-
1
-
-
80053403826
-
Ensemble methods in machine learning
-
Berlin, Germany: Springer-Verlag
-
T. G. Dietterich, "Ensemble methods in machine learning," in Multiple Classifier Systems. Berlin, Germany: Springer-Verlag, 2000, pp. 1-15.
-
(2000)
Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
2
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
R. Kohavi and D. H. Wolpert, "Bias plus variance decomposition for zero-one loss functions," in Proc. Int. Conf. Machine Learning, 1996, pp. 275-283.
-
(1996)
Proc. Int. Conf. Machine Learning
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.H.2
-
3
-
-
0035478854
-
Random forests
-
Oct.
-
L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
33847143670
-
A survey of neural network ensembles
-
Oct.
-
Y. Zhao, J. Gao, and X. Yang, "A survey of neural network ensembles," in Proc. Int. Conf. Neural Networks Brain, Oct. 2005, vol. 1, pp. 438-442.
-
(2005)
Proc. Int. Conf. Neural Networks Brain
, vol.1
, pp. 438-442
-
-
Zhao, Y.1
Gao, J.2
Yang, X.3
-
5
-
-
75149176174
-
Ensemble-based classifiers
-
Feb.
-
L. Rokach, "Ensemble-based classifiers," Artif. Intell. Rev., vol. 33, nos. 1-2, pp. 1-39, Feb. 2010.
-
(2010)
Artif. Intell. Rev.
, vol.33
, Issue.1-2
, pp. 1-39
-
-
Rokach, L.1
-
6
-
-
84962025302
-
An analysis on ensemble methods in classification tasks
-
July
-
D. Gopika and B. Azhagusundari, "An analysis on ensemble methods in classification tasks," Int. J. Adv. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 7423-7427, July 2014.
-
(2014)
Int. J. Adv. Res. Comput. Commun. Eng.
, vol.3
, Issue.7
, pp. 7423-7427
-
-
Gopika, D.1
Azhagusundari, B.2
-
7
-
-
75149176174
-
Ensemble-based classifiers
-
L. Rokach, "Ensemble-based classifiers," Artif. Intell. Rev., vol. 33, no. 1-2, pp. 1-39, 2010.
-
(2010)
Artif. Intell. Rev.
, vol.33
, Issue.1-2
, pp. 1-39
-
-
Rokach, L.1
-
8
-
-
78951491903
-
A review of ensemble methods in bioinformatics
-
Dec.
-
P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya, "A review of ensemble methods in bioinformatics," Curr. Bioinform., vol. 5, no. 4, pp. 296-308, Dec. 2010.
-
(2010)
Curr. Bioinform.
, vol.5
, Issue.4
, pp. 296-308
-
-
Yang, P.1
Yang, Y.H.2
Zhou, B.B.3
Zomaya, A.Y.4
-
9
-
-
84871245760
-
Ensemble approaches for regression: A survey
-
Nov.
-
J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. de Sousa, "Ensemble approaches for regression: A survey," ACM Comput. Surv., vol. 45, no. 1, pp. 1-10, Nov. 2012.
-
(2012)
ACM Comput. Surv.
, vol.45
, Issue.1
, pp. 1-10
-
-
Mendes-Moreira, J.1
Soares, C.2
Jorge, A.M.3
De Sousa, J.F.4
-
10
-
-
84929622158
-
Ensemble methods for wind and solar power forecasting: A state-ofthe-art review
-
Oct.
-
Y. Ren, P. N. Suganthan, and N. Srikanth, "Ensemble methods for wind and solar power forecasting: A state-ofthe-art review," Renew. Sustain. Energy Rev., vol. 50, pp. 82-91, Oct. 2015.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.50
, pp. 82-91
-
-
Ren, Y.1
Suganthan, P.N.2
Srikanth, N.3
-
11
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," Adv. Neural Inform. Process. Syst., vol. 7, pp. 231-238, 1995.
-
(1995)
Adv. Neural Inform. Process. Syst.
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
12
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
Mar.
-
G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," Inform. Fusion, vol. 6, no. 1, pp. 5-20, Mar. 2005.
-
(2005)
Inform. Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
13
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Jan.
-
S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, no. 1, pp. 1-58, Jan. 1992.
-
(1992)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
14
-
-
25444484657
-
Managing diversity in regression ensembles
-
Dec.
-
G. Brown, J. L. Wyatt, and P. Tino, "Managing diversity in regression ensembles," J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1621-1650
-
-
Brown, G.1
Wyatt, J.L.2
Tino, P.3
-
15
-
-
0012937288
-
A unified bias-variance decomposition and its applications
-
P. Domingos, "A unified bias-variance decomposition and its applications," in Proc Int. Conf. Machine Learning, 2000, pp. 231-238.
-
(2000)
Proc Int. Conf. Machine Learning
, pp. 231-238
-
-
Domingos, P.1
-
16
-
-
0001284939
-
Stochastic discrimination
-
E. Kleinberg, "Stochastic discrimination," Ann. Math. Artif. Intell., vol. 1, no. 1, pp. 207-239, 1990.
-
(1990)
Ann. Math. Artif. Intell.
, vol.1
, Issue.1
, pp. 207-239
-
-
Kleinberg, E.1
-
17
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. E. Schapire and Y. Freund, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Stat., vol. 26, no. 5, pp. 1651-1686, 1998.
-
(1998)
Ann. Stat.
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
-
18
-
-
84961994878
-
-
Ph.D. dissertation Lumie Univ. Lyon, Lyon, France
-
V. Pisetta, "New insights into decision tree ensembles," Ph.D. dissertation, Lumie Univ. Lyon 2, Lyon, France, 2012.
-
(2012)
New Insights into Decision Tree Ensembles
, vol.2
-
-
Pisetta, V.1
-
19
-
-
84992322729
-
Error-correcting output coding corrects bias and variance
-
E. B. Kong and T. G. Dietterich, "Error-correcting output coding corrects bias and variance," in Proc. Int. Conf. Machine Learning, 1995, pp. 313-321.
-
(1995)
Proc. Int. Conf. Machine Learning
, pp. 313-321
-
-
Kong, E.B.1
Dietterich, T.G.2
-
20
-
-
21744462998
-
On bias, variance, 0/1-Loss, and the curse-of-dimensionality
-
J. H. Friedman, "On bias, variance, 0/1-Loss, and the curse-of-dimensionality," Data Mining Knowl. Disc., vol. 1, no. 1, pp. 55-77, 1997.
-
(1997)
Data Mining Knowl. Disc.
, vol.1
, Issue.1
, pp. 55-77
-
-
Friedman, J.H.1
-
21
-
-
0346786584
-
Arcing classifier (with discussion and a rejoinder by the author)
-
L. Breiman, "Arcing classifier (with discussion and a rejoinder by the author)," Ann. Stat., vol. 26, no. 3, pp. 801-849, 1998.
-
(1998)
Ann. Stat.
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
22
-
-
0037403462
-
Variance and bias for general loss functions
-
G. M. James, "Variance and bias for general loss functions," Mach. Learn., vol. 51, no. 2, pp. 115-135, 2003.
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 115-135
-
-
James, G.M.1
-
23
-
-
84908494818
-
Towards generating random forest with extremely randomized trees
-
July
-
L. Zhang, Y. Ren, and P. N. Suganthan, "Towards generating random forest with extremely randomized trees," in Proc. IEEE Int. Joint Conf. Neural Networks, Beijing, China, July 2014, pp. 2645-2652.
-
(2014)
Proc. IEEE Int. Joint Conf. Neural Networks, Beijing, China
, pp. 2645-2652
-
-
Zhang, L.1
Ren, Y.2
Suganthan, P.N.3
-
24
-
-
84970019466
-
Oblique decision tree ensemble via multisurface proximal support vector machine
-
Nov.
-
L. Zhang and P. N. Suganthan, "Oblique decision tree ensemble via multisurface proximal support vector machine," IEEE Trans. Cybern., pp. 2168-2267, Nov. 2014.
-
(2014)
IEEE Trans. Cybern.
, pp. 2168-2267
-
-
Zhang, L.1
Suganthan, P.N.2
-
25
-
-
0003619255
-
-
Univ. California, Berkeley, CA, Tech. Rep
-
L. Breiman, "Bias, variance, and arcing classifiers," Univ. California, Berkeley, CA, Tech. Rep. 460, 1996.
-
(1996)
Bias, Variance, and Arcing Classifiers
, vol.460
-
-
Breiman, L.1
-
26
-
-
44449124996
-
RotBoost: A technique for combining rotation forest and adaboost
-
C.-X. Zhang and J.-S. Zhang, "RotBoost: A technique for combining rotation forest and adaboost," Pattern Recognit. Lett., vol. 29, no. 10, pp. 1524-1536, 2008.
-
(2008)
Pattern Recognit. Lett.
, vol.29
, Issue.10
, pp. 1524-1536
-
-
Zhang, C.-X.1
Zhang, J.-S.2
-
28
-
-
33749018252
-
An analysis of diversity measures
-
E. K. Tang, P. N. Suganthan, and X. Yao, "An analysis of diversity measures," Mach. Learn., vol. 65, no. 1, pp. 247-271, 2006.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 247-271
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
29
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
30
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
31
-
-
49749104280
-
Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples
-
C. Tan, M. Li, and X. Qin, "Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples," Anal. Sci., vol. 24, no. 5, pp. 647-654, 2008.
-
(2008)
Anal. Sci.
, vol.24
, Issue.5
, pp. 647-654
-
-
Tan, C.1
Li, M.2
Qin, X.3
-
32
-
-
0034276320
-
Randomizing outputs to increase prediction accuracy
-
L. Breiman, "Randomizing outputs to increase prediction accuracy," Mach. Learn., vol. 40, no. 3, pp. 229-242, 2000.
-
(2000)
Mach. Learn.
, vol.40
, Issue.3
, pp. 229-242
-
-
Breiman, L.1
-
33
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
D. Opitz and R. Maclin, "Popular ensemble methods: An empirical study," J. Artif. Intell. Res., vol. 11, pp. 169-196, 1999.
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-196
-
-
Opitz, D.1
MacLin, R.2
-
34
-
-
80052213499
-
Multiple kernel learning algorithms
-
July
-
M. Gnen and E. Alpaydn, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, July 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gnen, M.1
Alpaydn, E.2
-
35
-
-
84919905288
-
A comparative study of empirical mode decomposition based short-term wind speed forecasting methods
-
Y. Ren and P. N. Suganthan, "A comparative study of empirical mode decomposition based short-term wind speed forecasting methods," IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 236-244, 2015.
-
(2015)
IEEE Trans. Sustain. Energy
, vol.6
, Issue.1
, pp. 236-244
-
-
Ren, Y.1
Suganthan, P.N.2
-
39
-
-
84905221751
-
Fuzzy classifiers
-
revision 133818
-
L. I. Kuncheva, "Fuzzy classifiers," Scholarpedia, vol. 3, no. 1, p. 2925, 2008, revision 133818.
-
(2008)
Scholarpedia
, vol.3
, Issue.1
, pp. 2925
-
-
Kuncheva, L.I.1
-
40
-
-
0030405129
-
Voting schemes for fuzzy-rule-based classification systems
-
H. Ishibuchi, T. Morisawa, and T. Nakashima, "Voting schemes for fuzzy-rule-based classification systems," in Proc. IEEE Int. Conf. Fuzzy Systems, 1996, vol. 1, pp. 614-620.
-
(1996)
Proc IEEE Int. Conf. Fuzzy Systems
, vol.1
, pp. 614-620
-
-
Ishibuchi, H.1
Morisawa, T.2
Nakashima, T.3
-
41
-
-
0000719509
-
Voting in fuzzy rule-based systems for pattern classification problems
-
H. Ishibuchi, T. Nakashima, and T. Morisawa, "Voting in fuzzy rule-based systems for pattern classification problems," Fuzzy sets Syst., vol. 103, no. 2, pp. 223-238, 1999.
-
(1999)
Fuzzy Sets Syst.
, vol.103
, Issue.2
, pp. 223-238
-
-
Ishibuchi, H.1
Nakashima, T.2
Morisawa, T.3
-
42
-
-
77955453707
-
A fuzzy random forest
-
P. Bonissone, J. M. Cadenas, M. C. Garrido, and R. A. Dz-Valladares, "A fuzzy random forest," Int. J. Approx. Reason., vol. 51, no. 7, pp. 729-747, 2010.
-
(2010)
Int. J. Approx. Reason.
, vol.51
, Issue.7
, pp. 729-747
-
-
Bonissone, P.1
Cadenas, J.M.2
Garrido, M.C.3
Dz-Valladares, R.A.4
-
43
-
-
55249123376
-
Ensemble of rough-neuro-fuzzy systems for classification with missing features
-
M. Korytkowski, R. Nowicki, R. Scherer, and L. Rutkowski, "Ensemble of rough-neuro-fuzzy systems for classification with missing features," in Proc. IEEE Int. Conf. Fuzzy Systems, 2008, pp. 1745-1750.
-
(2008)
Proc IEEE Int. Conf. Fuzzy Systems
, pp. 1745-1750
-
-
Korytkowski, M.1
Nowicki, R.2
Scherer, R.3
Rutkowski, L.4
-
44
-
-
27944478140
-
Online bagging and boosting
-
N. C. Oza, "Online bagging and boosting," in Proc. IEEE Int. Conf. Systems, Man Cybernetics, 2005, vol. 3, pp. 2340-2345.
-
(2005)
Proc IEEE Int. Conf. Systems, Man Cybernetics
, vol.3
, pp. 2340-2345
-
-
Oza, N.C.1
-
45
-
-
0037410515
-
Double-bagging: Combining classifiers by bootstrap aggregation
-
T. Hothorn and B. Lausen, "Double-bagging: Combining classifiers by bootstrap aggregation," Pattern Recognit., vol. 36, no. 6, pp. 1303-1309, 2003.
-
(2003)
Pattern Recognit.
, vol.36
, Issue.6
, pp. 1303-1309
-
-
Hothorn, T.1
Lausen, B.2
-
46
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Mach. Learn., vol. 36, nos. 1-2, pp. 105-139, 1999.
-
(1999)
Mach. Learn.
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
47
-
-
78650945964
-
Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
-
Jan.
-
D.-P. Niu, F.-l. Wang, L.-l. Zhang, D.-K. He, and M.-X. Jia, "Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression," Chemometr. Intell. Lab. Syst., vol. 105, no. 1, pp. 125-130, Jan. 2011.
-
(2011)
Chemometr. Intell. Lab. Syst.
, vol.105
, Issue.1
, pp. 125-130
-
-
Niu, D.-P.1
Wang, F.-L.2
Zhang, L.-L.3
He, D.-K.4
Jia, M.-X.5
-
48
-
-
84885457547
-
Target localization using ensemble support vector regression in wireless sensor networks
-
Aug.
-
W. Kim, J. Park, J. Yoo, H. Kim, and C. G. Park, "Target localization using ensemble support vector regression in wireless sensor networks," IEEE Trans. Cybern., vol. 43, no. 4, pp. 1189-1198, Aug. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.4
, pp. 1189-1198
-
-
Kim, W.1
Park, J.2
Yoo, J.3
Kim, H.4
Park, C.G.5
-
49
-
-
33749143416
-
Bagged averaging of regression models
-
Berlin, Germany: Springer-Verlag
-
S. B. Kotsiantis, D. Kanellopoulos, and I. D. Zaharakis, "Bagged averaging of regression models," in Artificial Intelligence Applications and Innovations. Berlin, Germany: Springer-Verlag, 2006, pp. 53-60.
-
(2006)
Artificial Intelligence Applications and Innovations
, pp. 53-60
-
-
Kotsiantis, S.B.1
Kanellopoulos, D.2
Zaharakis, I.D.3
-
50
-
-
70349087319
-
The diversity of regression ensembles combining bagging and random subspace method
-
A. Scherbart and T. W. Nattkemper, "The diversity of regression ensembles combining bagging and random subspace method," in Proc. Advances Neuro-Information Processing, 2009, pp. 911-918.
-
(2009)
Proc. Advances Neuro-Information Processing
, pp. 911-918
-
-
Scherbart, A.1
Nattkemper, T.W.2
-
51
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
-
(1999)
Mach. Learn.
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
52
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rsch, T. Onoda, and K.-R. Mler, "Soft margins for AdaBoost," Mach. Learn., vol. 42, no. 3, pp. 287-320, 2001.
-
(2001)
Mach. Learn.
, vol.42
, Issue.3
, pp. 287-320
-
-
Rsch, G.1
Onoda, T.2
Mler, K.-R.3
-
53
-
-
85134970872
-
Modest Adaboostteaching Adaboost to generalize better
-
A. Vezhnevets and V. Vezhnevets, "Modest Adaboostteaching Adaboost to generalize better," Graphicon, vol. 12, no. 5, pp. 987-997, 2005.
-
(2005)
Graphicon
, vol.12
, Issue.5
, pp. 987-997
-
-
Vezhnevets, A.1
Vezhnevets, V.2
-
55
-
-
33745856534
-
SpatialBoost: Adding spatial reasoning to adaboost
-
S. Avidan, "SpatialBoost: Adding spatial reasoning to adaboost," in Proc. Computer Vision, 2006, pp. 386-396.
-
(2006)
Proc. Computer Vision
, pp. 386-396
-
-
Avidan, S.1
-
56
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
-
J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)," Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000.
-
(2000)
Ann. Stat.
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
57
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
L. Breiman, "Pasting small votes for classification in large databases and on-line," Mach. Learn., vol. 36, nos. 1-2, pp. 85-103, 1999.
-
(1999)
Mach. Learn.
, vol.36
, Issue.1-2
, pp. 85-103
-
-
Breiman, L.1
-
58
-
-
0037186544
-
Stochastic gradient boosting
-
J. H. Friedman, "Stochastic gradient boosting," Comput. Stat. Data Anal., vol. 38, no. 4, pp. 367-378, 2002.
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.H.1
-
59
-
-
84897611035
-
GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes
-
Apr.
-
J. R. Lloyd, "GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes," Int. J. Forecasting, vol. 30, no. 2, pp. 369-374, Apr. 2014.
-
(2014)
Int. J. Forecasting
, vol.30
, Issue.2
, pp. 369-374
-
-
Lloyd, J.R.1
-
60
-
-
25544438757
-
-
M.S. thesis, Ph.D.(B.A.) dissertation, Trinity College, Dublin, Ireland
-
R. Feely, "Predicting stock market volatility using neural networks," M.S. thesis, Ph.D.(B.A.) dissertation, Trinity College, Dublin, Ireland, 2000.
-
(2000)
Predicting Stock Market Volatility Using Neural Networks
-
-
Feely, R.1
-
61
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Aug.
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, Aug. 1997.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
62
-
-
33745780111
-
Experiments with AdaBoost. RT, an improved boosting scheme for regression
-
D. Shrestha and D. Solomatine, "Experiments with AdaBoost. RT, an improved boosting scheme for regression," Neural Comput., vol. 18, no. 7, pp. 1678-1710, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1678-1710
-
-
Shrestha, D.1
Solomatine, D.2
-
64
-
-
84891555935
-
Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems
-
Jan.
-
P. Kankanala, S. Das, and A. Pahwa, "Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems," IEEE Trans. Power Syst., vol. 29, no. 1, pp. 359-367, Jan. 2014.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.1
, pp. 359-367
-
-
Kankanala, P.1
Das, S.2
Pahwa, A.3
-
65
-
-
33745653724
-
Random forests and adaptive nearest neighbors
-
Y. Lin and Y. Jeon, "Random forests and adaptive nearest neighbors," J. Amer. Stat. Assoc., vol. 101, no. 474, pp. 578-590, 2006.
-
(2006)
J. Amer. Stat. Assoc.
, vol.101
, Issue.474
, pp. 578-590
-
-
Lin, Y.1
Jeon, Y.2
-
66
-
-
13244289883
-
Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
-
H. Jiang, Y. Deng, H.-S. Chen, L. Tao, Q. Sha, J. Chen, C.-J. Tsai, and S. Zhang, "Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes," BMC Bioinform, vol. 5, no. 1, p. 81, 2004.
-
(2004)
BMC Bioinform
, vol.5
, Issue.1
, pp. 81
-
-
Jiang, H.1
Deng, Y.2
Chen, H.-S.3
Tao, L.4
Sha, Q.5
Chen, J.6
Tsai, C.-J.7
Zhang, S.8
-
67
-
-
34250698845
-
A feature selection method for multilevel mental fatigue EEG classification
-
K.-Q. Shen, C.-J. Ong, X. P. Li, Z. Hui, and E. P. Wilder-Smith, "A feature selection method for multilevel mental fatigue EEG classification," IEEE Trans. Biomed. Eng., vol. 54, no. 7, pp. 1231-1237, 2007.
-
(2007)
IEEE Trans. Biomed. Eng.
, vol.54
, Issue.7
, pp. 1231-1237
-
-
Shen, K.-Q.1
Ong, C.-J.2
Li, X.P.3
Hui, Z.4
Wilder-Smith, E.P.5
-
68
-
-
84870244637
-
Stratified sampling for feature subspace selection in random forests for high dimensional data
-
Y. Ye, Q. Wu, J. Zhexue Huang, M. K. Ng, and X. Li, "Stratified sampling for feature subspace selection in random forests for high dimensional data," Pattern Recognit., vol. 46, no. 3, pp. 769-787, 2013.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.3
, pp. 769-787
-
-
Ye, Y.1
Wu, Q.2
Zhexue Huang, J.3
Ng, M.K.4
Li, X.5
-
69
-
-
84886785068
-
Instance based random forest with rotated feature space
-
L. Zhang, Y. Ren, and P. N. Suganthan, "Instance based random forest with rotated feature space," in Proc. IEEE Symp. Computational Intelligence Ensemble Learning, 2013, pp. 31-35.
-
(2013)
Proc. IEEE Symp. Computational Intelligence Ensemble Learning
, pp. 31-35
-
-
Zhang, L.1
Ren, Y.2
Suganthan, P.N.3
-
70
-
-
33646430006
-
Extremely randomized trees
-
P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Mach. Learn., vol. 63, no. 1, pp. 3-42, 2006.
-
(2006)
Mach. Learn.
, vol.63
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
71
-
-
80052423308
-
On oblique random forests
-
Berlin, Germany: Springer-Verlag
-
B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and F. A. Hamprecht, "On oblique random forests," in Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer-Verlag, 2011, pp. 453-469.
-
(2011)
Machine Learning and Knowledge Discovery in Databases
, pp. 453-469
-
-
Menze, B.H.1
Kelm, B.M.2
Splitthoff, D.N.3
Koethe, U.4
Hamprecht, F.A.5
-
72
-
-
84902362182
-
Random forests with ensemble of feature spaces
-
Oct.
-
L. Zhang and P. N. Suganthan, "Random forests with ensemble of feature spaces," Pattern Recognit., vol. 47, no. 10, pp. 3429-3437, Oct. 2014.
-
(2014)
Pattern Recognit.
, vol.47
, Issue.10
, pp. 3429-3437
-
-
Zhang, L.1
Suganthan, P.N.2
-
73
-
-
33644830072
-
Multisurface proximal support vector machine classification via generalized eigenvalues
-
O. L. Mangasarian and E. W. Wild, "Multisurface proximal support vector machine classification via generalized eigenvalues," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 69-74, 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.1
, pp. 69-74
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
74
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: A new classifier ensemble method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619-1630, 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
75
-
-
37249046891
-
An experimental study on rotation forest ensembles
-
Berlin, Germany: Springer-Verlag
-
L. I. Kuncheva and J. J. Rodruez, "An experimental study on rotation forest ensembles," in Multiple Classifier Systems. Berlin, Germany: Springer-Verlag, 2007, pp. 459-468.
-
(2007)
Multiple Classifier Systems
, pp. 459-468
-
-
Kuncheva, L.I.1
Rodruez, J.J.2
-
76
-
-
42749094856
-
Cancer classification using rotation forest
-
K.-H. Liu and D.-S. Huang, "Cancer classification using rotation forest," Comput. Biol. Med., vol. 38, no. 5, pp. 601-610, 2008.
-
(2008)
Comput. Biol. Med.
, vol.38
, Issue.5
, pp. 601-610
-
-
Liu, K.-H.1
Huang, D.-S.2
-
77
-
-
84873048938
-
SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease
-
A. Ozcift, "SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease," J. Med. Syst., vol. 36, no. 4, pp. 2141-2147, 2012.
-
(2012)
J. Med. Syst.
, vol.36
, Issue.4
, pp. 2141-2147
-
-
Ozcift, A.1
-
78
-
-
77950017573
-
Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor
-
J.-F. Xia, K. Han, and D.-S. Huang, "Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor," Protein Pept. Lett., vol. 17, no. 1, pp. 137-145, 2010.
-
(2010)
Protein Pept. Lett.
, vol.17
, Issue.1
, pp. 137-145
-
-
Xia, J.-F.1
Han, K.2
Huang, D.-S.3
-
79
-
-
34748856127
-
Effectiveness of rotation forest in meta-learning based gene expression classification
-
G. Stiglic and P. Kokol, "Effectiveness of rotation forest in meta-learning based gene expression classification," in Proc. IEEE Int. Symp. Computer-Based Medical Systems, 2007, pp. 243-250.
-
(2007)
Proc IEEE Int. Symp. Computer-Based Medical Systems
, pp. 243-250
-
-
Stiglic, G.1
Kokol, P.2
-
80
-
-
0026692226
-
Stacked generalization
-
D. H. Wolpert, "Stacked generalization," Neural Netw., vol. 5, no. 2, pp. 241-259, 1992.
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
81
-
-
33751572485
-
Novel algorithm for constructing support vector machine regression ensemble
-
L. Bo, L. Xinjun, and Z. Zhiyan, "Novel algorithm for constructing support vector machine regression ensemble," J. Syst. Eng. Electron., vol. 17, no. 3, pp. 541-545, 2006.
-
(2006)
J. Syst. Eng. Electron.
, vol.17
, Issue.3
, pp. 541-545
-
-
Bo, L.1
Xinjun, L.2
Zhiyan, Z.3
-
82
-
-
80051993442
-
A novel nonlinear combination model based on support vector machine for rainfall prediction
-
K. Lu and L. Wang, "A novel nonlinear combination model based on support vector machine for rainfall prediction," in Proc. IEEE Int. Joint Conf. Computational Sciences Optimization, 2011, pp. 1343-1346.
-
(2011)
Proc IEEE Int. Joint Conf. Computational Sciences Optimization
, pp. 1343-1346
-
-
Lu, K.1
Wang, L.2
-
83
-
-
84867907421
-
Application of hybrid RBF neural network ensemble model based on wavelet support vector machine regression in rainfall time series forecasting
-
L. Wang and J. Wu, "Application of hybrid RBF neural network ensemble model based on wavelet support vector machine regression in rainfall time series forecasting," in Proc. IEEE Int. Joint Conf. Computational Sciences Optimization, 2012, pp. 867-871.
-
(2012)
Proc IEEE Int. Joint Conf. Computational Sciences Optimization
, pp. 867-871
-
-
Wang, L.1
Wu, J.2
-
84
-
-
84884786542
-
Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
-
Dec.
-
J.-S. Chou and A.-D. Pham, "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength," Const. Building Mater., vol. 49, pp. 554-563, Dec. 2013.
-
(2013)
Const. Building Mater.
, vol.49
, pp. 554-563
-
-
Chou, J.-S.1
Pham, A.-D.2
-
85
-
-
70449378365
-
A novel artificial neural network ensemble model based on k-nearest neighbor nonparametric estimation of regression function and its application for rainfall forecasting
-
J. Wu, "A novel artificial neural network ensemble model based on k-nearest neighbor nonparametric estimation of regression function and its application for rainfall forecasting," in Proc. Int. Joint Conf. Computational Sciences Optimization, 2009, vol. 2, pp. 44-48.
-
(2009)
Proc. Int. Joint Conf. Computational Sciences Optimization
, vol.2
, pp. 44-48
-
-
Wu, J.1
-
86
-
-
80655146998
-
A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
-
Nov.
-
S. Wang, L. Yu, L. Tang, and S. Wang, "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, vol. 36, no. 11, pp. 6542-6554, Nov. 2011.
-
(2011)
Energy
, vol.36
, Issue.11
, pp. 6542-6554
-
-
Wang, S.1
Yu, L.2
Tang, L.3
Wang, S.4
-
87
-
-
77949570119
-
A hybrid statistical method to predict wind speed and wind power
-
Aug.
-
H. Liu, H.-Q. Tian, C. Chen, and Y.-F. Li, "A hybrid statistical method to predict wind speed and wind power," Renew. Energy, vol. 35, no. 8, pp. 1857-1861, Aug. 2010.
-
(2010)
Renew. Energy
, vol.35
, Issue.8
, pp. 1857-1861
-
-
Liu, H.1
Tian, H.-Q.2
Chen, C.3
Li, Y.-F.4
-
88
-
-
78650402541
-
Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal
-
Jan.
-
J. Catalao, H. Pousinho, and V. Mendes, "Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal," IEEE Trans. Sustain. Energy, vol. 2, no. 1, pp. 50-59, Jan. 2011.
-
(2011)
IEEE Trans. Sustain. Energy
, vol.2
, Issue.1
, pp. 50-59
-
-
Catalao, J.1
Pousinho, H.2
Mendes, V.3
-
89
-
-
84871644458
-
A novel hybrid approach based on wavelet transform and fuzzy ARTMAP network for predicting wind farm power production
-
Las Vegas, NV, Oct.
-
A. U. Haque, P. Mandal, J. Meng, A. K. Srivastava, T.-L. Tseng, and T. Senjyu, "A novel hybrid approach based on wavelet transform and fuzzy ARTMAP network for predicting wind farm power production," in Proc. IEEE Industry Applications Society Annu. Meeting, Las Vegas, NV, Oct. 2012, pp. 1-8.
-
(2012)
Proc IEEE Industry Applications Society Annu. Meeting
, pp. 1-8
-
-
Haque, A.U.1
Mandal, P.2
Meng, J.3
Srivastava, A.K.4
Tseng, T.-L.5
Senjyu, T.6
-
90
-
-
5544303705
-
Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis
-
Feb.
-
S. H. Cao and J. C. Cao, "Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis," Appl. Thermal Eng., vol. 25, nos. 2-3, pp. 161-172, Feb. 2005.
-
(2005)
Appl. Thermal Eng.
, vol.25
, Issue.2-3
, pp. 161-172
-
-
Cao, S.H.1
Cao, J.C.2
-
91
-
-
5444236478
-
The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis
-
N. E. Huang, Z. Shen, S. R. Long, M. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis," Proc. Roy. Soc. London A, vol. 454, no. 1971, pp. 903-995, 1998.
-
(1998)
Proc. Roy. Soc. London A
, vol.454
, Issue.1971
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.4
Shih, H.H.5
Zheng, Q.6
Yen, N.-C.7
Tung, C.C.8
Liu, H.H.9
-
92
-
-
77949524633
-
One-month ahead prediction of wind speed and output power based on EMD and LSSVM
-
X. Wang and H. Li, "One-month ahead prediction of wind speed and output power based on EMD and LSSVM," in Proc. Int. Conf. Energy Environment Technology, 2009, vol. 3, pp. 439-442.
-
(2009)
Proc. Int. Conf. Energy Environment Technology
, vol.3
, pp. 439-442
-
-
Wang, X.1
Li, H.2
-
93
-
-
84863386096
-
Wind power short-term forecasting based on empirical mode decomposition and chaotic phase space reconstruction
-
Y. Zhang, U. J. Lu, Y. Meng, H. Yan, and H. Li, "Wind power short-term forecasting based on empirical mode decomposition and chaotic phase space reconstruction," Automat. Electric Power Syst., vol. 36, no. 5, pp. 24-28, 2012.
-
(2012)
Automat. Electric Power Syst.
, vol.36
, Issue.5
, pp. 24-28
-
-
Zhang, Y.1
Lu, U.J.2
Meng, Y.3
Yan, H.4
Li, H.5
-
94
-
-
78149295101
-
The application of empirical mode decomposition and gene expression programming to short-term load forecasting
-
Aug. 10-12
-
X. Fan and Y. Zhu, "The application of empirical mode decomposition and gene expression programming to short-term load forecasting," in Proc. Int. Conf. Natural Computation, Yantai, China, Aug. 10-12, 2010, vol. 8, pp. 4331-4334.
-
(2010)
Proc. Int. Conf. Natural Computation, Yantai, China
, vol.8
, pp. 4331-4334
-
-
Fan, X.1
Zhu, Y.2
-
95
-
-
84919905211
-
Empirical mode decomposition-k nearest neighbor models for wind speed forecasting
-
Y. Ren and P. N. Suganthan, "Empirical mode decomposition-k nearest neighbor models for wind speed forecasting," J. Power Energy Eng., vol. 2, no. 4, pp. 176-185, 2014.
-
(2014)
J. Power Energy Eng.
, vol.2
, Issue.4
, pp. 176-185
-
-
Ren, Y.1
Suganthan, P.N.2
-
96
-
-
84907704597
-
A novel empirical mode decomposition with support vector regression for wind speed forecasting
-
Y. Ren, P. N. Suganthan, and N. Srikanth, "A novel empirical mode decomposition with support vector regression for wind speed forecasting," IEEE Trans. Neural Netw. Learn. Syst., 10.1109/TNNLS.2014.2351391.
-
IEEE Trans. Neural Netw. Learn. Syst.
-
-
Ren, Y.1
Suganthan, P.N.2
Srikanth, N.3
-
97
-
-
84946689999
-
Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting
-
Orlando, FL, Dec.
-
Y. Ren, X. Qiu, and P. N. Suganthan, "Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting," in Proc. IEEE Symp. Computational Intelligence Ensemble Learning, Orlando, FL, Dec. 2014, pp. 1-6.
-
(2014)
Proc IEEE Symp. Computational Intelligence Ensemble Learning
, pp. 1-6
-
-
Ren, Y.1
Qiu, X.2
Suganthan, P.N.3
-
98
-
-
84859416828
-
Evaluation of hybrid forecasting approaches for wind speed and power generation time series
-
June
-
J. Shi, J. Guo, and S. Zheng, "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3471-3480, June 2012.
-
(2012)
Renew. Sustain. Energy Rev.
, vol.16
, Issue.5
, pp. 3471-3480
-
-
Shi, J.1
Guo, J.2
Zheng, S.3
-
99
-
-
79954620339
-
Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN
-
J. Wu and C. C. Keong, "Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN," Solar Energy, vol. 85, no. 5, pp. 808-817, 2011.
-
(2011)
Solar Energy
, vol.85
, Issue.5
, pp. 808-817
-
-
Wu, J.1
Keong, C.C.2
-
100
-
-
84887854108
-
A hybrid ARIMA-DENFIS method for wind speed forecasting
-
Y. Ren, P. N. Suganthan, N. Srikanth, and S. Sarkar, "A hybrid ARIMA-DENFIS method for wind speed forecasting," in Proc. IEEE Int. Conf. Fuzzy Systems, 2013, pp. 1-6.
-
(2013)
Proc IEEE Int. Conf. Fuzzy Systems
, pp. 1-6
-
-
Ren, Y.1
Suganthan, P.N.2
Srikanth, N.3
Sarkar, S.4
-
101
-
-
33750996171
-
A novel mixture of experts model based on cooperative coevolution
-
M. Nguyen, H. A. Abbass, and R. I. McKay, "A novel mixture of experts model based on cooperative coevolution," Neurocomputing, vol. 70, nos. 1-3, pp. 155-163, 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 155-163
-
-
Nguyen, M.1
Abbass, H.A.2
McKay, R.I.3
-
102
-
-
63049114961
-
Analysis of CCME: Coevolutionary dynamics, automatic problem decomposition and regularization
-
M. Nguyen, H. A. Abbass, and R. I. McKay, "Analysis of CCME: Coevolutionary dynamics, automatic problem decomposition and regularization," IEEE Trans. Syst. Man, Cybern. C, vol. 38, no. 1, pp. 100-109, 2008.
-
(2008)
IEEE Trans. Syst. Man, Cybern. C
, vol.38
, Issue.1
, pp. 100-109
-
-
Nguyen, M.1
Abbass, H.A.2
McKay, R.I.3
-
103
-
-
84873188038
-
Hierarchical classifierregression ensemble for multi-phase non-linear dynamic system response prediction: Application to climate analysis
-
D. L. Gonzalez, Z. Chen, I. K. Tetteh, T. Pansombut, F. Semazzi, V. Kumar, A. Melechko, and N. F. Samatova, "Hierarchical classifierregression ensemble for multi-phase non-linear dynamic system response prediction: Application to climate analysis," in Proc. IEEE Int. Conf. Data Mining Workshops, 2012, pp. 781-788.
-
(2012)
Proc IEEE Int. Conf. Data Mining Workshops
, pp. 781-788
-
-
Gonzalez, D.L.1
Chen, Z.2
Tetteh, I.K.3
Pansombut, T.4
Semazzi, F.5
Kumar, V.6
Melechko, A.7
Samatova, N.F.8
-
104
-
-
84882871948
-
Hierarchical age estimation with dissimilarity-based classification
-
Nov.
-
S. Kohli, S. Prakash, and P. Gupta, "Hierarchical age estimation with dissimilarity-based classification," Neurocomputing, vol. 120, pp. 164-176, Nov. 2013.
-
(2013)
Neurocomputing
, vol.120
, pp. 164-176
-
-
Kohli, S.1
Prakash, S.2
Gupta, P.3
-
105
-
-
0033485370
-
Ensemble learning via negative correlation
-
Dec.
-
Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, Dec. 1999.
-
(1999)
Neural Netw.
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
106
-
-
25444484657
-
Managing diversity in regression ensembles
-
Dec.
-
G. Brown, J. L. Wyatt, and P. Tino, "Managing diversity in regression ensembles," J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1621-1650
-
-
Brown, G.1
Wyatt, J.L.2
Tino, P.3
-
107
-
-
84894439375
-
Fast decorrelated neural network ensembles with random weights
-
Apr.
-
M. Alhamdoosh and D. Wang, "Fast decorrelated neural network ensembles with random weights," Inform. Sci., vol. 264, pp. 104-117, Apr. 2014.
-
(2014)
Inform. Sci.
, vol.264
, pp. 104-117
-
-
Alhamdoosh, M.1
Wang, D.2
-
108
-
-
36649012798
-
Neural based learning classifier systems
-
Jan.
-
H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao, "Neural based learning classifier systems," IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 26-39, Jan. 2008.
-
(2008)
IEEE Trans. Knowl. Data Eng.
, vol.20
, Issue.1
, pp. 26-39
-
-
Dam, H.H.1
Abbass, H.A.2
Lokan, C.3
Yao, X.4
-
109
-
-
84886953869
-
Negative correlation ensemble learning for ordinal regression
-
Nov.
-
F. Ferndez-Navarro, P. Antonio Gutirez, C. Herv-Martinez, and X. Yao, "Negative correlation ensemble learning for ordinal regression," IEEE Trans. Neural Netw. Learn. Syst, vol. 24, no. 11, pp. 1836-1849, Nov. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst
, vol.24
, Issue.11
, pp. 1836-1849
-
-
Ferndez-Navarro, F.1
Antonio Gutirez, P.2
Herv-Martinez, C.3
Yao, X.4
-
110
-
-
4344623228
-
Neural network regularization and ensembling using multi-objective evolutionary algorithms
-
Portland, OR
-
Y. Jin, T. Okabe, and B. Sendhoff, "Neural network regularization and ensembling using multi-objective evolutionary algorithms," in Proc. Congr. Evolutionary Computation, Portland, OR, 2004, pp. 1-8.
-
(2004)
Proc. Congr. Evolutionary Computation
, pp. 1-8
-
-
Jin, Y.1
Okabe, T.2
Sendhoff, B.3
-
111
-
-
32144456690
-
DIVACE: Diverse and accurate ensemble learning algorithm
-
Berlin, Germany: Springer-Verlag
-
A. Chandra and X. Yao, "DIVACE: Diverse and accurate ensemble learning algorithm," in Intelligent Data Engineering and Automated Learning-IDEAL. Berlin, Germany: Springer-Verlag, 2004, pp. 619-625.
-
(2004)
Intelligent Data Engineering and Automated Learning-IDEAL
, pp. 619-625
-
-
Chandra, A.1
Yao, X.2
-
112
-
-
32544450795
-
Ensemble learning using multi-objective evolutionary algorithms
-
A. Chandra and X. Yao, "Ensemble learning using multi-objective evolutionary algorithms," J. Math. Model. Algorithms, vol. 5, no. 4, pp. 417-445, 2006.
-
(2006)
J. Math. Model. Algorithms
, vol.5
, Issue.4
, pp. 417-445
-
-
Chandra, A.1
Yao, X.2
-
113
-
-
7444246843
-
Pareto neuro-ensembles
-
T. Gedeon and L. Fung, Eds. Berlin, Germany: Springer-Verlag
-
H. Abbass, "Pareto neuro-ensembles," in AI 2003: Advances in Artificial Intelligence, vol. 2903, T. Gedeon and L. Fung, Eds. Berlin, Germany: Springer-Verlag, 2003, pp. 554-566.
-
(2003)
AI 2003: Advances in Artificial Intelligence
, vol.2903
, pp. 554-566
-
-
Abbass, H.1
-
114
-
-
84901459245
-
Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
-
H. A. Abbass, "Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization," in Proc. IEEE Congr. Evolutionary Computation, 2003, vol. 3, pp. 2074-2080.
-
(2003)
Proc IEEE Congr. Evolutionary Computation
, vol.3
, pp. 2074-2080
-
-
Abbass, H.A.1
-
115
-
-
0034876065
-
PDE: A Pareto-frontier differential evolution approach for multiobjective optimization problems
-
H. A. Abbass, R. Sarker, and C. Newton, "PDE: A Pareto-frontier differential evolution approach for multiobjective optimization problems," in Proc. IEEE Congr. Evolutionary Computation, 2001, vol. 2, pp. 971-978.
-
(2001)
Proc IEEE Congr. Evolutionary Computation
, vol.2
, pp. 971-978
-
-
Abbass, H.A.1
Sarker, R.2
Newton, C.3
-
117
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
A. Chandra and X. Yao, "Evolving hybrid ensembles of learning machines for better generalisation," Neurocomputing, vol. 69, no. 7, pp. 686-700, 2006.
-
(2006)
Neurocomputing
, vol.69
, Issue.7
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
118
-
-
85156192015
-
Generating accurate and diverse members of a neural-network ensemble
-
Cambridge, MA: MIT Press
-
D. W. Opitz and J. W. Shavlik, "Generating accurate and diverse members of a neural-network ensemble," in Advances in Neural Information Processing Systems, vol. 8. Cambridge, MA: MIT Press, 1996, pp. 535-541.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 535-541
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
119
-
-
34547287417
-
Evolutionary multiobjective ensemble learning based on Bayesian feature selection
-
H. Chen and X. Yao, "Evolutionary multiobjective ensemble learning based on Bayesian feature selection," in Proc. IEEE Congr. Evolutionary Computation, 2006, pp. 267-274.
-
(2006)
Proc IEEE Congr. Evolutionary Computation
, pp. 267-274
-
-
Chen, H.1
Yao, X.2
-
120
-
-
78149249078
-
Multiobjective neural network ensembles based on regularized negative correlation learning
-
H. Chen and X. Yao, "Multiobjective neural network ensembles based on regularized negative correlation learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 12, pp. 1738-1751, 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.12
, pp. 1738-1751
-
-
Chen, H.1
Yao, X.2
-
121
-
-
84904798148
-
A unified evolutionary training scheme for single and ensemble of feedforward neural network
-
Nov.
-
W.-C. Chen, L.-Y. Tseng, and C.-S. Wu, "A unified evolutionary training scheme for single and ensemble of feedforward neural network," Neurocomputing, vol. 143, pp. 347-361, Nov. 2014.
-
(2014)
Neurocomputing
, vol.143
, pp. 347-361
-
-
Chen, W.-C.1
Tseng, L.-Y.2
Wu, C.-S.3
-
122
-
-
84888074993
-
A multiobjective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
-
Feb.
-
C. J. Tan, C. P. Lim, and Y.-N. Cheah, "A multiobjective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models," Neurocomputing, vol. 125, pp. 217-228, Feb. 2014.
-
(2014)
Neurocomputing
, vol.125
, pp. 217-228
-
-
Tan, C.J.1
Lim, C.P.2
Cheah, Y.-N.3
-
123
-
-
83755196700
-
Ensemble learning and pruning in multi-objective genetic programming for classification with unbalanced data
-
Berlin, Germany: Springer-Verlag
-
U. Bhowan, M. Johnston, and M. Zhang, "Ensemble learning and pruning in multi-objective genetic programming for classification with unbalanced data," in AI 2011: Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2011, pp. 192-202.
-
(2011)
AI 2011: Advances in Artificial Intelligence
, pp. 192-202
-
-
Bhowan, U.1
Johnston, M.2
Zhang, M.3
-
124
-
-
84962024615
-
-
Berlin Germany: Springer-Verlag
-
D. Kocev, C. Vens, J. Struyf, and S. Džeroski, Ensembles of Multiobjective Decision Trees. Berlin, Germany: Springer-Verlag, 2007.
-
(2007)
Ensembles of Multiobjective Decision Trees
-
-
Kocev, D.1
Vens, C.2
Struyf, J.3
Džeroski, S.4
-
125
-
-
84864702496
-
Multi-objective evolutionary optimization for generating ensembles of classifiers in the ROC space
-
ACM
-
J.-C. Lesque, A. Durand, C. Gagn and R. Sabourin, "Multi-objective evolutionary optimization for generating ensembles of classifiers in the ROC space," in Proc. Genetic Evolutionary Computation, ACM, 2012, pp. 879-886.
-
(2012)
Proc. Genetic Evolutionary Computation
, pp. 879-886
-
-
Lesque, J.-C.1
Durand, A.2
Gagn, C.3
Sabourin, R.4
-
126
-
-
84961990247
-
RBF networks ensemble construction based on evolutionary multi-objective optimization
-
N. Kondo, T. Hatanaka, and K. Uosaki, "RBF networks ensemble construction based on evolutionary multi-objective optimization," J. Adv. Comput. Intell. Informat., vol. 12, no. 3, pp. 297-303, 2008.
-
(2008)
J. Adv. Comput. Intell. Informat.
, vol.12
, Issue.3
, pp. 297-303
-
-
Kondo, N.1
Hatanaka, T.2
Uosaki, K.3
-
127
-
-
84865037050
-
Multiobjective optimization of coclustering ensembles
-
ACM
-
F. Gullo, A. Talukder, S. Luke, C. Domeniconi, and A. Tagarelli, "Multiobjective optimization of coclustering ensembles," in Proc. Annu. Conf. Companion Genetic Evolutionary Computation, ACM, 2012, pp. 1495-1496.
-
(2012)
Proc. Annu. Conf. Companion Genetic Evolutionary Computation
, pp. 1495-1496
-
-
Gullo, F.1
Talukder, A.2
Luke, S.3
Domeniconi, C.4
Tagarelli, A.5
-
128
-
-
84997317397
-
An analysis of multiobjective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation
-
ACM
-
L. L. Minku and X. Yao, "An analysis of multiobjective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation," in Proc. Int. Conf. Predictive Models Software Engineering, ACM, 2013, p. 8.
-
(2013)
Proc. Int. Conf. Predictive Models Software Engineering
, pp. 8
-
-
Minku, L.L.1
Yao, X.2
-
129
-
-
84904797921
-
Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction
-
Nov.
-
C. Smith and Y. Jin, "Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction," Neurocomputing, vol. 143, pp. 302-311, Nov. 2014.
-
(2014)
Neurocomputing
, vol.143
, pp. 302-311
-
-
Smith, C.1
Jin, Y.2
-
130
-
-
84908584310
-
Multi-objective evolutionary recurrent neural network ensemble for prediction of computational f luid dynamic simulations
-
C. Smith, J. Doherty, and Y. Jin, "Multi-objective evolutionary recurrent neural network ensemble for prediction of computational f luid dynamic simulations," in Proc. IEEE Congr. Evolutionary Computation, 2014, pp. 2609-2616.
-
(2014)
Proc IEEE Congr. Evolutionary Computation
, pp. 2609-2616
-
-
Smith, C.1
Doherty, J.2
Jin, Y.3
-
131
-
-
84905869674
-
Time series forecasting by neural networks: A knee pointbased multiobjective evolutionary algorithm approach
-
W. Du, S. Y. S. Leung, and C. K. Kwong, "Time series forecasting by neural networks: A knee pointbased multiobjective evolutionary algorithm approach," Expert Syst. Aplicat., vol. 41, no. 18, pp. 8049-8061, 2014.
-
(2014)
Expert Syst. Aplicat.
, vol.41
, Issue.18
, pp. 8049-8061
-
-
Du, W.1
Leung, S.Y.S.2
Kwong, C.K.3
-
132
-
-
0346076780
-
'Fuzzy' versus 'nonfuzzy' in combining classifiers designed by boosting
-
L. I. Kuncheva, "'Fuzzy' versus 'nonfuzzy' in combining classifiers designed by boosting," IEEE Trans. Fuzzy Syst., vol. 11, no. 6, pp. 729-741, 2003.
-
(2003)
IEEE Trans. Fuzzy Syst.
, vol.11
, Issue.6
, pp. 729-741
-
-
Kuncheva, L.I.1
-
134
-
-
33750540348
-
A classifier ensemble method for fuzzy classifiers
-
Berlin, Germany: Springer-Verlag
-
A.-M. Yang, Y.-M. Zhou, and M. Tang, "A classifier ensemble method for fuzzy classifiers," in Fuzzy Systems and Knowledge Discovery. Berlin, Germany: Springer-Verlag, 2006, pp. 784-793.
-
(2006)
Fuzzy Systems and Knowledge Discovery
, pp. 784-793
-
-
Yang, A.-M.1
Zhou, Y.-M.2
Tang, M.3
-
135
-
-
50149111947
-
A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers
-
O. Cord, A. Quirin, and L. Schez, "A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers," in Proc. Int. Workshop Genetic Evolving Systems, 2008, pp. 11-16.
-
(2008)
Proc. Int. Workshop Genetic Evolving Systems
, pp. 11-16
-
-
Cord, O.1
Quirin, A.2
Schez, L.3
-
136
-
-
84889248780
-
Ensemble learning algorithm in classification of fuzzy-classes
-
Z. Fu, D. Zhang, L. Wang, and X. Li, "Ensemble learning algorithm in classification of fuzzy-classes," J. Comput. Inform. Syst., vol. 9, no. 22, pp. 8929-8938, 2013.
-
(2013)
J. Comput. Inform. Syst.
, vol.9
, Issue.22
, pp. 8929-8938
-
-
Fu, Z.1
Zhang, D.2
Wang, L.3
Li, X.4
-
137
-
-
40249104718
-
Designing fuzzy ensemble classifiers by evolutionary multiobjective optimization with an entropy-based diversity criterion
-
Y. Nojima and H. Ishibuchi, "Designing fuzzy ensemble classifiers by evolutionary multiobjective optimization with an entropy-based diversity criterion," in Proc. Int. Conf. Hybrid Intelligent Systems, 2006, pp. 59-59.
-
(2006)
Proc. Int. Conf. Hybrid Intelligent Systems
, pp. 59
-
-
Nojima, Y.1
Ishibuchi, H.2
-
138
-
-
35248819821
-
Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers
-
H. Ishibuchi and T. Yamamoto, "Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers," in Proc. Genetic Evolutionary Computation, 2003, pp. 1077-1088.
-
(2003)
Proc. Genetic Evolutionary Computation
, pp. 1077-1088
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
139
-
-
83755186783
-
Combining interpretable fuzzy rule-based classifiers via multiobjective hierarchical evolutionary algorithm
-
J. Cao, H. Wang, S. Kwong, and K. Li, "Combining interpretable fuzzy rule-based classifiers via multiobjective hierarchical evolutionary algorithm," in Proc. IEEE Int. Conf. Systems, Man, Cybernetics, 2011, pp. 1771-1776.
-
(2011)
Proc IEEE Int. Conf. Systems, Man, Cybernetics
, pp. 1771-1776
-
-
Cao, J.1
Wang, H.2
Kwong, S.3
Li, K.4
-
140
-
-
85027938691
-
Ensemble multiple kernel active learning for classification of multisource remote sensing data
-
Feb.
-
Y. Zhang, H. Yang, S. Prasad, E. Pasolli, J. Jung, and M. Crawford, "Ensemble multiple kernel active learning for classification of multisource remote sensing data," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, vol. 8, no. 2, pp. 845-858, Feb. 2015.
-
(2015)
IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing
, vol.8
, Issue.2
, pp. 845-858
-
-
Zhang, Y.1
Yang, H.2
Prasad, S.3
Pasolli, E.4
Jung, J.5
Crawford, M.6
-
141
-
-
84901659628
-
Ensemble of multiple kernel SVM classifiers
-
Berlin, Germany: Springer-Verlag
-
X. Wang, X. Liu, N. Japkowicz, and S. Matwin, "Ensemble of multiple kernel SVM classifiers," in Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2014, pp. 239-250.
-
(2014)
Advances in Artificial Intelligence
, pp. 239-250
-
-
Wang, X.1
Liu, X.2
Japkowicz, N.3
Matwin, S.4
-
142
-
-
84898936871
-
On kernel target alignment
-
Cambridge, MA: MIT Press
-
N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor, "On kernel target alignment," in Advances in Neural Information Processing Systems, vol. 14. Cambridge, MA: MIT Press, 2002, pp. 367-373.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 367-373
-
-
Cristianini, N.1
Kandola, J.2
Elisseeff, A.3
Shawe-Taylor, J.4
-
143
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Jan.
-
G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, "Learning the kernel matrix with semidefinite programming," J. Mach. Learn. Res., vol. 5, pp. 27-72, Jan. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
144
-
-
33749260075
-
A general and efficient multiple kernel learning algorithm
-
Dec.
-
S. Sonnenburg, G. Rsch, and C. Scher, "A general and efficient multiple kernel learning algorithm," in Proc. Neural Information Processing Systems, Dec. 2005, pp. 1275-1282.
-
(2005)
Proc. Neural Information Processing Systems
, pp. 1275-1282
-
-
Sonnenburg, S.1
Rsch, G.2
Scher, C.3
-
145
-
-
77956505061
-
Two-stage learning kernel algorithms
-
C. Cortes, M. Mohri, and A. Rostamizadeh, "Two-stage learning kernel algorithms," in Proc. Int. Conf. Machine Learning, 2010, pp. 239-246.
-
(2010)
Proc. Int. Conf. Machine Learning
, pp. 239-246
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
146
-
-
84898966246
-
Learning kernels using local rademacher complexity
-
C. Cortes, M. Kloft, and M. Mohri, "Learning kernels using local rademacher complexity," in Proc. Advances in Neural Information Processing Systems, 2013, pp. 2760-2768.
-
(2013)
Proc. Advances in Neural Information Processing Systems
, pp. 2760-2768
-
-
Cortes, C.1
Kloft, M.2
Mohri, M.3
-
147
-
-
84857883067
-
Multi kernel learning with online-batch optimization
-
F. Orabona, L. Jie, and B. Caputo, "Multi kernel learning with online-batch optimization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 227-253, 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 227-253
-
-
Orabona, F.1
Jie, L.2
Caputo, B.3
-
148
-
-
84884931575
-
Soft margin multiple kernel learning
-
X. Xu, I. W. Tsang, and D. Xu, "Soft margin multiple kernel learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 5, pp. 749-761, 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.5
, pp. 749-761
-
-
Xu, X.1
Tsang, I.W.2
Xu, D.3
-
149
-
-
80053050350
-
SpicyMKL: A fast algorithm for multiple kernel learning with thousands of kernels
-
T. Suzuki and R. Tomioka, "SpicyMKL: A fast algorithm for multiple kernel learning with thousands of kernels," Mach. Learn., vol. 85, nos. 1-2, pp. 77-108, 2011.
-
(2011)
Mach. Learn.
, vol.85
, Issue.1-2
, pp. 77-108
-
-
Suzuki, T.1
Tomioka, R.2
-
150
-
-
79955848223
-
Lp-norm multiple kernel learning
-
Mar.
-
M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, "lp-norm multiple kernel learning," J. Mach. Learn. Res., vol. 12, pp. 953-997, Mar. 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 953-997
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Zien, A.4
-
151
-
-
84862282715
-
Two-layer multiple kernel learning
-
J. Zhuang, I. W. Tsang, and S. Hoi, "Two-layer multiple kernel learning," in Proc. Int. Conf. Artificial Intelligence Statistics, 2011, pp. 909-917.
-
(2011)
Proc. Int. Conf. Artificial Intelligence Statistics
, pp. 909-917
-
-
Zhuang, J.1
Tsang, I.W.2
Hoi, S.3
-
152
-
-
85162016686
-
Multiple kernel learning and the SMO algorithm
-
Z. Sun, N. Ampornpunt, M. Varma, and S. Vishwanathan, "Multiple kernel learning and the SMO algorithm," in Proc. Advances Neural Information Processing Systems, 2010, pp. 2361-2369.
-
(2010)
Proc. Advances Neural Information Processing Systems
, pp. 2361-2369
-
-
Sun, Z.1
Ampornpunt, N.2
Varma, M.3
Vishwanathan, S.4
-
153
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. Lanckriet, and M. I. Jordan, "Multiple kernel learning, conic duality, and the SMO algorithm," in Proc. Int. Conf. Machine Learning, 2004, p. 6.
-
(2004)
Proc. Int. Conf. Machine Learning
, pp. 6
-
-
Bach, F.R.1
Lanckriet, G.R.2
Jordan, M.I.3
-
154
-
-
57249084590
-
Simple MKL
-
Nov.
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, "SimpleMKL," J. Mach. Learn. Res., vol. 9, pp. 2491-2521, Nov. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
155
-
-
34547992388
-
Multiclass multiple kernel learning
-
attend the panel "IEEE and CIS in the Next Decade", that will be held during WCCI 2016, the World Congress on Computational Intelligence, that will be held on July 25-29, in Vancouver, Canada
-
A. Zien and C. S. Ong, "Multiclass multiple kernel learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1191-1198. attend the panel "IEEE and CIS in the Next Decade", that will be held during WCCI 2016, the World Congress on Computational Intelligence, that will be held on July 25-29, in Vancouver, Canada (http://www.wcci2016.org/).
-
(2007)
Proc. Int. Conf. Mach. Learn.
, pp. 1191-1198
-
-
Zien, A.1
Ong, C.S.2
-
156
-
-
85156254642
-
Kernel design using boosting
-
K. Crammer, J. Keshet, and Y. Singer, "Kernel design using boosting," in Proc. Advances Neural Information Processing Systems, 2002, pp. 537-544.
-
(2002)
Proc. Advances Neural Information Processing Systems
, pp. 537-544
-
-
Crammer, K.1
Keshet, J.2
Singer, Y.3
-
157
-
-
77958023968
-
Learning with ensembles of randomized trees: New insights
-
Berlin, Germany: Springer-Verlag
-
V. Pisetta, P.-E. Jouve, and D. A. Zighed, "Learning with ensembles of randomized trees: New insights," in Machine Learning and Knowledge Discovery in Databases, Berlin, Germany: Springer-Verlag, 2010, pp. 67-82.
-
(2010)
Machine Learning and Knowledge Discovery in Databases
, pp. 67-82
-
-
Pisetta, V.1
Jouve, P.-E.2
Zighed, D.A.3
-
158
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
159
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
160
-
-
84866714584
-
Multicolumn deep neural networks for image classification
-
D. Ciresan, U. Meier, and J. Schmidhuber, "Multicolumn deep neural networks for image classification," in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2012, pp. 3642-3649.
-
(2012)
Proc IEEE Conf. Computer Vision Pattern Recognition
, pp. 3642-3649
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
161
-
-
84861776914
-
Multi-column deep neural network for traffic sign classification
-
Aug.
-
D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification," Neural Netw., vol. 32, pp. 333-338, Aug. 2012.
-
(2012)
Neural Netw.
, vol.32
, pp. 333-338
-
-
Ciresan, D.1
Meier, U.2
Masci, J.3
Schmidhuber, J.4
-
162
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
163
-
-
84899024949
-
Adaptive multi-column deep neural networks with application to robust image denoising
-
F. Agostinelli, M. R.,erson, and H. Lee, "Adaptive multi-column deep neural networks with application to robust image denoising," in Proc. Advances Neural Information Processing Systems, 2013, pp. 1493-1501.
-
(2013)
Proc. Advances Neural Information Processing Systems
, pp. 1493-1501
-
-
Agostinelli, F.1
Erson, M.R.2
Lee, H.3
-
164
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Dec.
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Dec. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
165
-
-
77649297423
-
An ensemble of deep support vector machines for image categorization
-
A. Abdullah, R. C. Veltkamp, and M. A. Wiering, "An ensemble of deep support vector machines for image categorization," in Proc. IEEE Int. Conf. Soft Computing Pattern Recognition, 2009, pp. 301-306.
-
(2009)
Proc IEEE Int. Conf. Soft Computing Pattern Recognition
, pp. 301-306
-
-
Abdullah, A.1
Veltkamp, R.C.2
Wiering, M.A.3
-
166
-
-
0013173138
-
Comparison between product and mean classifier combination rules
-
D. M. J. Tax, R. P. W. Duin, and M. van Breukelen, "Comparison between product and mean classifier combination rules," in Proc. Workshop Statistical Pattern Recognition, 1997, pp. 165-170.
-
(1997)
Proc. Workshop Statistical Pattern Recognition
, pp. 165-170
-
-
Tax, D.M.J.1
Duin, R.P.W.2
Van Breukelen, M.3
-
167
-
-
70449399643
-
Spatial pyramids and two-layer stacking SVM classifiers for image categorization: A comparative study
-
A. Abdullah, R. C. Veltkamp, and M. A. Wiering, "Spatial pyramids and two-layer stacking SVM classifiers for image categorization: A comparative study," in Proc. IEEE Int. Joint Conf. Neural Networks, 2009, pp. 5-12.
-
(2009)
Proc IEEE Int. Joint Conf. Neural Networks
, pp. 5-12
-
-
Abdullah, A.1
Veltkamp, R.C.2
Wiering, M.A.3
-
168
-
-
84867720412
-
-
arXiv preprint arXiv: 1207.0580 July
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207.0580, July 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
170
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, "Regularization of neural networks using dropconnect," in Proc. Int. Conf. Machine Learning, 2013, pp. 1058-1066.
-
(2013)
Proc. Int. Conf. Machine Learning
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
172
-
-
84891087509
-
-
Univ. Stanford, Stanford, CA, Tech. Rep. CS Dec.
-
E. Busseti, I. Osband, and S. Wong, "Deep learning for time series modeling," Univ. Stanford, Stanford, CA, Tech. Rep. CS 229, Dec. 2012.
-
(2012)
Deep Learning for Time Series Modeling
, vol.229
-
-
Busseti, E.1
Osband, I.2
Wong, S.3
-
173
-
-
84922366535
-
Deep support vector machines for regression problems
-
M. Wiering, M. Schutten, A. Millea, A. Meijster, and L. R. B. Schomaker, "Deep support vector machines for regression problems," in Proc. Int. Workshop Advances Regularization, Optimization, Kernel Methods, Support Vector Machines: Theory Applications, 2013.
-
(2013)
Proc. Int. Workshop Advances Regularization, Optimization, Kernel Methods, Support Vector Machines: Theory Applications
-
-
Wiering, M.1
Schutten, M.2
Millea, A.3
Meijster, A.4
Schomaker, L.R.B.5
-
174
-
-
84946688846
-
Ensemble deep learning for regression and timeseries forecasting
-
Orlando, FL, Dec.
-
X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga, "Ensemble deep learning for regression and timeseries forecasting," in Proc. IEEE Symp. Computational Intelligence Ensemble Learning, Orlando, FL, Dec. 2014, pp. 1-6.
-
(2014)
Proc IEEE Symp. Computational Intelligence Ensemble Learning
, pp. 1-6
-
-
Qiu, X.1
Zhang, L.2
Ren, Y.3
Suganthan, P.N.4
Amaratunga, G.5
-
175
-
-
80052837450
-
A novel ensemble method for regression via classification problems
-
S. M. Halawani, I. A. Albidewi, and A. Ahmad, "A novel ensemble method for regression via classification problems," J. Comput. Sci., vol. 7, no. 3, pp. 387-393, 2011.
-
(2011)
J. Comput. Sci.
, vol.7
, Issue.3
, pp. 387-393
-
-
Halawani, S.M.1
Albidewi, I.A.2
Ahmad, A.3
-
176
-
-
84908019121
-
Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]
-
Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, "Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]," IEEE Comput. Intell. Mag., vol. 9, no. 4, pp. 62-74, 2014.
-
(2014)
IEEE Comput. Intell. Mag.
, vol.9
, Issue.4
, pp. 62-74
-
-
Zhou, Z.-H.1
Chawla, N.V.2
Jin, Y.3
Williams, G.J.4
-
177
-
-
84903698283
-
Research on particle swarm optimization based clustering: A systematic review of literature and techniques
-
Aug.
-
S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U. Rehman, "Research on particle swarm optimization based clustering: A systematic review of literature and techniques," Swarm Evol. Comput., vol. 17, pp. 1-13, Aug. 2014.
-
(2014)
Swarm Evol. Comput.
, vol.17
, pp. 1-13
-
-
Alam, S.1
Dobbie, G.2
Koh, Y.S.3
Riddle, P.4
Rehman, S.U.5
-
178
-
-
84897050613
-
A survey on nature inspired metaheuristic algorithms for partitional clustering
-
June
-
S. J. Nanda and G. Panda, "A survey on nature inspired metaheuristic algorithms for partitional clustering," Swarm Evol. Comput., vol. 16, pp. 1-18, June 2014.
-
(2014)
Swarm Evol. Comput.
, vol.16
, pp. 1-18
-
-
Nanda, S.J.1
Panda, G.2
-
179
-
-
84872689875
-
Variable hidden neuron ensemble for mass classification in digital mammograms [application notes]
-
P. Mc Leod and B. Verma, "Variable hidden neuron ensemble for mass classification in digital mammograms [application notes]," IEEE Comput. Intell. Mag., vol. 8, no. 1, pp. 68-76, 2013.
-
(2013)
IEEE Comput. Intell. Mag.
, vol.8
, Issue.1
, pp. 68-76
-
-
Mc Leod, P.1
Verma, B.2
-
180
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems
-
M. Ferndez-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems" J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133-3181, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 3133-3181
-
-
Ferndez-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
181
-
-
84861528628
-
Efficient constraint handling for optimal reactive power dispatch problems
-
Aug.
-
R. Mallipeddi, S. Jeyadevi, P. N. Suganthan, and S. Baskar, "Efficient constraint handling for optimal reactive power dispatch problems," Swarm Evol. Comput., vol. 5, pp. 28-36, Aug. 2012.
-
(2012)
Swarm Evol. Comput.
, vol.5
, pp. 28-36
-
-
Mallipeddi, R.1
Jeyadevi, S.2
Suganthan, P.N.3
Baskar, S.4
-
182
-
-
78650872465
-
Differential evolution algorithm with ensemble of parameters and mutation strategies
-
R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren, "Differential evolution algorithm with ensemble of parameters and mutation strategies," Appl. Soft Comput., vol. 11, no. 2, pp. 1679-1696, 2011.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.2
, pp. 1679-1696
-
-
Mallipeddi, R.1
Suganthan, P.N.2
Pan, Q.-K.3
Tasgetiren, M.F.4
-
183
-
-
84887038980
-
How can surrogates inf luence the convergence of evolutionary algorithms
-
Oct.
-
Y. Chen, W. Xie, and X. Zou, "How can surrogates inf luence the convergence of evolutionary algorithms" Swarm Evol. Comput., vol. 12, pp. 18-23, Oct. 2013.
-
(2013)
Swarm Evol. Comput.
, vol.12
, pp. 18-23
-
-
Chen, Y.1
Xie, W.2
Zou, X.3
-
184
-
-
84863906586
-
Surrogate-assisted evolutionary computation: Recent advances and future challenges
-
Y. Jin, "Surrogate-assisted evolutionary computation: Recent advances and future challenges," Swarm Evol. Comput., vol. 1, no. 2, pp. 61-70, 2011.
-
(2011)
Swarm Evol. Comput.
, vol.1
, Issue.2
, pp. 61-70
-
-
Jin, Y.1
-
185
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2009, pp. 248-255.
-
(2009)
Proc IEEE Conf. Computer Vision Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
186
-
-
51849117118
-
-
Univ. Massachusetts, Amherst, MA, Tech. Rep. 07-49 Oct.
-
G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, "Labeled faces in the wild: A database for studying face recognition in unconstrained environments," Univ. Massachusetts, Amherst, MA, Tech. Rep. 07-49, Oct. 2007.
-
(2007)
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
-
-
Huang, G.1
Ramesh, M.2
Berg, T.3
Learned-Miller, E.4
|