메뉴 건너뛰기




Volumn 32, Issue 1, 2008, Pages 106-117

Mrc1 and DNA Polymerase ε Function Together in Linking DNA Replication and the S Phase Checkpoint

Author keywords

CELLCYCLE; DNA

Indexed keywords

DNA DIRECTED DNA POLYMERASE EPSILON; MEDIATOR OF THE REPLICATION CHECKPOINT 1; REGULATOR PROTEIN; UNCLASSIFIED DRUG;

EID: 53149135030     PISSN: 10972765     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.molcel.2008.08.020     Document Type: Article
Times cited : (163)

References (44)
  • 2
    • 0030886099 scopus 로고    scopus 로고
    • Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase
    • Aparicio O.M., Weinstein D.M., and Bell S. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91 (1997) 59-69
    • (1997) Cell , vol.91 , pp. 59-69
    • Aparicio, O.M.1    Weinstein, D.M.2    Bell, S.3
  • 3
    • 0026556521 scopus 로고
    • DNA polymerase II, the probable homolog of mammalian DNA polymerase ε, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae
    • Araki H., Ropp P.A., Johnson A.L., Johnston L.H., Morrison A., and Sugino A. DNA polymerase II, the probable homolog of mammalian DNA polymerase ε, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J. 11 (1992) 733-740
    • (1992) EMBO J. , vol.11 , pp. 733-740
    • Araki, H.1    Ropp, P.A.2    Johnson, A.L.3    Johnston, L.H.4    Morrison, A.5    Sugino, A.6
  • 4
    • 0029592020 scopus 로고
    • Dpb11, which interacts with DNA polymerase II(ε) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint
    • Araki H., Leem S.-H., Amornrat P., and Sugino A. Dpb11, which interacts with DNA polymerase II(ε) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 92 (1995) 11791-11795
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 11791-11795
    • Araki, H.1    Leem, S.-H.2    Amornrat, P.3    Sugino, A.4
  • 6
    • 33751237066 scopus 로고    scopus 로고
    • The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes
    • Azvolinsky A., Dunaway S., Torres J.Z., Bessler J.B., and Zakian V.A. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20 (2006) 3104-3116
    • (2006) Genes Dev. , vol.20 , pp. 3104-3116
    • Azvolinsky, A.1    Dunaway, S.2    Torres, J.Z.3    Bessler, J.B.4    Zakian, V.A.5
  • 7
    • 13444283383 scopus 로고    scopus 로고
    • Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance
    • Bjergbaek L., Cobb J.A., Tsai-Pflugfelder M., and Gasser S.M. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24 (2005) 405-417
    • (2005) EMBO J. , vol.24 , pp. 405-417
    • Bjergbaek, L.1    Cobb, J.A.2    Tsai-Pflugfelder, M.3    Gasser, S.M.4
  • 8
    • 0027454947 scopus 로고
    • DNA polymerases δ and ε are required for chromosomal replication in Saccharomyces cerevisiae
    • Budd M.E., and Campbell J.L. DNA polymerases δ and ε are required for chromosomal replication in Saccharomyces cerevisiae. Mol. Cell. Biol. 13 (1993) 496-505
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 496-505
    • Budd, M.E.1    Campbell, J.L.2
  • 9
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
    • Byun T.S., Pacek M., Yee M.C., Walter J.C., and Cimprich K.A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19 (2005) 1040-1052
    • (2005) Genes Dev. , vol.19 , pp. 1040-1052
    • Byun, T.S.1    Pacek, M.2    Yee, M.C.3    Walter, J.C.4    Cimprich, K.A.5
  • 10
    • 23944507608 scopus 로고    scopus 로고
    • Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork
    • Calzada A., Hodgson B., Kanemaki M., Bueno A., and Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19 (2005) 1905-1919
    • (2005) Genes Dev. , vol.19 , pp. 1905-1919
    • Calzada, A.1    Hodgson, B.2    Kanemaki, M.3    Bueno, A.4    Labib, K.5
  • 11
    • 0032491540 scopus 로고    scopus 로고
    • Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase ε in DNA replication and the S/M checkpoint pathway
    • Dua R., Levy D.L., and Campbell J.L. Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase ε in DNA replication and the S/M checkpoint pathway. J. Biol. Chem. 273 (1998) 30046-30055
    • (1998) J. Biol. Chem. , vol.273 , pp. 30046-30055
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 12
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain
    • Dua R., Levy D., and Campbell J.L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274 (1999) 22283-22288
    • (1999) J. Biol. Chem. , vol.274 , pp. 22283-22288
    • Dua, R.1    Levy, D.2    Campbell, J.L.3
  • 13
    • 0034666148 scopus 로고    scopus 로고
    • Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol ε) complex- demonstration of a dimeric pol ε
    • Dua R., Edwards S., Levy D.L., and Campbell J.L. Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol ε) complex- demonstration of a dimeric pol ε. J. Biol. Chem. 275 (2000) 28816-28825
    • (2000) J. Biol. Chem. , vol.275 , pp. 28816-28825
    • Dua, R.1    Edwards, S.2    Levy, D.L.3    Campbell, J.L.4
  • 14
    • 0037040871 scopus 로고    scopus 로고
    • In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase ε in insect cells: Purification and characterization
    • Dua R., Levy D.L., Li C.X., Snow P.M., and Campbell J.L. In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase ε in insect cells: Purification and characterization. J. Biol. Chem. 277 (2002) 7889-7896
    • (2002) J. Biol. Chem. , vol.277 , pp. 7889-7896
    • Dua, R.1    Levy, D.L.2    Li, C.X.3    Snow, P.M.4    Campbell, J.L.5
  • 15
    • 0037384875 scopus 로고    scopus 로고
    • Saccharomyces cervisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion
    • Edwards S.E., Li C.X., Levy D.L., Brown J., Snow P.M., and Campbell J.L. Saccharomyces cervisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol. Cell. Biol. 23 (2003) 2733-2748
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 2733-2748
    • Edwards, S.E.1    Li, C.X.2    Levy, D.L.3    Brown, J.4    Snow, P.M.5    Campbell, J.L.6
  • 16
    • 0033957793 scopus 로고    scopus 로고
    • The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci
    • Frei C., and Gasser S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14 (2000) 81-96
    • (2000) Genes Dev. , vol.14 , pp. 81-96
    • Frei, C.1    Gasser, S.M.2
  • 17
    • 33645717628 scopus 로고    scopus 로고
    • GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
    • Gambus A., Jones R.C., Sanchez-Diaz A., Kanemaki M., van Deursen F., Edmondson R.D., and Labib K. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8 (2006) 358-366
    • (2006) Nat. Cell Biol. , vol.8 , pp. 358-366
    • Gambus, A.1    Jones, R.C.2    Sanchez-Diaz, A.3    Kanemaki, M.4    van Deursen, F.5    Edmondson, R.D.6    Labib, K.7
  • 18
    • 0346363763 scopus 로고    scopus 로고
    • Noncompetitive counteractions of DNA polymerase {varepsilon} and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae
    • Iida T., and Araki H. Noncompetitive counteractions of DNA polymerase {varepsilon} and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 24 (2004) 217-227
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 217-227
    • Iida, T.1    Araki, H.2
  • 20
    • 0035981231 scopus 로고    scopus 로고
    • Yeast replicative DNA polymerases and their role at the replication fork
    • Kawasaki Y.Y., and Sugino A.A. Yeast replicative DNA polymerases and their role at the replication fork. Mol. Cells 12 (2001) 277-285
    • (2001) Mol. Cells , vol.12 , pp. 277-285
    • Kawasaki, Y.Y.1    Sugino, A.A.2
  • 21
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T., Flick K., Keranen S., Syvaoja J.E., and Wittenberg C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3 (1999) 679-685
    • (1999) Mol. Cell , vol.3 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keranen, S.3    Syvaoja, J.E.4    Wittenberg, C.5
  • 22
    • 27644514672 scopus 로고    scopus 로고
    • Roles of replication fork-interacting and Chk1-activating domains from Claspin in a DNA replication checkpoint response
    • Lee J., Gold D.A., Shevchenko A., Shevchenko A., and Dunphy W.G. Roles of replication fork-interacting and Chk1-activating domains from Claspin in a DNA replication checkpoint response. Mol. Biol. Cell 16 (2005) 5269-5282
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5269-5282
    • Lee, J.1    Gold, D.A.2    Shevchenko, A.3    Shevchenko, A.4    Dunphy, W.G.5
  • 23
    • 34547850193 scopus 로고    scopus 로고
    • Polymerase switching in DNA replication
    • Lovett S.T. Polymerase switching in DNA replication. Mol. Cell 27 (2007) 523-526
    • (2007) Mol. Cell , vol.27 , pp. 523-526
    • Lovett, S.T.1
  • 24
    • 0034028908 scopus 로고    scopus 로고
    • Dpb11 controls the association between DNA polymerases alpha and varepsilon and the autonomously replicating sequence region of budding yeast
    • Masumoto H., Sugino A., and Araki H. Dpb11 controls the association between DNA polymerases alpha and varepsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20 (2000) 2809-2817
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2809-2817
    • Masumoto, H.1    Sugino, A.2    Araki, H.3
  • 26
    • 0028979332 scopus 로고
    • DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint
    • Navas T.A., Zhou Z., and Elledge S.J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80 (1995) 29-39
    • (1995) Cell , vol.80 , pp. 29-39
    • Navas, T.A.1    Zhou, Z.2    Elledge, S.J.3
  • 27
    • 0029859168 scopus 로고    scopus 로고
    • RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae
    • Navas T.A., Sanchez Y., and Elledge S.J. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev. 10 (1996) 2632-2643
    • (1996) Genes Dev. , vol.10 , pp. 2632-2643
    • Navas, T.A.1    Sanchez, Y.2    Elledge, S.J.3
  • 29
    • 33748905485 scopus 로고    scopus 로고
    • Regulation of DNA replication machinery by Mrc1 in fission yeast
    • Nitani N., Nakamura K., Nakagawa C., Masukata H., and Nakagawa T. Regulation of DNA replication machinery by Mrc1 in fission yeast. Genetics 174 (2006) 155-165
    • (2006) Genetics , vol.174 , pp. 155-165
    • Nitani, N.1    Nakamura, K.2    Nakagawa, C.3    Masukata, H.4    Nakagawa, T.5
  • 30
    • 0037008736 scopus 로고    scopus 로고
    • The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae
    • Ohya T., Kawasaki Y., Hiraga S., Kanbara S., Nakajo K., Nakashima N., Suzuki A., and Sugino A. The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J. Biol. Chem. 277 (2002) 28099-28108
    • (2002) J. Biol. Chem. , vol.277 , pp. 28099-28108
    • Ohya, T.1    Kawasaki, Y.2    Hiraga, S.3    Kanbara, S.4    Nakajo, K.5    Nakashima, N.6    Suzuki, A.7    Sugino, A.8
  • 31
    • 0038506000 scopus 로고    scopus 로고
    • Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
    • Osborn A.J., and Elledge S.J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17 (2003) 1755-1767
    • (2003) Genes Dev. , vol.17 , pp. 1755-1767
    • Osborn, A.J.1    Elledge, S.J.2
  • 32
    • 1642307235 scopus 로고    scopus 로고
    • Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets
    • Pasero P.P., Shimada K.K., and Duncker B.P.B.P. Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets. Cell Cycle 2 (2003) 568-572
    • (2003) Cell Cycle , vol.2 , pp. 568-572
    • Pasero, P.P.1    Shimada, K.K.2    Duncker, B.P.B.P.3
  • 33
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell Z.F., Isoz I., Lundstrom E.B., Johansson E., and Kunkel T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317 (2007) 127-130
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 34
    • 34249025702 scopus 로고    scopus 로고
    • Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae
    • Reis C.C., and Campbell J.L. Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae. Genetics 175 (2007) 993-1010
    • (2007) Genetics , vol.175 , pp. 993-1010
    • Reis, C.C.1    Campbell, J.L.2
  • 35
    • 0029670573 scopus 로고    scopus 로고
    • 3′-5′ exonucleases of DNA polymerases e and d correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae
    • Shcherbakova P.V., and Pavlov Y.I. 3′-5′ exonucleases of DNA polymerases e and d correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142 (1996) 717-726
    • (1996) Genetics , vol.142 , pp. 717-726
    • Shcherbakova, P.V.1    Pavlov, Y.I.2
  • 36
    • 0029947713 scopus 로고    scopus 로고
    • RFC5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast
    • Sugimoto K., Shimomura T., Hashimoto K., Araki H., Sugino A., and Matsumoto K. RFC5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc. Natl. Acad. Sci. USA 93 (1996) 7048-7052
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 7048-7052
    • Sugimoto, K.1    Shimomura, T.2    Hashimoto, K.3    Araki, H.4    Sugino, A.5    Matsumoto, K.6
  • 37
    • 0030793718 scopus 로고    scopus 로고
    • Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway
    • Sugimoto K., Ando S., Shimomura T., and Matsumoto K. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol. Cell. Biol. 17 (1997) 5905-5914
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 5905-5914
    • Sugimoto, K.1    Ando, S.2    Shimomura, T.3    Matsumoto, K.4
  • 38
    • 24044463869 scopus 로고    scopus 로고
    • Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae
    • Szyjka S.J., Viggiani C.J., and Aparicio O.M. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol. Cell 19 (2005) 691-697
    • (2005) Mol. Cell , vol.19 , pp. 691-697
    • Szyjka, S.J.1    Viggiani, C.J.2    Aparicio, O.M.3
  • 39
    • 24044552287 scopus 로고    scopus 로고
    • Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53
    • Tourriere H., Versini G., Cordon-Preciado V., Alabert C., and Pasero P. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19 (2005) 699-706
    • (2005) Mol. Cell , vol.19 , pp. 699-706
    • Tourriere, H.1    Versini, G.2    Cordon-Preciado, V.3    Alabert, C.4    Pasero, P.5
  • 40
    • 35349012676 scopus 로고    scopus 로고
    • Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1
    • Tsolou A.A., and Lydall D.D. Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1. DNA Repair (Amst.) 6 (2007) 1607-1617
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 1607-1617
    • Tsolou, A.A.1    Lydall, D.D.2
  • 41
    • 0033637837 scopus 로고    scopus 로고
    • Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha
    • Walter J., and Newport J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol. Cell 5 (2000) 617-627
    • (2000) Mol. Cell , vol.5 , pp. 617-627
    • Walter, J.1    Newport, J.2
  • 42
    • 3543031002 scopus 로고    scopus 로고
    • Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage
    • Xu H., Boone C., and Klein H.L. Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol. Cell. Biol. 24 (2004) 7082-7090
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 7082-7090
    • Xu, H.1    Boone, C.2    Klein, H.L.3
  • 44
    • 0034004129 scopus 로고    scopus 로고
    • Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase
    • Zou L., and Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol. Cell. Biol. 20 (2000) 3086-3096
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 3086-3096
    • Zou, L.1    Stillman, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.