, Bermejo R, Fiorani S, Haber JE, Foiani M. 2009. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137:247-58
    • (2009) Cell , vol.137 , pp. 247-58
    • Doksani, Y.1    Bermejo, R.2    Fiorani, S.3    Haber, J.E.4    Foiani, M.5
  • 72
    • 2442582392 scopus 로고    scopus 로고
    • Visualization of altered replication dynamics after DNA damage in human cells
    • Merrick CJ, Jackson D, Diffley JF. 2004. Visualization of altered replication dynamics after DNA damage in human cells. J. Biol. Chem. 279:20067-75
    • (2004) J. Biol. Chem. , vol.279 , pp. 20067-75
    • Merrick, C.J.1    Jackson, D.2    Diffley, J.F.3
  • 74
    • 34250159068 scopus 로고    scopus 로고
    • The ins and outs ofgene regulation and chromosome territory organisation
    • HeardE, BickmoreW.2007. The ins and outs ofgene regulation and chromosome territory organisation. Curr. Opin. Cell Biol. 19:311-16
    • (2007) Curr. Opin. Cell Biol. , vol.19 , pp. 311-16
    • Heard, E.1    Bickmore, W.2
  • 76
    • 0037164718 scopus 로고    scopus 로고
    • Live imaging of telomeres: YKu and Sir proteins define redundant telomere-anchoring pathways in yeast
    • Hediger F, Neumann FR, Van HouweG, Dubrana K, Gasser SM. 2002. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12:2076-89
    • (2002) Curr. Biol. , vol.12 , pp. 2076-89
    • Hediger, F.1    Neumann, F.R.2    Van Houwe, G.3    Dubrana, K.4    Gasser, S.M.5
  • 77
    • 1942503933 scopus 로고    scopus 로고
    • Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins
    • Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM. 2004. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23:1301-12
    • (2004) EMBO J. , vol.23 , pp. 1301-12
    • Taddei, A.1    Hediger, F.2    Neumann, F.R.3    Bauer, C.4    Gasser, S.M.5
  • 78
    • 38349043904 scopus 로고    scopus 로고
    • A genetic locus targeted to the nuclear peripheryin living cells maintains its transcriptional competence
    • Kumaran RI, Spector DL. 2008. A genetic locus targeted to the nuclear peripheryin living cells maintains its transcriptional competence. J. Cell Biol. 180:51-65
    • (2008) J. Cell Biol. , vol.180 , pp. 51-65
    • Kumaran, R.I.1    Spector, D.L.2
  • 79
    • 38349080953 scopus 로고    scopus 로고
    • Locus-specific and activity-independent gene repositioning during early tumorigenesis
    • Meaburn KJ, Misteli T. 2008. Locus-specific and activity-independent gene repositioning during early tumorigenesis. J. Cell Biol. 180:39-50
    • (2008) J. Cell Biol. , vol.180 , pp. 39-50
    • Meaburn, K.J.1    Misteli, T.2
  • 80
    • 33646529475 scopus 로고    scopus 로고
    • The temporal program of DNA replication: New insights into old questions
    • Zink D. 2006. The temporal program of DNA replication: new insights into old questions. Chromosoma 115:273-87
    • (2006) Chromosoma , vol.115 , pp. 273-87
    • Zink, D.1
  • 82
    • 36348988518 scopus 로고    scopus 로고
    • DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI
    • Czajkowsky DM, Liu J, Hamlin JL, Shao Z. 2008. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J. Mol. Biol. 375:12-19
    • (2008) J. Mol. Biol. , vol.375 , pp. 12-19
    • Czajkowsky, D.M.1    Liu, J.2    Hamlin, J.L.3    Shao, Z.4
  • 83
    • 0026571672 scopus 로고
    • A position effect on the time of replication origin activation in yeast
    • Ferguson BM, Fangman WL. 1992. A position effect on the time of replication origin activation in yeast. Cell 68:333-39
    • (1992) Cell , vol.68 , pp. 333-39
    • Ferguson, B.M.1    Fangman, W.L.2
  • 84
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson JB, Gottschling DE. 1999. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 13:146-51
    • (1999) Genes Dev. , vol.13 , pp. 146-51
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 86
    • 33645152790 scopus 로고    scopus 로고
    • Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
    • Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, et al. 2006. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8:148-55
    • (2006) Nat. Cell Biol. , vol.8 , pp. 148-55
    • Feng, W.1    Collingwood, D.2    Boeck, M.E.3    Fox, L.A.4    Alvino, G.M.5
  • 87
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu P-YJ, Nurse P. 2009. Establishing the program of origin firing during S phase in fission yeast. Cell 136:852-64
    • (2009) Cell , vol.136 , pp. 852-64
    • P-Yj, W.1    Nurse, P.2
  • 88
    • 4744357937 scopus 로고    scopus 로고
    • Enforcement of late replication origin firing by clusters of short G-rich DNA sequences
    • Yompakdee C, Huberman JA. 2004. Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J. Biol. Chem. 279:42337-44
    • (2004) J. Biol. Chem. , vol.279 , pp. 42337-44
    • Yompakdee, C.1    Huberman, J.A.2
  • 89
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova DS, Gilbert DM. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 4:983-93
    • (1999) Mol. Cell , vol.4 , pp. 983-93
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 90
    • 0035939669 scopus 로고    scopus 로고
    • The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase
    • Li F, Chen J, Izumi M, Butler MC, Keezer SM, Gilbert DM. 2001. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J. Cell Biol. 154:283-92
    • (2001) J. Cell Biol. , vol.154 , pp. 283-92
    • Li, F.1    Chen, J.2    Izumi, M.3    Butler, M.C.4    Keezer, S.M.5    Gilbert, D.M.6
  • 91
    • 0031005357 scopus 로고    scopus 로고
    • Cell cycle-dependent establishment of a late replication program
    • Raghuraman MK, Brewer BJ, Fangman WL. 1997. Cell cycle-dependent establishment of a late replication program. Science 276:806-9
    • (1997) Science , vol.276 , pp. 806-9
    • Raghuraman, M.K.1    Brewer, B.J.2    Fangman, W.L.3
  • 92
    • 0035931758 scopus 로고    scopus 로고
    • The positioning and dynamics of origins of replication in the budding yeast nucleus
    • Heun P, Laroche T, Raghuraman MK, Gasser SM. 2001. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152:385-400
    • (2001) J. Cell Biol. , vol.152 , pp. 385-400
    • Heun, P.1    Laroche, T.2    Raghuraman, M.K.3    Gasser, S.M.4
  • 93
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. 2002. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10:1223-33
    • (2002) Mol. Cell , vol.10 , pp. 1223-33
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 94
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. 2004. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:4769-80
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4769-80
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 95
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic lociofRpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavare S, Aparicio OM. 2009. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic lociofRpd3 function in Saccharomyces cerevisiae. Genes Dev. 23:1077-90
    • (2009) Genes Dev. , vol.23 , pp. 1077-90
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 96
    • 67651245131 scopus 로고    scopus 로고
    • H3 k36 methylation helps determine the timing of cdc45 association with replication origins
    • Pryde F, Jain D, Kerr A, Curley R, Mariotti FR, Vogelauer M. 2009. H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One 4:e5882
    • (2009) PLoS One , vol.4
    • Pryde, F.1    Jain, D.2    Kerr, A.3    Curley, R.4    Mariotti, F.R.5    Vogelauer, M.6
  • 98
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi MT, Takahashi T, Nakagawa T, Nakayama J, Masukata H. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat. Cell Biol. 11:357-62
    • (2009) Nat. Cell Biol. , vol.11 , pp. 357-62
    • Hayashi, M.T.1    Takahashi, T.2    Nakagawa, T.3    Nakayama, J.4    Masukata, H.5
  • 99
    • 0036154983 scopus 로고    scopus 로고
    • Cdc7 kinase complex: A key regulator in the initiation of DNA replication
    • Masai H, Arai K-I. 2002. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J. Cell. Physiol. 190:287-96
    • (2002) J. Cell. Physiol. , vol.190 , pp. 287-96
    • Masai, H.1    Arai, K.-I.2
  • 100
    • 0033947670 scopus 로고    scopus 로고
    • Cdc7p-Dbf4p becomes famous in the cell cycle
    • Sclafani RA. 2000. Cdc7p-Dbf4p becomes famous in the cell cycle. J. Cell Sci. 113:2111-17
    • (2000) J. Cell Sci. , vol.113 , pp. 2111-17
    • Sclafani, R.A.1
  • 101
    • 61849083545 scopus 로고    scopus 로고
    • The temporal program of chromosome replication: Genomewide replication in clb5A Saccharomyces cerevisiae
    • McCune HJ, DanielsonLS, Alvino GM, Collingwood D, DelrowJJ, et al. 2008. The temporal program of chromosome replication: genomewide replication in clb5A Saccharomyces cerevisiae. Genetics 180:1833-47
    • (2008) Genetics , vol.180 , pp. 1833-47
    • McCune, H.J.1    Danielson, L.S.2    Alvino, G.M.3    Collingwood, D.4    Delrow, J.J.5
  • 103
    • 0032520181 scopus 로고    scopus 로고
    • Cdc7 is required throughout the yeast S phase to activate replication origins
    • Donaldson AD, Fangman WL, Brewer BJ. 1998. Cdc7 is required throughout the yeast S phase to activate replication origins. Genes Dev. 12:491-501
    • (1998) Genes Dev. , vol.12 , pp. 491-501
    • Donaldson, A.D.1    Fangman, W.L.2    Brewer, B.J.3
  • 104
    • 0032519615 scopus 로고    scopus 로고
    • The Cdc7 protein kinase is required for origin firing during S phase
    • Bousset K, Diffley JF. 1998. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12:480-90
    • (1998) Genes Dev. , vol.12 , pp. 480-90
    • Bousset, K.1    Diffley, J.F.2
  • 106
    • 0034004129 scopus 로고    scopus 로고
    • Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase
    • Zou L, Stillman B. 2000. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol. Cell. Biol. 20:3086-96
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 3086-96
    • Zou, L.1    Stillman, B.2
  • 107
    • 0033529791 scopus 로고    scopus 로고
    • Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication
    • Aparicio OM, Stout AM, Bell SP. 1999. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl. Acad. Sci. USA 96:9130-35
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 9130-35
    • Aparicio, O.M.1    Stout, A.M.2    Bell, S.P.3
  • 108
    • 19944403183 scopus 로고    scopus 로고
    • DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states
    • White EJ, Emanuelsson O, Scalzo D, Royce T, Kosak S, et al. 2004. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc. Natl. Acad. Sci. USA 101:17771-76
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 17771-76
    • White, E.J.1    Emanuelsson, O.2    Scalzo, D.3    Royce, T.4    Kosak, S.5
  • 109
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799-816
    • (2007) Nature , vol.447 , pp. 799-816
    • Birney, E.1    Stamatoyannopoulos, J.A.2    Dutta, A.3    Guigo, R.4    Gingeras, T.R.5
  • 110
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
    • Karnani N, Taylor C, Malhotra A, Dutta A. 2007. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 17:865-76
    • (2007) Genome Res. , vol.17 , pp. 865-76
    • Karnani, N.1    Taylor, C.2    Malhotra, A.3    Dutta, A.4
  • 111
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, et al. 2008. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6:e245
    • (2008) PLoS Biol. , vol.6
    • Hiratani, I.1    Ryba, T.2    Itoh, M.3    Yokochi, T.4    Schwaiger, M.5
  • 112
    • 34547902426 scopus 로고    scopus 로고
    • The intra-S-phase checkpoint affects both DNA replication initiation and elongation: Single-cell and-DNA fiber analyses
    • Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y. 2007. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and-DNA fiber analyses. Mol. Cell. Biol. 27:5806-18
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 5806-18
    • Seiler, J.A.1    Conti, C.2    Syed, A.3    Aladjem, M.I.4    Pommier, Y.5
  • 113
    • 58249107984 scopus 로고    scopus 로고
    • Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast
    • Kumar S, Huberman JA. 2009. Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast. Mol. Cell. Biol. 29:602-11
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 602-11
    • Kumar, S.1    Huberman, J.A.2
  • 114
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C, Diffley JF. 1998. A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615-18
    • (1998) Nature , vol.395 , pp. 615-18
    • Santocanale, C.1    Diffley, J.F.2
  • 115
    • 0032497548 scopus 로고    scopus 로고
    • Regulation of DNA-replication origins during cell-cycle progression
    • Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, et al. 1998. Regulation of DNA-replication origins during cell-cycle progression. Nature 395:618-21
    • (1998) Nature , vol.395 , pp. 618-21
    • Shirahige, K.1    Hori, Y.2    Shiraishi, K.3    Yamashita, M.4    Takahashi, K.5
  • 117
    • 0017238711 scopus 로고
    • Formation of nascent DNA molecules during inhibition of replicon initiation in mammalian cells
    • Painter RB, Young BR. 1976. Formation of nascent DNA molecules during inhibition of replicon initiation in mammalian cells. Biochim. Biophys. Acta. 418:146-53
    • (1976) Biochim. Biophys. Acta. , vol.418 , pp. 146-53
    • Painter, R.B.1    Young, B.R.2
  • 118
    • 3242670803 scopus 로고    scopus 로고
    • ATR and ATM regulate the timing of DNA replication origin firing
    • Shechter D, Costanzo V, Gautier J. 2004. ATR and ATM regulate the timing of DNA replication origin firing. Nat. Cell Biol. 6:648-55
    • (2004) Nat. Cell Biol. , vol.6 , pp. 648-55
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 121
    • 33947099546 scopus 로고    scopus 로고
    • Replication foci dynamics: Replication patterns are modulated by S-phase checkpoint kinases in fission yeast
    • Meister P, Taddei A, Ponti A, Baldacci G, Gasser SM. 2007. Replication foci dynamics: Replication patterns are modulated by S-phase checkpoint kinases in fission yeast. EMBO J. 26:1315-26
    • (2007) EMBO J. , vol.26 , pp. 1315-26
    • Meister, P.1    Taddei, A.2    Ponti, A.3    Baldacci, G.4    Gasser, S.M.5
  • 122
    • 33751520767 scopus 로고    scopus 로고
    • DNA replication timing: Random thoughts about origin firing
    • Rhind N. 2006. DNA replication timing: random thoughts about origin firing. Nat. Cell Biol. 8:1313-16
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1313-16
    • Rhind, N.1
  • 123
    • 51449101224 scopus 로고    scopus 로고
    • A dynamic stochastic model for DNA replication initiation in early embryos
    • Goldar A, Labit H, Marheineke K, Hyrien O. 2008. A dynamic stochastic model for DNA replication initiation in early embryos. PLoS One 3:e2919
    • (2008) PLoS One , vol.3
    • Goldar, A.1    Labit, H.2    Marheineke, K.3    Hyrien, O.4
  • 125
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
    • Schubeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M. 2002. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 32:438-42
    • (2002) Nat. Genet. , vol.32 , pp. 438-42
    • Schubeler, D.1    Scalzo, D.2    Kooperberg, C.3    Van Steensel, B.4    Delrow, J.5    Groudine, M.6
  • 127
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome
    • Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schubeler D. 2009. Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome. Genes Dev. 23:589-601
    • (2009) Genes Dev. , vol.23 , pp. 589-601
    • Schwaiger, M.1    Stadler, M.B.2    Bell, O.3    Kohler, H.4    Oakeley, E.J.5    Schubeler, D.6
  • 128
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect
    • Gilbert DM. 2002. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14:377-83
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 377-83
    • Gilbert, D.M.1
  • 129
    • 0031708415 scopus 로고    scopus 로고
    • The locus control region is necessary for gene expression in the human beta-globin locus but not the maintenance of an open chromatin structure in erythroid cells
    • Reik A, Telling A, Zitnik G, Cimbora D, Epner E, Groudine M. 1998. The locus control region is necessary for gene expression in the human beta-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18:5992-6000
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 5992-6000
    • Reik, A.1    Telling, A.2    Zitnik, G.3    Cimbora, D.4    Epner, E.5    Groudine, M.6
  • 130
    • 0343953085 scopus 로고    scopus 로고
    • Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region
    • Cimbora DM, Schubeler D, Reik A, Hamilton J, Francastel C, et al. 2000. Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region. Mol. Cell. Biol. 20:5581-91
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5581-91
    • Cimbora, D.M.1    Schubeler, D.2    Reik, A.3    Hamilton, J.4    Francastel, C.5
  • 131
    • 17944382111 scopus 로고    scopus 로고
    • Developmental regulation of DNA replication timing at the human beta globin locus
    • Simon I, Tenzen T, Mostoslavsky R, Fibach E, Lande L, et al. 2001. Developmental regulation of DNA replication timing at the human beta globin locus. EMBO J. 20:6150-57
    • (2001) EMBO J. , vol.20 , pp. 6150-57
    • Simon, I.1    Tenzen, T.2    Mostoslavsky, R.3    Fibach, E.4    Lande, L.5
  • 132
    • 0020320829 scopus 로고
    • Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse
    • Takagi N, Sugawara O, Sasaki M. 1982. Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85:275-86
    • (1982) Chromosoma , vol.85 , pp. 275-86
    • Takagi, N.1    Sugawara, O.2    Sasaki, M.3
  • 134
    • 0036156599 scopus 로고    scopus 로고
    • Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: Disease-related genes in timing-switch regions
    • Watanabe Y, Fujiyama A, Ichiba Y, Hattori M, Yada T, et al. 2002. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 11:13-21
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 13-21
    • Watanabe, Y.1    Fujiyama, A.2    Ichiba, Y.3    Hattori, M.4    Yada, T.5
  • 136
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha RS, Kleckner N. 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602-6
    • (2002) Science , vol.297 , pp. 602-6
    • Cha, R.S.1    Kleckner, N.2
  • 138
    • 29144522146 scopus 로고    scopus 로고
    • Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites
    • El Achkar E, Gerbault-Seureau M, MulerisM, Dutrillaux B, Debatisse M.2005. Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. Proc. Natl. Acad. Sci. USA 102:18069-74
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 18069-74
    • El Achkar, E.1    Gerbault-Seureau, M.2    Muleris, M.3    Dutrillaux, B.4    Debatisse, M.5
  • 139
    • 20344396122 scopus 로고    scopus 로고
    • Preventing rereplication of chromosomal DNA
    • Blow JJ, Dutta A.2005. Preventing rereplication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6:476-86
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 476-86
    • Blow, J.J.1    Dutta, A.2
  • 140
    • 33749075373 scopus 로고    scopus 로고
    • Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression
    • Sheu Y-J, Stillman B. 2006. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol. Cell 24:101-13
    • (2006) Mol. Cell , vol.24 , pp. 101-13
    • Sheu, Y.-J.1    Stillman, B.2
  • 141
    • 33845976373 scopus 로고    scopus 로고
    • Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin
    • Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, et al. 2006. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J. Biol. Chem. 281:39249-61
    • (2006) J. Biol. Chem. , vol.281 , pp. 39249-61
    • Masai, H.1    Taniyama, C.2    Ogino, K.3    Matsui, E.4    Kakusho, N.5
  • 142
    • 33749345709 scopus 로고    scopus 로고
    • Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins
    • Yabuuchi H, Yamada Y, Uchida T, Sunathvanichkul T, Nakagawa T, Masukata H. 2006. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J. 25:4663-74
    • (2006) EMBO J. , vol.25 , pp. 4663-74
    • Yabuuchi, H.1    Yamada, Y.2    Uchida, T.3    Sunathvanichkul, T.4    Nakagawa, T.5    Masukata, H.6
  • 143
    • 40949152974 scopus 로고    scopus 로고
    • Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus
    • Krasinska L, Besnard E, Cot E, Dohet C, Mechali M, et al. 2008. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J. 27:758-69
    • (2008) EMBO J. , vol.27 , pp. 758-69
    • Krasinska, L.1    Besnard, E.2    Cot, E.3    Dohet, C.4    Mechali, M.5
  • 144
    • 61849173573 scopus 로고    scopus 로고
    • Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation
    • Francis LI, Randell JCW, Takara TJ, Uchima L, Bell SP. 2009. Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev. 23:643-54
    • (2009) Genes Dev. , vol.23 , pp. 643-54
    • Francis, L.I.1    Randell, J.C.W.2    Takara, T.J.3    Uchima, L.4    Bell, S.P.5
  • 145
    • 33947127410 scopus 로고    scopus 로고
    • Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells
    • Arias EE, Walter JC. 2007. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21:497-518
    • (2007) Genes Dev. , vol.21 , pp. 497-518
    • Arias, E.E.1    Walter, J.C.2
  • 146
    • 0036208817 scopus 로고    scopus 로고
    • Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication
    • Mendez J, Zou-Yang XH, Kim S-Y, Hidaka M,Tansey WP, Stillman B. 2002. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9:481-91
    • (2002) Mol. Cell , vol.9 , pp. 481-91
    • Mendez, J.1    Zou-Yang, X.H.2    Kim, S.-Y.3    Hidaka, M.4    Tansey, W.P.5    Stillman, B.6
  • 147
    • 0032567761 scopus 로고    scopus 로고
    • Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2
    • Hua XH, Newport J. 1998. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J. Cell Biol. 140:271-81
    • (1998) J. Cell Biol. , vol.140 , pp. 271-81
    • Hua, X.H.1    Newport, J.2
  • 148
    • 0032770221 scopus 로고    scopus 로고
    • Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins
    • Rowles A, Tada S, Blow JJ. 1999. Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J. Cell Sci. 112:2011-18
    • (1999) J. Cell Sci. , vol.112 , pp. 2011-18
    • Rowles, A.1    Tada, S.2    Blow, J.J.3
  • 149
    • 0034611807 scopus 로고    scopus 로고
    • XCDT1 is required for the assembly of prereplicative complexes in Xenopus laevis
    • Maiorano D, Moreau J, Mechali M. 2000. XCDT1 is required for the assembly of prereplicative complexes in Xenopus laevis. Nature 404:622-25
    • (2000) Nature , vol.404 , pp. 622-25
    • Maiorano, D.1    Moreau, J.2    Mechali, M.3
  • 150
    • 11844304149 scopus 로고    scopus 로고
    • Studies of the properties of human origin recognition complex and its Walker A motif mutants
    • Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J. 2005. Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proc. Natl. Acad. Sci. USA 102:69-74
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 69-74
    • Giordano-Coltart, J.1    Ying, C.Y.2    Gautier, J.3    Hurwitz, J.4
  • 151
    • 0142071671 scopus 로고    scopus 로고
    • The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle
    • Ohta S, Tatsumi Y, Fujita M, Tsurimoto T, Obuse C. 2003. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J. Biol. Chem. 278:41535-40
    • (2003) J. Biol. Chem. , vol.278 , pp. 41535-40
    • Ohta, S.1    Tatsumi, Y.2    Fujita, M.3    Tsurimoto, T.4    Obuse, C.5
  • 152
    • 29544435484 scopus 로고    scopus 로고
    • Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase
    • Randell JCW, Bowers JL, Rodriguez HK, Bell SP. 2006. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol. Cell 21:29-39
    • (2006) Mol. Cell , vol.21 , pp. 29-39
    • Randell, J.C.W.1    Bowers, J.L.2    Rodriguez, H.K.3    Bell, S.P.4
  • 153
    • 10944235448 scopus 로고    scopus 로고
    • ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication
    • Bowers JL, Randell JC, Chen S, Bell SP. 2004. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol. Cell 16:967-78
    • (2004) Mol. Cell , vol.16 , pp. 967-78
    • Bowers, J.L.1    Randell, J.C.2    Chen, S.3    Bell, S.P.4
  • 154
    • 29544446184 scopus 로고    scopus 로고
    • ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA
    • Speck C, Chen Z, Li H, Stillman B. 2005. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat. Struct. Mol. Biol. 12:965-71
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 965-71
    • Speck, C.1    Chen, Z.2    Li, H.3    Stillman, B.4
  • 155
    • 34247334939 scopus 로고    scopus 로고
    • Cdt1 revisited: Complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells
    • Fujita M. 2006. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div. 1:22
    • (2006) Cell Div. , vol.1 , pp. 22
    • Fujita, M.1
  • 156
    • 36249005517 scopus 로고    scopus 로고
    • Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading
    • Chen S, de Vries MA, Bell SP. 2007. Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. Genes Dev. 21:2897-907
    • (2007) Genes Dev. , vol.21 , pp. 2897-907
    • Chen, S.1    De Vries, M.A.2    Bell, S.P.3
  • 157
    • 0036125511 scopus 로고    scopus 로고
    • Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase
    • Tanaka S, Diffley JFX. 2002. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat. Cell Biol. 4:198-207
    • (2002) Nat. Cell Biol. , vol.4 , pp. 198-207
    • Tanaka, S.1    Diffley, J.F.X.2
  • 158
    • 54049103672 scopus 로고    scopus 로고
    • Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity
    • You Z, Masai H. 2008. Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity. J. Biol. Chem. 283:24469-77
    • (2008) J. Biol. Chem. , vol.283 , pp. 24469-77
    • You, Z.1    Masai, H.2
  • 159
    • 0035976980 scopus 로고    scopus 로고
    • The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase
    • Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. 2001. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J. Biol. Chem. 276:44905-11
    • (2001) J. Biol. Chem. , vol.276 , pp. 44905-11
    • Nishitani, H.1    Taraviras, S.2    Lygerou, Z.3    Nishimoto, T.4
  • 160
    • 0032511148 scopus 로고    scopus 로고
    • Geminin, an inhibitor of DNA replication, is degraded during mitosis
    • McGarry TJ, Kirschner MW. 1998. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043-53
    • (1998) Cell , vol.93 , pp. 1043-53
    • McGarry, T.J.1    Kirschner, M.W.2
  • 162
    • 0035147434 scopus 로고    scopus 로고
    • Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin
    • Tada S, Li A, Maiorano D, Mechali M, Blow JJ. 2001. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat. Cell Biol. 3:107-13
    • (2001) Nat. Cell Biol. , vol.3 , pp. 107-13
    • Tada, S.1    Li, A.2    Maiorano, D.3    Mechali, M.4    Blow, J.J.5
  • 163
    • 0037175048 scopus 로고    scopus 로고
    • Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity
    • Yanagi K, Mizuno T, You Z, Hanaoka F. 2002. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J. Biol. Chem. 277:40871-80
    • (2002) J. Biol. Chem. , vol.277 , pp. 40871-80
    • Yanagi, K.1    Mizuno, T.2    You, Z.3    Hanaoka, F.4
  • 164
    • 4344716063 scopus 로고    scopus 로고
    • Structural basis for inhibition of the replication licensing factor Cdt1 by geminin
    • Lee C, Hong BS, Choi JM, Kim Y, Watanabe S, et al. 2004. Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature 430:913-17
    • (2004) Nature , vol.430 , pp. 913-17
    • Lee, C.1    Hong, B.S.2    Choi, J.M.3    Kim, Y.4    Watanabe, S.5
  • 165
    • 10444252521 scopus 로고    scopus 로고
    • Geminin-Cdt1 balance is critical for genetic stability
    • Saxena S, Dutta A. 2005. Geminin-Cdt1 balance is critical for genetic stability. Mutat. Res. 569:111-21
    • (2005) Mutat. Res. , vol.569 , pp. 111-21
    • Saxena, S.1    Dutta, A.2
  • 166
    • 20744458539 scopus 로고    scopus 로고
    • Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase
    • Takeda DY, Parvin JD, Dutta A. 2005. Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J. Biol. Chem. 280:23416-23
    • (2005) J. Biol. Chem. , vol.280 , pp. 23416-23
    • Takeda, D.Y.1    Parvin, J.D.2    Dutta, A.3
  • 167
    • 33646504727 scopus 로고    scopus 로고
    • PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination
    • Senga T, Sivaprasad U, Zhu W, Park JH, Arias EE, et al. 2006. PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J. Biol. Chem. 281:6246-52
    • (2006) J. Biol. Chem. , vol.281 , pp. 6246-52
    • Senga, T.1    Sivaprasad, U.2    Zhu, W.3    Park, J.H.4    Arias, E.E.5
  • 168
    • 30344455639 scopus 로고    scopus 로고
    • PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent rereplication
    • Arias EE, Walter JC. 2006. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent rereplication. Nat. Cell Biol. 8:84-90
    • (2006) Nat. Cell Biol. , vol.8 , pp. 84-90
    • Arias, E.E.1    Walter, J.C.2
  • 169
    • 33947184380 scopus 로고    scopus 로고
    • Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin
    • Xouri G, Squire A, Dimaki M, Geverts B, Verveer PJ, et al. 2007. Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO J. 26:1303-14
    • (2007) EMBO J. , vol.26 , pp. 1303-14
    • Xouri, G.1    Squire, A.2    Dimaki, M.3    Geverts, B.4    Verveer, P.J.5
  • 170
    • 34548247791 scopus 로고    scopus 로고
    • Cdt1 interactions in the licensing process: A model for dynamic spatiotemporal control of licensing
    • Xouri G, Dimaki M, Bastiaens PIH, Lygerou Z. 2007. Cdt1 interactions in the licensing process: a model for dynamic spatiotemporal control of licensing. Cell Cycle 6:1549-52
    • (2007) Cell Cycle , vol.6 , pp. 1549-52
    • Xouri, G.1    Dimaki, M.2    Bastiaens, P.I.H.3    Lygerou, Z.4
  • 171
    • 33644861713 scopus 로고    scopus 로고
    • Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis
    • Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, et al. 2006. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 25:1126-36
    • (2006) EMBO J. , vol.25 , pp. 1126-36
    • Nishitani, H.1    Sugimoto, N.2    Roukos, V.3    Nakanishi, Y.4    Saijo, M.5
  • 173
    • 66449123586 scopus 로고    scopus 로고
    • Acetylation/deacetylation modulates the stabilityofDNA replication licensing factor Cdt1
    • Glozak MA, SetoE.2009. Acetylation/deacetylation modulates the stabilityofDNA replication licensing factor Cdt1. J. Biol. Chem. 284:11446-53
    • (2009) J. Biol. Chem. , vol.284 , pp. 11446-53
    • Glozak, M.A.1    Seto, E.2
  • 175
    • 67651089806 scopus 로고    scopus 로고
    • Phosphorylation of Mcm2 by Cdc7 promotes prereplication complex assembly during cell-cycle re-entry
    • Chuang LC, Teixeira LK, Wohlschlegel JA, Henze M, Yates JR, et al. 2009. Phosphorylation of Mcm2 by Cdc7 promotes prereplication complex assembly during cell-cycle re-entry. Mol. Cell 35:206-16
    • (2009) Mol. Cell , vol.35 , pp. 206-16
    • Chuang, L.C.1    Teixeira, L.K.2    Wohlschlegel, J.A.3    Henze, M.4    Yates, J.R.5
  • 176
    • 0037847620 scopus 로고    scopus 로고
    • GINS, anovelmultiprotein complex required for chromosomal DNA replication in budding yeast
    • Takayama Y,Kamimura Y,Okawa M, Muramatsu S,Sugino A, Araki H. 2003.GINS, anovelmultiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 17:1153-65
    • (2003) Genes Dev. , vol.17 , pp. 1153-65
    • Takayama, Y.1    Kamimura, Y.2    Okawa, M.3    Muramatsu, S.4    Sugino, A.5    Araki, H.6
  • 177
    • 0037510025 scopus 로고    scopus 로고
    • A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication
    • Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, et al. 2003. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17:1141-52
    • (2003) Genes Dev. , vol.17 , pp. 1141-52
    • Kubota, Y.1    Takase, Y.2    Komori, Y.3    Hashimoto, Y.4    Arata, T.5
  • 178
    • 0038680253 scopus 로고    scopus 로고
    • Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo
    • Kanemaki M, Sanchez-Diaz A, Gambus A, Labib K. 2003. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423:720-24
    • (2003) Nature , vol.423 , pp. 720-24
    • Kanemaki, M.1    Sanchez-Diaz, A.2    Gambus, A.3    Labib, K.4
  • 179
    • 33646129230 scopus 로고    scopus 로고
    • Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks
    • Kanemaki M, Labib K. 2006. Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J. 25:1753-63
    • (2006) EMBO J. , vol.25 , pp. 1753-63
    • Kanemaki, M.1    Labib, K.2
  • 180
    • 34249710254 scopus 로고    scopus 로고
    • A key role for the GINS complex at DNA replication forks
    • Labib K, Gambus A. 2007. A key role for the GINS complex at DNA replication forks. Trends Cell Biol. 17:271-78
    • (2007) Trends Cell Biol. , vol.17 , pp. 271-78
    • Labib, K.1    Gambus, A.2
  • 181
    • 34247629049 scopus 로고    scopus 로고
    • Structure of the human GINS complex and its assembly and functional interface in replication initiation
    • Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F. 2007. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat. Struct. Mol. Biol. 14:388-96
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 388-96
    • Kamada, K.1    Kubota, Y.2    Arata, T.3    Shindo, Y.4    Hanaoka, F.5
  • 184
    • 34547874631 scopus 로고    scopus 로고
    • Crystal structure of the GINS complex and functional insights into its role in DNA replication
    • Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS. 2007. Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc. Natl. Acad. Sci. USA 104:12685-90
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 12685-90
    • Chang, Y.P.1    Wang, G.2    Bermudez, V.3    Hurwitz, J.4    Chen, X.S.5
  • 185
    • 33645717628 scopus 로고    scopus 로고
    • GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
    • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, et al. 2006. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8:358-66
    • (2006) Nat. Cell Biol. , vol.8 , pp. 358-66
    • Gambus, A.1    Jones, R.C.2    Sanchez-Diaz, A.3    Kanemaki, M.4    Van Deursen, F.5
  • 186
    • 4544250127 scopus 로고    scopus 로고
    • Swi1 and Swi3 are components of a replication fork protection complex in fission yeast
    • Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P. 2004. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol. Cell. Biol. 24:8342-55
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8342-55
    • Noguchi, E.1    Noguchi, C.2    McDonald, W.H.3    Yates Iii, J.R.4    Russell, P.5
  • 187
    • 33846001361 scopus 로고    scopus 로고
    • The human GINS complex binds to and specifically stimulates human DNA polymerase α-primase
    • DeFalco M,Ferrari E,DeFelice M, Rossi M,Hübscher U, Pisani FM. 2007. The human GINS complex binds to and specifically stimulates human DNA polymerase α-primase. EMBO Rep. 8:99-103
    • (2007) EMBO Rep. , vol.8 , pp. 99-103
    • Defalco, M.1    Ferrari, E.2    De Felice, M.3    Rossi, M.4    Hübscher, U.5    Pisani, F.M.6
  • 189
    • 64149121721 scopus 로고    scopus 로고
    • GINS inactivation phenotypes reveal two pathways for chromatin association of replicative alpha and epsilon DNA polymerases in fission yeast
    • Pai CC, Garcia I, Wang SW, Cotterill S, Macneill SA, Kearsey SE. 2009. GINS inactivation phenotypes reveal two pathways for chromatin association of
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1213-22
    • Pai, C.C.1    Garcia, I.2    Wang, S.W.3    Cotterill, S.4    MacNeill, S.A.5    Kearsey, S.E.6
  • 190
  • 191
    • 67649518170 scopus 로고    scopus 로고
    • Ctf4 coordinates the progression of helicase and DNA polymerase alpha
    • Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, et al. 2009. Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14:807-20
    • (2009) Genes Cells , vol.14 , pp. 807-20
    • Tanaka, H.1    Katou, Y.2    Yagura, M.3    Saitoh, K.4    Itoh, T.5
  • 192
    • 70350572751 scopus 로고    scopus 로고
    • A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome
    • Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, et al. 2009. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome. EMBO J. 28:2992-3004
    • (2009) EMBO J. , vol.28 , pp. 2992-3004
    • Gambus, A.1    Van Deursen, F.2    Polychronopoulos, D.3    Foltman, M.4    Jones, R.C.5
  • 194
    • 22244478079 scopus 로고    scopus 로고
    • Cellular DNA replicases: Components and dynamics at the replication fork
    • Johnson A, O'Donnell M. 2005. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74:283-315
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 283-315
    • Johnson, A.1    O'Donnell, M.2
  • 195
    • 63249130106 scopus 로고    scopus 로고
    • Polymerase dynamics at the eukaryotic DNA replication fork
    • Burgers PM. 2009. Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem. 284:4041-45
    • (2009) J. Biol. Chem. , vol.284 , pp. 4041-45
    • Burgers, P.M.1
  • 196
    • 0037034048 scopus 로고    scopus 로고
    • S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast
    • Masumoto H, Muramatsu S, Kamimura Y, Araki H. 2002. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415:651-55
    • (2002) Nature , vol.415 , pp. 651-55
    • Masumoto, H.1    Muramatsu, S.2    Kamimura, Y.3    Araki, H.4
  • 197
    • 33846330909 scopus 로고    scopus 로고
    • CDK-dependent phospho-rylation of Sld2 and Sld3 initiates DNA replication in budding yeast
    • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. 2007. CDK-dependent phospho-rylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328-32
    • (2007) Nature , vol.445 , pp. 328-32
    • Tanaka, S.1    Umemori, T.2    Hirai, K.3    Muramatsu, S.4    Kamimura, Y.5    Araki, H.6
  • 198
    • 33846328709 scopus 로고    scopus 로고
    • Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast
    • Zegerman P, Diffley JFX. 2007. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281-85
    • (2007) Nature , vol.445 , pp. 281-85
    • Zegerman, P.1    Diffley, J.F.X.2
  • 199
    • 0031658237 scopus 로고    scopus 로고
    • Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication
    • Kamimura Y, Masumoto H, Sugino A, Araki H. 1998. Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol. Cell. Biol. 18:6102-9
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6102-9
    • Kamimura, Y.1    Masumoto, H.2    Sugino, A.3    Araki, H.4
  • 200
    • 0029592020 scopus 로고
    • Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint
    • Araki H, Leem SH, Phongdara A, Sugino A. 1995. Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 92:11791-95
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 11791-95
    • Araki, H.1    Leem, S.H.2    Phongdara, A.3    Sugino, A.4
  • 201
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD. 2001. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397-408
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 203
    • 33646578509 scopus 로고    scopus 로고
    • A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11
    • Tak Y-S, Tanaka Y, Endo S, Kamimura Y, Araki H. 2006. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J. 25:1987-96
    • (2006) EMBO J. , vol.25 , pp. 1987-96
    • Tak, Y.-S.1    Tanaka, Y.2    Endo, S.3    Kamimura, Y.4    Araki, H.5
  • 204
    • 0035901555 scopus 로고    scopus 로고
    • Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae
    • Kamimura Y, Tak YS, Sugino A, Araki H. 2001. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 20:2097-107
    • (2001) EMBO J. , vol.20 , pp. 2097-107
    • Kamimura, Y.1    Tak, Y.S.2    Sugino, A.3    Araki, H.4
  • 205
    • 0034659412 scopus 로고    scopus 로고
    • Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading
    • Jares P, Blow JJ. 2000. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev. 14:1528-40
    • (2000) Genes Dev. , vol.14 , pp. 1528-40
    • Jares, P.1    Blow, J.J.2
  • 206
    • 0034671935 scopus 로고    scopus 로고
    • Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts
    • Walter JC. 2000. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J. Biol. Chem. 275:39773-78
    • (2000) J. Biol. Chem. , vol.275 , pp. 39773-78
    • Walter, J.C.1
  • 207
    • 20444380748 scopus 로고    scopus 로고
    • Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome
    • Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J,et al. 2005. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121:887-98
    • (2005) Cell , vol.121 , pp. 887-98
    • Sangrithi, M.N.1    Bernal, J.A.2    Madine, M.3    Lee, J.4
  • 208
    • 75749103708 scopus 로고    scopus 로고
    • Treslin collaborates with TopBP1 in triggering the initiation of DNA replication
    • Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. 2010. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140:349-59
    • (2010) Cell , vol.140 , pp. 349-59
    • Kumagai, A.1    Shevchenko, A.2    Shevchenko, A.3    Dunphy, W.G.4
  • 209
    • 75149162077 scopus 로고    scopus 로고
    • A vertebrate gene, ticrr, is an essential checkpoint and replication regulator
    • Sansam CL, Cruz NM, Danielian PS, Amsterdam A, Lau ML, et al. 2010. A vertebrate gene, ticrr, is an essential checkpoint and replication regulator. Genes Dev. 24:183-94
    • (2010) Genes Dev. , vol.24 , pp. 183-94
    • Sansam, C.L.1    Cruz, N.M.2    Danielian, P.S.3    Amsterdam, A.4    Lau, M.L.5
  • 210
    • 0030886099 scopus 로고    scopus 로고
    • Components and dynamics of DNA replication complexes in S. cerevisiae: Redistribution ofMCM proteins and Cdc45p during S phase
    • Aparicio OM, Weinstein DM, Bell SP. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution ofMCM proteins and Cdc45p during S phase. Cell 91:59-69
    • (1997) Cell , vol.91 , pp. 59-69
    • Aparicio, O.M.1    Weinstein, D.M.2    Bell, S.P.3
  • 211
    • 0034595448 scopus 로고    scopus 로고
    • Uninterrupted MCM2-7 function required for DNA replication fork progression
    • Labib K, Tercero JA, DiffleyJF. 2000. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288:1643-47
    • (2000) Science , vol.288 , pp. 1643-47
    • Labib, K.1    Tercero, J.A.2    Diffley, J.F.3
  • 212
    • 5044236667 scopus 로고    scopus 로고
    • A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication
    • Pacek M, Walter JC. 2004. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBOJ. 23:3667-76
    • (2004) EMBOJ. , vol.23 , pp. 3667-76
    • Pacek, M.1    Walter, J.C.2
  • 213
    • 32444450705 scopus 로고    scopus 로고
    • Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication
    • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. 2006. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21:581-87
    • (2006) Mol. Cell , vol.21 , pp. 581-87
    • Pacek, M.1    Tutter, A.V.2    Kubota, Y.3    Takisawa, H.4    Walter, J.C.5
  • 214
    • 21344442139 scopus 로고    scopus 로고
    • Control of DNA replication: Regulation and activation of eukaryotic replicative helicase, MCM
    • Masai H, You Z, Arai K. 2005. Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life 57:323-35
    • (2005) IUBMB Life , vol.57 , pp. 323-35
    • Masai, H.1    You, Z.2    Arai, K.3
  • 215
    • 0033499708 scopus 로고    scopus 로고
    • Biochemical analysis of the intrinsic Mcm4-Mcm6-Mcm7 DNA helicase activity
    • You Z, Komamura Y, Ishimi Y 1999. Biochemical analysis of the intrinsic Mcm4-Mcm6-Mcm7 DNA helicase activity. Mol. Cell. Biol. 19:8003-15
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8003-15
    • You, Z.1    Komamura, Y.2    Ishimi, Y.3
  • 216
    • 0034705520 scopus 로고    scopus 로고
    • Isolation and characterization of various complexes of the minichromosome maintenance proteins of Schizosaccharomycespombe.J
    • Lee JK, Hurwitz J. 2000. Isolation and characterization of various complexes of the minichromosome maintenance proteins of Schizosaccharomycespombe.J. Biol. Chem. 275:18871-78
    • (2000) Biol. Chem. , vol.275 , pp. 18871-78
    • Lee, J.K.1    Hurwitz, J.2
  • 217
    • 0034652354 scopus 로고    scopus 로고
    • A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNAhelicase
    • Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B. 2000. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNAhelicase. Proc. Natl. Acad. Sci. USA 97:1530-35
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 1530-35
    • Chong, J.P.1    Hayashi, M.K.2    Simon, M.N.3    Xu, R.M.4    Stillman, B.5
  • 218
    • 0030859463 scopus 로고    scopus 로고
    • A DNAhelicase activity is associated with an MCM4,-6, and-7 protein complex
    • Ishimi Y. 1997. A DNAhelicase activity is associated with an MCM4,-6, and-7 protein complex. J. Biol. Chem. 272:24508-13
    • (1997) J. Biol. Chem. , vol.272 , pp. 24508-13
    • Ishimi, Y.1
  • 219
    • 0033593053 scopus 로고    scopus 로고
    • The single minichromosome maintenance protein of Methanobac-terium thermoautotrophicum AH contains DNAhelicase activity
    • Kelman Z, Lee JK, Hurwitz J. 1999. The single minichromosome maintenance protein of Methanobac-terium thermoautotrophicum AH contains DNAhelicase activity. Proc. Natl. Acad. Sci. USA 96:14783-88
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 14783-88
    • Kelman, Z.1    Lee, J.K.2    Hurwitz, J.3
  • 220
    • 33748357745 scopus 로고    scopus 로고
    • Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication
    • Tan BC-M, Chien C-T, Hirose S, Lee S-C. 2006. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBOJ. 25:3975-85
    • (2006) EMBOJ. , vol.25 , pp. 3975-85
    • Bc-M, T.1    Chien, C.-T.2    Hirose, S.3    Lee, S.-C.4
  • 221
    • 47349114465 scopus 로고    scopus 로고
    • TheMcm2-7 complexhas in vitro helicase activity
    • BochmanML, SchwachaA. 2008. TheMcm2-7 complexhas in vitro helicase activity. Mol. Cell 31:287-93
    • (2008) Mol. Cell , vol.31 , pp. 287-93
    • Bochman, M.L.1    Schwacha, A.2
  • 222
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer SE, Lewis PW, BotchanMR. 2006. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103:10236-41
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10236-41
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 223
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I, PetojevicT, PesaventoJJ, BotchanMR. 2010. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37:247-58
    • (2010) Mol. Cell , vol.37 , pp. 247-58
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 224
    • 0034666016 scopus 로고    scopus 로고
    • Human Cdc7-related kinase complex. in vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a criticial threonine residue of Cdc7 by Cdks
    • Masai H, Matsui E, You Z, Ishimi Y, Tamai K, Arai K. 2000. Human Cdc7-related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdks and Cdc7 and that of a criticial threonine residue of Cdc7 by Cdks.J. Biol. Chem. 275:29042-52
    • (2000) J. Biol. Chem. , vol.275 , pp. 29042-52
    • Masai, H.1    Matsui, E.2    You, Z.3    Ishimi, Y.4    Tamai, K.5    Arai, K.6
  • 225
    • 50349085907 scopus 로고    scopus 로고
    • Identification of stimulators and inhibitors of Cdc7 kinase in vitro
    • Kakusho N, Taniyama C, Masai H. 2008. Identification of stimulators and inhibitors of Cdc7 kinase in vitro. J. Biol. Chem. 283:19211-18
    • (2008) J. Biol. Chem. , vol.283 , pp. 19211-18
    • Kakusho, N.1    Taniyama, C.2    Masai, H.3
  • 226
    • 70350371630 scopus 로고    scopus 로고
    • Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth
    • Bruck I, Kaplan DL. 2009. Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J. Biol. Chem. 284:28823-31
    • (2009) J. Biol. Chem. , vol.284 , pp. 28823-31
    • Bruck, I.1    Kaplan, D.L.2
  • 227
    • 70350751416 scopus 로고    scopus 로고
    • Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
    • Remus D, Beuron F, Tolun G, GriffithJD, Morris EP, DiffleyJF. 2009. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719-30
    • (2009) Cell , vol.139 , pp. 719-30
    • Remus, D.1    Beuron, F.2    Tolun, G.3    Griffith, J.D.4    Morris, E.P.5    Diffley, J.F.6
  • 228
    • 73949091058 scopus 로고    scopus 로고
    • A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication
    • Evrin C, Clarke P, Zech J, Lurz R, Sun J, et al. 2009. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl. Acad. Sci. USA 106:20240-45
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 20240-45
    • Evrin, C.1    Clarke, P.2    Zech, J.3    Lurz, R.4    Sun, J.5
  • 231
    • 35648944221 scopus 로고    scopus 로고
    • Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae
    • Hoang ML, Leon RP, Pessoa-Brandao L, Hunt S, Raghuraman MK, et al. 2007. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae. Mol. Cell. Biol. 27:7594-602
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7594-602
    • Hoang, M.L.1    Leon, R.P.2    Pessoa-Brandao, L.3    Hunt, S.4    Raghuraman, M.K.5
  • 232
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani RA, Holzen TM. 2007. Cell cycle regulation of DNA replication. Annu. Rev. Genet. 41:237-80
    • (2007) Annu. Rev. Genet. , vol.41 , pp. 237-80
    • Sclafani, R.A.1    Holzen, T.M.2
  • 233
    • 73849129578 scopus 로고    scopus 로고
    • The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4
    • Sheu YJ, Stillman B. 2010. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463:113-17
    • (2010) Nature , vol.463 , pp. 113-17
    • Sheu, Y.J.1    Stillman, B.2
  • 234
    • 33645460360 scopus 로고    scopus 로고
    • Oncogenic activity of Cdc6 through repression of the INK4/ARF locus
    • Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, et al. 2006. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440:702-6
    • (2006) Nature , vol.440 , pp. 702-6
    • Gonzalez, S.1    Klatt, P.2    Delgado, S.3    Conde, E.4    Lopez-Rios, F.5
  • 235
    • 25144525540 scopus 로고    scopus 로고
    • CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis
    • Mailand N, Diffley JF. 2005. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122:915-26
    • (2005) Cell , vol.122 , pp. 915-26
    • Mailand, N.1    Diffley, J.F.2
  • 236
    • 23344451688 scopus 로고    scopus 로고
    • P53-Dependent regulation of Cdc6 protein stability controls cellular proliferation
    • Duursma A, Agami R. 2005. p53-Dependent regulation of Cdc6 protein stability controls cellular proliferation. Mol. Cell. Biol. 25:6937-47
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 6937-47
    • Duursma, A.1    Agami, R.2
  • 237
    • 0031945518 scopus 로고    scopus 로고
    • Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7
    • Sterner JM, Dew-Knight S, Musahl C, Kornbluth S, Horowitz JM. 1998. Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. Mol. Cell. Biol. 18:2748-57
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2748-57
    • Sterner, J.M.1    Dew-Knight, S.2    Musahl, C.3    Kornbluth, S.4    Horowitz, J.M.5
  • 238
    • 0034669029 scopus 로고    scopus 로고
    • Nuclear organization of DNA replication in primary mammalian cells
    • Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E. 2000. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 14:2855-68
    • (2000) Genes Dev. , vol.14 , pp. 2855-68
    • Kennedy, B.K.1    Barbie, D.A.2    Classon, M.3    Dyson, N.4    Harlow, E.5
  • 239
    • 33749631894 scopus 로고    scopus 로고
    • Distinct action of the retinoblastoma pathway on the DNA replication machinery defines specific roles for cyclin-dependent kinase complexes in prereplication complex assembly and S-phase progression
    • Braden WA, Lenihan JM, Lan Z, Luce KS, Zagorski W, et al. 2006. Distinct action of the retinoblastoma pathway on the DNA replication machinery defines specific roles for cyclin-dependent kinase complexes in prereplication complex assembly and S-phase progression. Mol. Cell. Biol. 26:7667-81
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 7667-81
    • Braden, W.A.1    Lenihan, J.M.2    Lan, Z.3    Luce, K.S.4    Zagorski, W.5
  • 241
    • 23044445699 scopus 로고    scopus 로고
    • Acute reduction of an origin recognition complex (ORC) subunit in human cells reveals a requirement of ORC for Cdk2 activation
    • Machida YJ, Teer JK, Dutta A. 2005. Acute reduction of an origin recognition complex (ORC) subunit in human cells reveals a requirement of ORC for Cdk2 activation. J. Biol. Chem. 280:27624-30
    • (2005) J. Biol. Chem. , vol.280 , pp. 27624-30
    • MacHida, Y.J.1    Teer, J.K.2    Dutta, A.3
  • 242
    • 60749084686 scopus 로고    scopus 로고
    • Replication licensing promotes cyclin D1 expression and G1 progression in untransformed human cells
    • Liu P, Slater DM, Lenburg M, Nevis K, Cook JG, Vaziri C. 2009. Replication licensing promotes cyclin D1 expression and G1 progression in untransformed human cells. Cell Cycle. 8:125-36
    • (2009) Cell Cycle. , vol.8 , pp. 125-36
    • Liu, P.1    Slater, D.M.2    Lenburg, M.3    Nevis, K.4    Cook, J.G.5    Vaziri, C.6
  • 243
    • 67649329182 scopus 로고    scopus 로고
    • Origin licensing and p53 status regulate Cdk2 activity during G(1)
    • Nevis KR, Cordeiro-Stone M, Cook JG. 2009. Origin licensing and p53 status regulate Cdk2 activity during G(1). Cell Cycle. 8:1952-63
    • (2009) Cell Cycle. , vol.8 , pp. 1952-63
    • Nevis, K.R.1    Cordeiro-Stone, M.2    Cook, J.G.3
  • 244
    • 52549115459 scopus 로고    scopus 로고
    • Replication licensing and cancer\-A fatal entanglement? Nat
    • Blow JJ, Gillespie PJ. 2008. Replication licensing and cancer\-a fatal entanglement? Nat. Rev. Cancer 8:799-806
    • (2008) Rev. Cancer , vol.8 , pp. 799-806
    • Blow, J.J.1    Gillespie, P.J.2
  • 245
    • 33845235459 scopus 로고    scopus 로고
    • Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints
    • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, et al. 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633-37
    • (2006) Nature , vol.444 , pp. 633-37
    • Bartkova, J.1    Rezaei, N.2    Liontos, M.3    Karakaidos, P.4    Kletsas, D.5
  • 246
    • 33845269825 scopus 로고    scopus 로고
    • Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication
    • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, et al. 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638-42
    • (2006) Nature , vol.444 , pp. 638-42
    • Di Micco, R.1    Fumagalli, M.2    Cicalese, A.3    Piccinin, S.4    Gasparini, P.5
  • 247
    • 17244366865 scopus 로고    scopus 로고
    • Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions
    • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, et al. 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907-13
    • (2005) Nature , vol.434 , pp. 907-13
    • Gorgoulis, V.G.1    Vassiliou, L.V.2    Karakaidos, P.3    Zacharatos, P.4    Kotsinas, A.5
  • 248
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
    • Byun TS, Pacek M, Yee M, Walter JC, Cimprich KA. 2005. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19:1040-52
    • (2005) Genes Dev. , vol.19 , pp. 1040-52
    • Byun, T.S.1    Pacek, M.2    Yee, M.3    Walter, J.C.4    Cimprich, K.A.5
  • 249
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo JM, Lopes M, Foiani M. 2002. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599-602
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 250
    • 34247251276 scopus 로고    scopus 로고
    • Single-and double-stranded DNA: Building a trigger of ATR-mediated DNA damage response
    • Zou L. 2007. Single-and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev. 21:879-85
    • (2007) Genes Dev. , vol.21 , pp. 879-85
    • Zou, L.1
  • 251
    • 0345564858 scopus 로고    scopus 로고
    • Replication protein A-mediated recruitment and activation of Rad17 complexes
    • Zou L, Liu D, Elledge SJ. 2003. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl. Acad. Sci. USA 100:13827-32
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 13827-32
    • Zou, L.1    Liu, D.2    Elledge, S.J.3
  • 252
    • 18244401922 scopus 로고    scopus 로고
    • Unwind and slow down: Checkpoint activation by helicase and polymerase uncoupling
    • Cortez D. 2005. Unwind and slow down: checkpoint activation by helicase and polymerase uncoupling. Genes Dev. 19:1007-12
    • (2005) Genes Dev. , vol.19 , pp. 1007-12
    • Cortez, D.1
  • 253
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai A, Lee J, Yoo HY, Dunphy WG. 2006. TopBP1 activates the ATR-ATRIP complex. Cell 124:943-55
    • (2006) Cell , vol.124 , pp. 943-55
    • Kumagai, A.1    Lee, J.2    Yoo, H.Y.3    Dunphy, W.G.4
  • 255
    • 20244388673 scopus 로고    scopus 로고
    • Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage
    • Syljua?sen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, et al. 2005. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25:3553-62
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3553-62
    • Syljuasen, R.G.1    Sørensen, C.S.2    Hansen, L.T.3    Fugger, K.4    Lundin, C.5
  • 256
    • 33750053273 scopus 로고    scopus 로고
    • The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism
    • Liu P, Barkley LR, Day T, Bi X, Slater DM, et al. 2006. The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2- independent mechanism. J. Biol. Chem. 281:30631-44
    • (2006) J. Biol. Chem. , vol.281 , pp. 30631-44
    • Liu, P.1    Barkley, L.R.2    Day, T.3    Bi, X.4    Slater, D.M.5
  • 260
    • 57749116059 scopus 로고    scopus 로고
    • The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control
    • Tsuji T, Lau E, Chiang GG, Jiang W. 2008. The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol. Cell 32:862-69
    • (2008) Mol. Cell , vol.32 , pp. 862-69
    • Tsuji, T.1    Lau, E.2    Chiang, G.G.3    Jiang, W.4
  • 261
    • 34147201111 scopus 로고    scopus 로고
    • The humanTim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement
    • Unsal-Kaçmaz K,Chastain PD,Qu P-P, Minoo P,Cordeiro-Stone M, et al. 2007. The humanTim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement. Mol. Cell. Biol. 27:3131-42
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3131-42
    • Unsal-Kaçmaz, K.1    Chastain, P.D.2    Qu, P.-P.3    Minoo, P.4    Cordeiro-Stone, M.5
  • 262
    • 0043032435 scopus 로고    scopus 로고
    • Human claspin is required for replication checkpoint control
    • Chini CC, Chen J. 2003. Human claspin is required for replication checkpoint control. J. Biol. Chem. 278:30057-62
    • (2003) J. Biol. Chem. , vol.278 , pp. 30057-62
    • Chini, C.C.1    Chen, J.2
  • 263
    • 33845320139 scopus 로고    scopus 로고
    • Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function
    • Chou DM, Elledge SJ. 2006. Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc. Natl. Acad. Sci. USA 103:18143-47
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 18143-47
    • Chou, D.M.1    Elledge, S.J.2
  • 265
    • 0035736486 scopus 로고    scopus 로고
    • Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1
    • Tanaka K, Russell P. 2001. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat. Cell Biol. 3:966-72
    • (2001) Nat. Cell Biol. , vol.3 , pp. 966-72
    • Tanaka, K.1    Russell, P.2
  • 266
    • 33645516584 scopus 로고    scopus 로고
    • Site-specific phosphorylation of a checkpoint mediator protein controls its responses to different DNA structures
    • Yoo HY, Jeong SY, Dunphy WG. 2006. Site-specific phosphorylation of a checkpoint mediator protein controls its responses to different DNA structures. Genes Dev. 20:772-83
    • (2006) Genes Dev. , vol.20 , pp. 772-83
    • Yoo, H.Y.1    Jeong, S.Y.2    Dunphy, W.G.3
  • 267
    • 44449112225 scopus 로고    scopus 로고
    • Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint
    • Kim JM, Kakusho N, Yamada M, Kanoh Y, Takemoto N, Masai H. 2008. Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint. Oncogene 27:3475-82
    • (2008) Oncogene , vol.27 , pp. 3475-82
    • Kim, J.M.1    Kakusho, N.2    Yamada, M.3    Kanoh, Y.4    Takemoto, N.5    Masai, H.6
  • 268
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, et al. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078-83
    • (2003) Nature , vol.424 , pp. 1078-83
    • Katou, Y.1    Kanoh, Y.2    Bando, M.3    Noguchi, H.4    Tanaka, H.5
  • 269
    • 64049103676 scopus 로고    scopus 로고
    • Mus81, Rhp51(Rad51), and Rqh1 form an epistatic pathway required for the S-phase DNA damage checkpoint
    • Willis N, Rhind N. 2009. Mus81, Rhp51(Rad51), and Rqh1 form an epistatic pathway required for the S-phase DNA damage checkpoint. Mol. Biol. Cell 20:819-33
    • (2009) Mol. Biol. Cell , vol.20 , pp. 819-33
    • Willis, N.1    Rhind, N.2
  • 270
    • 67349097341 scopus 로고    scopus 로고
    • Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint
    • Alabert C, Bianco JN, Pasero P. 2009. Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. EMBO J. 28:1131-41
    • (2009) EMBO J. , vol.28 , pp. 1131-41
    • Alabert, C.1    Bianco, J.N.2    Pasero, P.3
  • 271
    • 0038298811 scopus 로고    scopus 로고
    • XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes
    • Henry-Mowatt J, Jackson D, Masson JY, Johnson PA, Clements PM, et al. 2003. XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol. Cell 11:1109-17
    • (2003) Mol. Cell , vol.11 , pp. 1109-17
    • Henry-Mowatt, J.1    Jackson, D.2    Masson, J.Y.3    Johnson, P.A.4    Clements, P.M.5
  • 272
    • 24044463869 scopus 로고    scopus 로고
    • Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae
    • Szyjka SJ, Viggiani CJ, Aparicio OM. 2005. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol. Cell 19:691-97
    • (2005) Mol. Cell , vol.19 , pp. 691-97
    • Szyjka, S.J.1    Viggiani, C.J.2    Aparicio, O.M.3
  • 273
    • 34948812991 scopus 로고    scopus 로고
    • Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase
    • Hodgson B, Calzada A, Labib K. 2007. Mrc1 and Tof1 regulate DNA replication forks in different ways during normal S phase. Mol. Biol. Cell 18:3894-902
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3894-902
    • Hodgson, B.1    Calzada, A.2    Labib, K.3
  • 274
    • 2342628449 scopus 로고    scopus 로고
    • Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation
    • Lin S-Y, Li K, Stewart GS, Elledge SJ. 2004. Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc. Natl. Acad. Sci. USA 101:6484-89
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 6484-89
    • Lin, S.-Y.1    Li, K.2    Stewart, G.S.3    Elledge, S.J.4
  • 275
    • 48749128133 scopus 로고    scopus 로고
    • Claspin promotes normal replication fork rates in human cells
    • Petermann E, Helleday T, Caldecott KW. 2008. Claspin promotes normal replication fork rates in human cells. Mol. Biol. Cell 19:2373-78
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2373-78
    • Petermann, E.1    Helleday, T.2    Caldecott, K.W.3
  • 276
    • 24044552287 scopus 로고    scopus 로고
    • Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53
    • Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P. 2005. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19:699-706
    • (2005) Mol. Cell , vol.19 , pp. 699-706
    • Tourriere, H.1    Versini, G.2    Cordon-Preciado, V.3    Alabert, C.4    Pasero, P.5
  • 277
    • 0034664767 scopus 로고    scopus 로고
    • Swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe
    • Dalgaard JZ, Klar AJ. 2000. swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell 102:745-51
    • (2000) Cell , vol.102 , pp. 745-51
    • Dalgaard, J.Z.1    Klar, A.J.2
  • 278
    • 32244447176 scopus 로고    scopus 로고
    • The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae
    • Mohanty BK, Bairwa NK, Bastia D. 2006. The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103:897-902
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 897-902
    • Mohanty, B.K.1    Bairwa, N.K.2    Bastia, D.3
  • 279
    • 48249141027 scopus 로고    scopus 로고
    • Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins
    • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. 2008. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc. Natl. Acad. Sci. USA 105:9936-41
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 9936-41
    • Voineagu, I.1    Narayanan, V.2    Lobachev, K.S.3    Mirkin, S.M.4
  • 280
    • 11144246284 scopus 로고    scopus 로고
    • DNA binding domain in the replication checkpoint protein Mrc1 of Schizosac-charomyces pombe
    • Zhao H, Russell P. 2004. DNA binding domain in the replication checkpoint protein Mrc1 of Schizosac-charomyces pombe. J. Biol. Chem. 279:53023-27
    • (2004) J. Biol. Chem. , vol.279 , pp. 53023-27
    • Zhao, H.1    Russell, P.2
  • 281
    • 4544247917 scopus 로고    scopus 로고
    • Human claspin is a ring-shaped DNA-binding protein with high affinity to branched DNA structures
    • Sar F, Lindsey-Boltz LA, Subramanian D, Croteau DL, Hutsell SQ, et al. 2004. Human claspin is a ring-shaped DNA-binding protein with high affinity to branched DNA structures. J. Biol. Chem. 279:39289-95
    • (2004) J. Biol. Chem. , vol.279 , pp. 39289-95
    • Sar, F.1    Lindsey-Boltz, L.A.2    Subramanian, D.3    Croteau, D.L.4    Hutsell, S.Q.5
  • 282
    • 53149135030 scopus 로고    scopus 로고
    • Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint
    • Lou H, Komata M, Katou Y, Guan Z, Reis CC, et al. 2008. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol. Cell 32:106-17
    • (2008) Mol. Cell , vol.32 , pp. 106-17
    • Lou, H.1    Komata, M.2    Katou, Y.3    Guan, Z.4    Reis, C.C.5
  • 283
    • 70249118531 scopus 로고    scopus 로고
    • The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for replication checkpoint against methyl methanesulfonate-induced stress
    • Komata M, Bando M, Araki H, Shirahige K. 2009. The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for replication checkpoint against methyl methanesulfonate-induced stress. Mol. Cell. Biol. 29:5008-19
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5008-19
    • Komata, M.1    Bando, M.2    Araki, H.3    Shirahige, K.4
  • 284
    • 0030070356 scopus 로고    scopus 로고
    • Coupling of a replicative polymerase and helicase: A tau-DnaB interaction mediates rapid replication fork movement
    • Kim S, Dallmann HG, McHenry CS, Marians KJ. 1996. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84:643-50
    • (1996) Cell , vol.84 , pp. 643-50
    • Kim, S.1    Dallmann, H.G.2    McHenry, C.S.3    Marians, K.J.4
  • 286
    • 33845877445 scopus 로고    scopus 로고
    • A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice
    • Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, et al. 2007. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat. Genet. 39:93-98
    • (2007) Nat. Genet. , vol.39 , pp. 93-98
    • Shima, N.1    Alcaraz, A.2    Liachko, I.3    Buske, T.R.4    Andrews, C.A.5
  • 287
    • 37349025510 scopus 로고    scopus 로고
    • Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer
    • Pruitt SC, Bailey KJ, Freeland A. 2007. Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem. Cells 25:3121-32
    • (2007) Stem. Cells , vol.25 , pp. 3121-32
    • Pruitt, S.C.1    Bailey, K.J.2    Freeland, A.3
  • 288
    • 33750472654 scopus 로고    scopus 로고
    • Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision
    • Davidson IF, Li A,Blow JJ. 2006. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol. Cell 24:433-43
    • (2006) Mol. Cell , vol.24 , pp. 433-43
    • Davidson, I.F.1    Li Ablow, J.J.2
  • 289
    • 33748305620 scopus 로고    scopus 로고
    • Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability
    • Tatsumi Y, Sugimoto N, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M. 2006. Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability. J. Cell Sci. 119:3128-40
    • (2006) J. Cell Sci. , vol.119 , pp. 3128-40
    • Tatsumi, Y.1    Sugimoto, N.2    Yugawa, T.3    Narisawa-Saito, M.4    Kiyono, T.5    Fujita, M.6
  • 290
    • 36348931639 scopus 로고    scopus 로고
    • The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted
    • Liu E, Lee AY, Chiba T, Olson E, Sun P, Wu X. 2007. The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. J. Cell Biol. 179:643-57
    • (2007) J. Cell Biol. , vol.179 , pp. 643-57
    • Liu, E.1    Lee, A.Y.2    Chiba, T.3    Olson, E.4    Sun, P.5    Wu, X.6
  • 291
    • 0242610832 scopus 로고    scopus 로고
    • Inhibiting the expression of DNA replication-initiation proteins induces apoptosis in human cancer cells
    • Feng D, Tu Z, Wu W, Liang C. 2003. Inhibiting the expression of DNA replication-initiation proteins induces apoptosis in human cancer cells. Cancer Res. 63:7356-64
    • (2003) Cancer Res. , vol.63 , pp. 7356-64
    • Feng, D.1    Tu, Z.2    Wu, W.3    Liang, C.4
  • 292
    • 4944256913 scopus 로고    scopus 로고
    • Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells
    • Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, et al. 2004. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 64:7110-16
    • (2004) Cancer Res. , vol.64 , pp. 7110-16
    • Montagnoli, A.1    Tenca, P.2    Sola, F.3    Carpani, D.4    Brotherton, D.5
  • 293
    • 16844364661 scopus 로고    scopus 로고
    • A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases
    • Yoshizawa-Sugata N, Ishii A,Taniyama C,Matsui E,Arai K, Masai H. 2005. A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases. J. Biol. Chem. 280:13062-70
    • (2005) J. Biol. Chem. , vol.280 , pp. 13062-70
    • Yoshizawa-Sugata, N.1    Ishii, A.2    Taniyama, C.3    Matsui, E.4    Arai, K.5    Masai, H.6
  • 294
    • 33645505026 scopus 로고    scopus 로고
    • The functional role of Cdc6 in S-G2/M in mammalian cells
    • Lau E, Zhu C, Abraham RT, Jiang W. 2006. The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep. 7:425-30
    • (2006) EMBO Rep. , vol.7 , pp. 425-30
    • Lau, E.1    Zhu, C.2    Abraham, R.T.3    Jiang, W.4
  • 295
    • 70349307378 scopus 로고    scopus 로고
    • Divergent S-phase checkpoint activation arising from pre-replicative complex deficiency controls cell survival
    • Lau E, Chiang GG, Abraham RT, Jiang W. 2009. Divergent S-phase checkpoint activation arising from pre-replicative complex deficiency controls cell survival. Mol. Biol. Cell 20:3953-64
    • (2009) Mol. Biol. Cell , vol.20 , pp. 3953-64
    • Lau, E.1    Chiang, G.G.2    Abraham, R.T.3    Jiang, W.4
  • 296
    • 33646588731 scopus 로고    scopus 로고
    • Proliferating human cells hypomorphic for origin recognition complex 2 and pre-replicative complex formation have a defect in p53 activation and Cdk2 kinase activation
    • Teer JK, Machida YJ, Labit H, Novac O, Hyrien O, et al. 2006. Proliferating human cells hypomorphic for origin recognition complex 2 and pre-replicative complex formation have a defect in p53 activation and Cdk2 kinase activation. J. Biol. Chem. 281:6253-60
    • (2006) J. Biol. Chem. , vol.281 , pp. 6253-60
    • Teer, J.K.1    MacHida, Y.J.2    Labit, H.3    Novac, O.4    Hyrien, O.5
  • 298
    • 2942596084 scopus 로고    scopus 로고
    • Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes
    • D'Antoni S, Mattina T, Di MP, Federico C, Motta S, Saccone S. 2004. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes. Gene 333:111-19
    • (2004) Gene , vol.333 , pp. 111-19
    • D'Antoni, S.1    Mattina, T.2    Di, M.P.3    Federico, C.4    Motta, S.5    Saccone, S.6
  • 299
    • 0344490333 scopus 로고    scopus 로고
    • Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype
    • State MW, Greally JM, Cuker A, Bowers PN, Henegariu O, et al. 2003. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc. Natl. Acad. Sci. USA 100:4684-89
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 4684-89
    • State, M.W.1    Greally, J.M.2    Cuker, A.3    Bowers, P.N.4    Henegariu, O.5
  • 300
    • 0034649549 scopus 로고    scopus 로고
    • Aberrant replication timing induces defective chromosome condensation in Drosophila ORC2 mutants
    • Loupart ML, Krause SA, Heck MS. 2000. Aberrant replication timing induces defective chromosome condensation in Drosophila ORC2 mutants. Curr. Biol. 10:1547-56
    • (2000) Curr. Biol. , vol.10 , pp. 1547-56
    • Loupart, M.L.1    Krause, S.A.2    Heck, M.S.3
  • 301
    • 0034985157 scopus 로고    scopus 로고
    • Orc mutants arrest in metaphase with abnormally condensed chromosomes
    • Pflumm MF, Botchan MR. 2001. Orc mutants arrest in metaphase with abnormally condensed chromosomes. Development 128:1697-707
    • (2001) Development , vol.128 , pp. 1697-707
    • Pflumm, M.F.1    Botchan, M.R.2
  • 302
    • 0034326857 scopus 로고    scopus 로고
    • Escape from gene silencing in ICF syndrome: Evidence for advanced replication time as a major determinant
    • Hansen RS, Stoger R, Wijmenga C, Stanek AM, Canfield TK, et al. 2000. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum. Mol. Genet. 9:2575-87
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 2575-87
    • Hansen, R.S.1    Stoger, R.2    Wijmenga, C.3    Stanek, A.M.4    Canfield, T.K.5
  • 303
    • 0033945861 scopus 로고    scopus 로고
    • DNMT1 binds HDAC2 and a new corepressor, DMAP1, to form a complex at replication foci
    • RountreeMR, BachmanKE, BaylinSB. 2000. DNMT1 binds HDAC2 and a new corepressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25:269-77
    • (2000) Nat. Genet. , vol.25 , pp. 269-77
    • Rountree, M.R.1    Bachman, K.E.2    Baylin, S.B.3
  • 306
    • 65449178609 scopus 로고    scopus 로고
    • Replication timing as an epigenetic mark
    • Hiratani I, Gilbert DM. 2009. Replication timing as an epigenetic mark. Epigenetics 4:93-97
    • (2009) Epigenetics , vol.4 , pp. 93-97
    • Hiratani, I.1    Gilbert, D.M.2
  • 307
    • 12244265093 scopus 로고    scopus 로고
    • DNA replication origins in the Schizosaccharomyces pombe genome
    • Dai J, Chuang R-Y, Kelly TJ. 2005. DNA replication origins in the Schizosaccharomyces pombe genome. Proc. Natl. Acad. Sci. USA 102:337-42
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 337-42
    • Dai, J.1    Chuang, R.-Y.2    Kelly, T.J.3
  • 308
    • 33745763705 scopus 로고    scopus 로고
    • Genome-wide analysis of rereplication reveals inhibitory controls that target multiple stages of replication initiation
    • Tanny RE, MacAlpine DM, Blitzblau HG, Bell SP. 2006. Genome-wide analysis of rereplication reveals inhibitory controls that target multiple stages of replication initiation. Mol. Biol. Cell 17:2415-23
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2415-23
    • Tanny, R.E.1    MacAlpine, D.M.2    Blitzblau, H.G.3    Bell, S.P.4
  • 309
    • 0034177963 scopus 로고    scopus 로고
    • PriA-directed replication fork restart in Escherichia coli
    • Marians KJ. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25:185-89
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 185-89
    • Marians, K.J.1
  • 310
    • 0142180093 scopus 로고    scopus 로고
    • A critical role of the 3' terminus of nascent DNA chains in recognition of stalled replication forks
    • Mizukoshi T, Tanaka T, Arai K, Kohda D, Masai H. 2003. A critical role of the 3' terminus of nascent DNA chains in recognition of stalled replication forks. J. Biol. Chem. 278:42234-39
    • (2003) J. Biol. Chem. , vol.278 , pp. 42234-39
    • Mizukoshi, T.1    Tanaka, T.2    Arai, K.3    Kohda, D.4    Masai, H.5
  • 311
    • 34547126932 scopus 로고    scopus 로고
    • Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis
    • Tanaka T, Mizukoshi T, Sasaki K, Kohda D, Masai H. 2007. Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis. J. Biol. Chem. 282:19917-27
    • (2007) J. Biol. Chem. , vol.282 , pp. 19917-27
    • Tanaka, T.1    Mizukoshi, T.2    Sasaki, K.3    Kohda, D.4    Masai, H.5
  • 312
    • 33847221417 scopus 로고    scopus 로고
    • Functional interactions of DNA topoisomerases with a human replication origin
    • Abdurashidova G, Radulescu S, Sandoval O, ZaharievS, Danailov MB, et al. 2007. Functional interactions of DNA topoisomerases with a human replication origin. EMBOJ. 26:998-1009
    • (2007) EMBOJ. , vol.26 , pp. 998-1009
    • Abdurashidova, G.1    Radulescu, S.2    Sandoval, O.3    Zahariev, S.4    Danailov, M.B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.