메뉴 건너뛰기




Volumn 11, Issue 1, 2016, Pages 41-53

Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]

Author keywords

Bagging; Boosting; Computational modeling; Machine learning; Optimization; Performance evaluation

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; DECISION TREES; LEARNING ALGORITHMS; LEARNING SYSTEMS; MULTIOBJECTIVE OPTIMIZATION; OPTIMIZATION;

EID: 84962026438     PISSN: 1556603X     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCI.2015.2471235     Document Type: Review
Times cited : (562)

References (186)
  • 1
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Berlin, Germany: Springer-Verlag
    • T. G. Dietterich, "Ensemble methods in machine learning," in Multiple Classifier Systems. Berlin, Germany: Springer-Verlag, 2000, pp. 1-15.
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 2
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • R. Kohavi and D. H. Wolpert, "Bias plus variance decomposition for zero-one loss functions," in Proc. Int. Conf. Machine Learning, 1996, pp. 275-283.
    • (1996) Proc. Int. Conf. Machine Learning , pp. 275-283
    • Kohavi, R.1    Wolpert, D.H.2
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Oct.
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Feb.
    • L. Rokach, "Ensemble-based classifiers," Artif. Intell. Rev., vol. 33, nos. 1-2, pp. 1-39, Feb. 2010.
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 6
    • 84962025302 scopus 로고    scopus 로고
    • An analysis on ensemble methods in classification tasks
    • July
    • D. Gopika and B. Azhagusundari, "An analysis on ensemble methods in classification tasks," Int. J. Adv. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 7423-7427, July 2014.
    • (2014) Int. J. Adv. Res. Comput. Commun. Eng. , vol.3 , Issue.7 , pp. 7423-7427
    • Gopika, D.1    Azhagusundari, B.2
  • 7
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • L. Rokach, "Ensemble-based classifiers," Artif. Intell. Rev., vol. 33, no. 1-2, pp. 1-39, 2010.
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 8
    • 78951491903 scopus 로고    scopus 로고
    • A review of ensemble methods in bioinformatics
    • Dec.
    • P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya, "A review of ensemble methods in bioinformatics," Curr. Bioinform., vol. 5, no. 4, pp. 296-308, Dec. 2010.
    • (2010) Curr. Bioinform. , vol.5 , Issue.4 , pp. 296-308
    • Yang, P.1    Yang, Y.H.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 10
    • 84929622158 scopus 로고    scopus 로고
    • Ensemble methods for wind and solar power forecasting: A state-ofthe-art review
    • Oct.
    • Y. Ren, P. N. Suganthan, and N. Srikanth, "Ensemble methods for wind and solar power forecasting: A state-ofthe-art review," Renew. Sustain. Energy Rev., vol. 50, pp. 82-91, Oct. 2015.
    • (2015) Renew. Sustain. Energy Rev. , vol.50 , pp. 82-91
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 11
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," Adv. Neural Inform. Process. Syst., vol. 7, pp. 231-238, 1995.
    • (1995) Adv. Neural Inform. Process. Syst. , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 12
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Mar.
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," Inform. Fusion, vol. 6, no. 1, pp. 5-20, Mar. 2005.
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 13
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Jan.
    • S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, no. 1, pp. 1-58, Jan. 1992.
    • (1992) Neural Comput. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 14
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Dec.
    • G. Brown, J. L. Wyatt, and P. Tino, "Managing diversity in regression ensembles," J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tino, P.3
  • 15
    • 0012937288 scopus 로고    scopus 로고
    • A unified bias-variance decomposition and its applications
    • P. Domingos, "A unified bias-variance decomposition and its applications," in Proc Int. Conf. Machine Learning, 2000, pp. 231-238.
    • (2000) Proc Int. Conf. Machine Learning , pp. 231-238
    • Domingos, P.1
  • 16
    • 0001284939 scopus 로고
    • Stochastic discrimination
    • E. Kleinberg, "Stochastic discrimination," Ann. Math. Artif. Intell., vol. 1, no. 1, pp. 207-239, 1990.
    • (1990) Ann. Math. Artif. Intell. , vol.1 , Issue.1 , pp. 207-239
    • Kleinberg, E.1
  • 17
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire and Y. Freund, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Stat., vol. 26, no. 5, pp. 1651-1686, 1998.
    • (1998) Ann. Stat. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2
  • 19
    • 84992322729 scopus 로고
    • Error-correcting output coding corrects bias and variance
    • E. B. Kong and T. G. Dietterich, "Error-correcting output coding corrects bias and variance," in Proc. Int. Conf. Machine Learning, 1995, pp. 313-321.
    • (1995) Proc. Int. Conf. Machine Learning , pp. 313-321
    • Kong, E.B.1    Dietterich, T.G.2
  • 20
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-Loss, and the curse-of-dimensionality
    • J. H. Friedman, "On bias, variance, 0/1-Loss, and the curse-of-dimensionality," Data Mining Knowl. Disc., vol. 1, no. 1, pp. 55-77, 1997.
    • (1997) Data Mining Knowl. Disc. , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 21
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifier (with discussion and a rejoinder by the author)
    • L. Breiman, "Arcing classifier (with discussion and a rejoinder by the author)," Ann. Stat., vol. 26, no. 3, pp. 801-849, 1998.
    • (1998) Ann. Stat. , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 22
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • G. M. James, "Variance and bias for general loss functions," Mach. Learn., vol. 51, no. 2, pp. 115-135, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 115-135
    • James, G.M.1
  • 24
    • 84970019466 scopus 로고    scopus 로고
    • Oblique decision tree ensemble via multisurface proximal support vector machine
    • Nov.
    • L. Zhang and P. N. Suganthan, "Oblique decision tree ensemble via multisurface proximal support vector machine," IEEE Trans. Cybern., pp. 2168-2267, Nov. 2014.
    • (2014) IEEE Trans. Cybern. , pp. 2168-2267
    • Zhang, L.1    Suganthan, P.N.2
  • 26
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: A technique for combining rotation forest and adaboost
    • C.-X. Zhang and J.-S. Zhang, "RotBoost: A technique for combining rotation forest and adaboost," Pattern Recognit. Lett., vol. 29, no. 10, pp. 1524-1536, 2008.
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 28
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E. K. Tang, P. N. Suganthan, and X. Yao, "An analysis of diversity measures," Mach. Learn., vol. 65, no. 1, pp. 247-271, 2006.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 29
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 30
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 31
    • 49749104280 scopus 로고    scopus 로고
    • Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples
    • C. Tan, M. Li, and X. Qin, "Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples," Anal. Sci., vol. 24, no. 5, pp. 647-654, 2008.
    • (2008) Anal. Sci. , vol.24 , Issue.5 , pp. 647-654
    • Tan, C.1    Li, M.2    Qin, X.3
  • 32
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • L. Breiman, "Randomizing outputs to increase prediction accuracy," Mach. Learn., vol. 40, no. 3, pp. 229-242, 2000.
    • (2000) Mach. Learn. , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 33
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz and R. Maclin, "Popular ensemble methods: An empirical study," J. Artif. Intell. Res., vol. 11, pp. 169-196, 1999.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-196
    • Opitz, D.1    MacLin, R.2
  • 34
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • July
    • M. Gnen and E. Alpaydn, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, July 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gnen, M.1    Alpaydn, E.2
  • 35
    • 84919905288 scopus 로고    scopus 로고
    • A comparative study of empirical mode decomposition based short-term wind speed forecasting methods
    • Y. Ren and P. N. Suganthan, "A comparative study of empirical mode decomposition based short-term wind speed forecasting methods," IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 236-244, 2015.
    • (2015) IEEE Trans. Sustain. Energy , vol.6 , Issue.1 , pp. 236-244
    • Ren, Y.1    Suganthan, P.N.2
  • 38
  • 39
    • 84905221751 scopus 로고    scopus 로고
    • Fuzzy classifiers
    • revision 133818
    • L. I. Kuncheva, "Fuzzy classifiers," Scholarpedia, vol. 3, no. 1, p. 2925, 2008, revision 133818.
    • (2008) Scholarpedia , vol.3 , Issue.1 , pp. 2925
    • Kuncheva, L.I.1
  • 41
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • H. Ishibuchi, T. Nakashima, and T. Morisawa, "Voting in fuzzy rule-based systems for pattern classification problems," Fuzzy sets Syst., vol. 103, no. 2, pp. 223-238, 1999.
    • (1999) Fuzzy Sets Syst. , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 45
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: Combining classifiers by bootstrap aggregation
    • T. Hothorn and B. Lausen, "Double-bagging: Combining classifiers by bootstrap aggregation," Pattern Recognit., vol. 36, no. 6, pp. 1303-1309, 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.6 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 46
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Mach. Learn., vol. 36, nos. 1-2, pp. 105-139, 1999.
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 47
    • 78650945964 scopus 로고    scopus 로고
    • Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression
    • Jan.
    • D.-P. Niu, F.-l. Wang, L.-l. Zhang, D.-K. He, and M.-X. Jia, "Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression," Chemometr. Intell. Lab. Syst., vol. 105, no. 1, pp. 125-130, Jan. 2011.
    • (2011) Chemometr. Intell. Lab. Syst. , vol.105 , Issue.1 , pp. 125-130
    • Niu, D.-P.1    Wang, F.-L.2    Zhang, L.-L.3    He, D.-K.4    Jia, M.-X.5
  • 48
    • 84885457547 scopus 로고    scopus 로고
    • Target localization using ensemble support vector regression in wireless sensor networks
    • Aug.
    • W. Kim, J. Park, J. Yoo, H. Kim, and C. G. Park, "Target localization using ensemble support vector regression in wireless sensor networks," IEEE Trans. Cybern., vol. 43, no. 4, pp. 1189-1198, Aug. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.4 , pp. 1189-1198
    • Kim, W.1    Park, J.2    Yoo, J.3    Kim, H.4    Park, C.G.5
  • 50
    • 70349087319 scopus 로고    scopus 로고
    • The diversity of regression ensembles combining bagging and random subspace method
    • A. Scherbart and T. W. Nattkemper, "The diversity of regression ensembles combining bagging and random subspace method," in Proc. Advances Neuro-Information Processing, 2009, pp. 911-918.
    • (2009) Proc. Advances Neuro-Information Processing , pp. 911-918
    • Scherbart, A.1    Nattkemper, T.W.2
  • 51
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999.
    • (1999) Mach. Learn. , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 52
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • G. Rsch, T. Onoda, and K.-R. Mler, "Soft margins for AdaBoost," Mach. Learn., vol. 42, no. 3, pp. 287-320, 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 287-320
    • Rsch, G.1    Onoda, T.2    Mler, K.-R.3
  • 53
    • 85134970872 scopus 로고    scopus 로고
    • Modest Adaboostteaching Adaboost to generalize better
    • A. Vezhnevets and V. Vezhnevets, "Modest Adaboostteaching Adaboost to generalize better," Graphicon, vol. 12, no. 5, pp. 987-997, 2005.
    • (2005) Graphicon , vol.12 , Issue.5 , pp. 987-997
    • Vezhnevets, A.1    Vezhnevets, V.2
  • 55
    • 33745856534 scopus 로고    scopus 로고
    • SpatialBoost: Adding spatial reasoning to adaboost
    • S. Avidan, "SpatialBoost: Adding spatial reasoning to adaboost," in Proc. Computer Vision, 2006, pp. 386-396.
    • (2006) Proc. Computer Vision , pp. 386-396
    • Avidan, S.1
  • 56
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)," Ann. Stat., vol. 28, no. 2, pp. 337-407, 2000.
    • (2000) Ann. Stat. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 57
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • L. Breiman, "Pasting small votes for classification in large databases and on-line," Mach. Learn., vol. 36, nos. 1-2, pp. 85-103, 1999.
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 85-103
    • Breiman, L.1
  • 58
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • J. H. Friedman, "Stochastic gradient boosting," Comput. Stat. Data Anal., vol. 38, no. 4, pp. 367-378, 2002.
    • (2002) Comput. Stat. Data Anal. , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 59
    • 84897611035 scopus 로고    scopus 로고
    • GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes
    • Apr.
    • J. R. Lloyd, "GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes," Int. J. Forecasting, vol. 30, no. 2, pp. 369-374, Apr. 2014.
    • (2014) Int. J. Forecasting , vol.30 , Issue.2 , pp. 369-374
    • Lloyd, J.R.1
  • 61
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Aug.
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, Aug. 1997.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 62
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost. RT, an improved boosting scheme for regression
    • D. Shrestha and D. Solomatine, "Experiments with AdaBoost. RT, an improved boosting scheme for regression," Neural Comput., vol. 18, no. 7, pp. 1678-1710, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1678-1710
    • Shrestha, D.1    Solomatine, D.2
  • 64
    • 84891555935 scopus 로고    scopus 로고
    • Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems
    • Jan.
    • P. Kankanala, S. Das, and A. Pahwa, "Adaboost+: An ensemble learning approach for estimating weather-related outages in distribution systems," IEEE Trans. Power Syst., vol. 29, no. 1, pp. 359-367, Jan. 2014.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.1 , pp. 359-367
    • Kankanala, P.1    Das, S.2    Pahwa, A.3
  • 65
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • Y. Lin and Y. Jeon, "Random forests and adaptive nearest neighbors," J. Amer. Stat. Assoc., vol. 101, no. 474, pp. 578-590, 2006.
    • (2006) J. Amer. Stat. Assoc. , vol.101 , Issue.474 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 66
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • H. Jiang, Y. Deng, H.-S. Chen, L. Tao, Q. Sha, J. Chen, C.-J. Tsai, and S. Zhang, "Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes," BMC Bioinform, vol. 5, no. 1, p. 81, 2004.
    • (2004) BMC Bioinform , vol.5 , Issue.1 , pp. 81
    • Jiang, H.1    Deng, Y.2    Chen, H.-S.3    Tao, L.4    Sha, Q.5    Chen, J.6    Tsai, C.-J.7    Zhang, S.8
  • 67
    • 34250698845 scopus 로고    scopus 로고
    • A feature selection method for multilevel mental fatigue EEG classification
    • K.-Q. Shen, C.-J. Ong, X. P. Li, Z. Hui, and E. P. Wilder-Smith, "A feature selection method for multilevel mental fatigue EEG classification," IEEE Trans. Biomed. Eng., vol. 54, no. 7, pp. 1231-1237, 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.7 , pp. 1231-1237
    • Shen, K.-Q.1    Ong, C.-J.2    Li, X.P.3    Hui, Z.4    Wilder-Smith, E.P.5
  • 68
    • 84870244637 scopus 로고    scopus 로고
    • Stratified sampling for feature subspace selection in random forests for high dimensional data
    • Y. Ye, Q. Wu, J. Zhexue Huang, M. K. Ng, and X. Li, "Stratified sampling for feature subspace selection in random forests for high dimensional data," Pattern Recognit., vol. 46, no. 3, pp. 769-787, 2013.
    • (2013) Pattern Recognit. , vol.46 , Issue.3 , pp. 769-787
    • Ye, Y.1    Wu, Q.2    Zhexue Huang, J.3    Ng, M.K.4    Li, X.5
  • 70
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Mach. Learn., vol. 63, no. 1, pp. 3-42, 2006.
    • (2006) Mach. Learn. , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 72
    • 84902362182 scopus 로고    scopus 로고
    • Random forests with ensemble of feature spaces
    • Oct.
    • L. Zhang and P. N. Suganthan, "Random forests with ensemble of feature spaces," Pattern Recognit., vol. 47, no. 10, pp. 3429-3437, Oct. 2014.
    • (2014) Pattern Recognit. , vol.47 , Issue.10 , pp. 3429-3437
    • Zhang, L.1    Suganthan, P.N.2
  • 73
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector machine classification via generalized eigenvalues
    • O. L. Mangasarian and E. W. Wild, "Multisurface proximal support vector machine classification via generalized eigenvalues," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 69-74, 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 75
    • 37249046891 scopus 로고    scopus 로고
    • An experimental study on rotation forest ensembles
    • Berlin, Germany: Springer-Verlag
    • L. I. Kuncheva and J. J. Rodruez, "An experimental study on rotation forest ensembles," in Multiple Classifier Systems. Berlin, Germany: Springer-Verlag, 2007, pp. 459-468.
    • (2007) Multiple Classifier Systems , pp. 459-468
    • Kuncheva, L.I.1    Rodruez, J.J.2
  • 76
    • 42749094856 scopus 로고    scopus 로고
    • Cancer classification using rotation forest
    • K.-H. Liu and D.-S. Huang, "Cancer classification using rotation forest," Comput. Biol. Med., vol. 38, no. 5, pp. 601-610, 2008.
    • (2008) Comput. Biol. Med. , vol.38 , Issue.5 , pp. 601-610
    • Liu, K.-H.1    Huang, D.-S.2
  • 77
    • 84873048938 scopus 로고    scopus 로고
    • SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease
    • A. Ozcift, "SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease," J. Med. Syst., vol. 36, no. 4, pp. 2141-2147, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.4 , pp. 2141-2147
    • Ozcift, A.1
  • 78
    • 77950017573 scopus 로고    scopus 로고
    • Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor
    • J.-F. Xia, K. Han, and D.-S. Huang, "Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor," Protein Pept. Lett., vol. 17, no. 1, pp. 137-145, 2010.
    • (2010) Protein Pept. Lett. , vol.17 , Issue.1 , pp. 137-145
    • Xia, J.-F.1    Han, K.2    Huang, D.-S.3
  • 79
    • 34748856127 scopus 로고    scopus 로고
    • Effectiveness of rotation forest in meta-learning based gene expression classification
    • G. Stiglic and P. Kokol, "Effectiveness of rotation forest in meta-learning based gene expression classification," in Proc. IEEE Int. Symp. Computer-Based Medical Systems, 2007, pp. 243-250.
    • (2007) Proc IEEE Int. Symp. Computer-Based Medical Systems , pp. 243-250
    • Stiglic, G.1    Kokol, P.2
  • 80
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert, "Stacked generalization," Neural Netw., vol. 5, no. 2, pp. 241-259, 1992.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 81
    • 33751572485 scopus 로고    scopus 로고
    • Novel algorithm for constructing support vector machine regression ensemble
    • L. Bo, L. Xinjun, and Z. Zhiyan, "Novel algorithm for constructing support vector machine regression ensemble," J. Syst. Eng. Electron., vol. 17, no. 3, pp. 541-545, 2006.
    • (2006) J. Syst. Eng. Electron. , vol.17 , Issue.3 , pp. 541-545
    • Bo, L.1    Xinjun, L.2    Zhiyan, Z.3
  • 82
    • 80051993442 scopus 로고    scopus 로고
    • A novel nonlinear combination model based on support vector machine for rainfall prediction
    • K. Lu and L. Wang, "A novel nonlinear combination model based on support vector machine for rainfall prediction," in Proc. IEEE Int. Joint Conf. Computational Sciences Optimization, 2011, pp. 1343-1346.
    • (2011) Proc IEEE Int. Joint Conf. Computational Sciences Optimization , pp. 1343-1346
    • Lu, K.1    Wang, L.2
  • 83
    • 84867907421 scopus 로고    scopus 로고
    • Application of hybrid RBF neural network ensemble model based on wavelet support vector machine regression in rainfall time series forecasting
    • L. Wang and J. Wu, "Application of hybrid RBF neural network ensemble model based on wavelet support vector machine regression in rainfall time series forecasting," in Proc. IEEE Int. Joint Conf. Computational Sciences Optimization, 2012, pp. 867-871.
    • (2012) Proc IEEE Int. Joint Conf. Computational Sciences Optimization , pp. 867-871
    • Wang, L.1    Wu, J.2
  • 84
    • 84884786542 scopus 로고    scopus 로고
    • Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
    • Dec.
    • J.-S. Chou and A.-D. Pham, "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength," Const. Building Mater., vol. 49, pp. 554-563, Dec. 2013.
    • (2013) Const. Building Mater. , vol.49 , pp. 554-563
    • Chou, J.-S.1    Pham, A.-D.2
  • 85
    • 70449378365 scopus 로고    scopus 로고
    • A novel artificial neural network ensemble model based on k-nearest neighbor nonparametric estimation of regression function and its application for rainfall forecasting
    • J. Wu, "A novel artificial neural network ensemble model based on k-nearest neighbor nonparametric estimation of regression function and its application for rainfall forecasting," in Proc. Int. Joint Conf. Computational Sciences Optimization, 2009, vol. 2, pp. 44-48.
    • (2009) Proc. Int. Joint Conf. Computational Sciences Optimization , vol.2 , pp. 44-48
    • Wu, J.1
  • 86
    • 80655146998 scopus 로고    scopus 로고
    • A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
    • Nov.
    • S. Wang, L. Yu, L. Tang, and S. Wang, "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, vol. 36, no. 11, pp. 6542-6554, Nov. 2011.
    • (2011) Energy , vol.36 , Issue.11 , pp. 6542-6554
    • Wang, S.1    Yu, L.2    Tang, L.3    Wang, S.4
  • 87
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Aug.
    • H. Liu, H.-Q. Tian, C. Chen, and Y.-F. Li, "A hybrid statistical method to predict wind speed and wind power," Renew. Energy, vol. 35, no. 8, pp. 1857-1861, Aug. 2010.
    • (2010) Renew. Energy , vol.35 , Issue.8 , pp. 1857-1861
    • Liu, H.1    Tian, H.-Q.2    Chen, C.3    Li, Y.-F.4
  • 88
    • 78650402541 scopus 로고    scopus 로고
    • Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal
    • Jan.
    • J. Catalao, H. Pousinho, and V. Mendes, "Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal," IEEE Trans. Sustain. Energy, vol. 2, no. 1, pp. 50-59, Jan. 2011.
    • (2011) IEEE Trans. Sustain. Energy , vol.2 , Issue.1 , pp. 50-59
    • Catalao, J.1    Pousinho, H.2    Mendes, V.3
  • 90
    • 5544303705 scopus 로고    scopus 로고
    • Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis
    • Feb.
    • S. H. Cao and J. C. Cao, "Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis," Appl. Thermal Eng., vol. 25, nos. 2-3, pp. 161-172, Feb. 2005.
    • (2005) Appl. Thermal Eng. , vol.25 , Issue.2-3 , pp. 161-172
    • Cao, S.H.1    Cao, J.C.2
  • 91
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis
    • N. E. Huang, Z. Shen, S. R. Long, M. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis," Proc. Roy. Soc. London A, vol. 454, no. 1971, pp. 903-995, 1998.
    • (1998) Proc. Roy. Soc. London A , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.4    Shih, H.H.5    Zheng, Q.6    Yen, N.-C.7    Tung, C.C.8    Liu, H.H.9
  • 92
    • 77949524633 scopus 로고    scopus 로고
    • One-month ahead prediction of wind speed and output power based on EMD and LSSVM
    • X. Wang and H. Li, "One-month ahead prediction of wind speed and output power based on EMD and LSSVM," in Proc. Int. Conf. Energy Environment Technology, 2009, vol. 3, pp. 439-442.
    • (2009) Proc. Int. Conf. Energy Environment Technology , vol.3 , pp. 439-442
    • Wang, X.1    Li, H.2
  • 93
    • 84863386096 scopus 로고    scopus 로고
    • Wind power short-term forecasting based on empirical mode decomposition and chaotic phase space reconstruction
    • Y. Zhang, U. J. Lu, Y. Meng, H. Yan, and H. Li, "Wind power short-term forecasting based on empirical mode decomposition and chaotic phase space reconstruction," Automat. Electric Power Syst., vol. 36, no. 5, pp. 24-28, 2012.
    • (2012) Automat. Electric Power Syst. , vol.36 , Issue.5 , pp. 24-28
    • Zhang, Y.1    Lu, U.J.2    Meng, Y.3    Yan, H.4    Li, H.5
  • 94
    • 78149295101 scopus 로고    scopus 로고
    • The application of empirical mode decomposition and gene expression programming to short-term load forecasting
    • Aug. 10-12
    • X. Fan and Y. Zhu, "The application of empirical mode decomposition and gene expression programming to short-term load forecasting," in Proc. Int. Conf. Natural Computation, Yantai, China, Aug. 10-12, 2010, vol. 8, pp. 4331-4334.
    • (2010) Proc. Int. Conf. Natural Computation, Yantai, China , vol.8 , pp. 4331-4334
    • Fan, X.1    Zhu, Y.2
  • 95
    • 84919905211 scopus 로고    scopus 로고
    • Empirical mode decomposition-k nearest neighbor models for wind speed forecasting
    • Y. Ren and P. N. Suganthan, "Empirical mode decomposition-k nearest neighbor models for wind speed forecasting," J. Power Energy Eng., vol. 2, no. 4, pp. 176-185, 2014.
    • (2014) J. Power Energy Eng. , vol.2 , Issue.4 , pp. 176-185
    • Ren, Y.1    Suganthan, P.N.2
  • 96
    • 84907704597 scopus 로고    scopus 로고
    • A novel empirical mode decomposition with support vector regression for wind speed forecasting
    • Y. Ren, P. N. Suganthan, and N. Srikanth, "A novel empirical mode decomposition with support vector regression for wind speed forecasting," IEEE Trans. Neural Netw. Learn. Syst., 10.1109/TNNLS.2014.2351391.
    • IEEE Trans. Neural Netw. Learn. Syst.
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 97
    • 84946689999 scopus 로고    scopus 로고
    • Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting
    • Orlando, FL, Dec.
    • Y. Ren, X. Qiu, and P. N. Suganthan, "Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting," in Proc. IEEE Symp. Computational Intelligence Ensemble Learning, Orlando, FL, Dec. 2014, pp. 1-6.
    • (2014) Proc IEEE Symp. Computational Intelligence Ensemble Learning , pp. 1-6
    • Ren, Y.1    Qiu, X.2    Suganthan, P.N.3
  • 98
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • June
    • J. Shi, J. Guo, and S. Zheng, "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3471-3480, June 2012.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , Issue.5 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 99
    • 79954620339 scopus 로고    scopus 로고
    • Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN
    • J. Wu and C. C. Keong, "Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN," Solar Energy, vol. 85, no. 5, pp. 808-817, 2011.
    • (2011) Solar Energy , vol.85 , Issue.5 , pp. 808-817
    • Wu, J.1    Keong, C.C.2
  • 101
    • 33750996171 scopus 로고    scopus 로고
    • A novel mixture of experts model based on cooperative coevolution
    • M. Nguyen, H. A. Abbass, and R. I. McKay, "A novel mixture of experts model based on cooperative coevolution," Neurocomputing, vol. 70, nos. 1-3, pp. 155-163, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 155-163
    • Nguyen, M.1    Abbass, H.A.2    McKay, R.I.3
  • 102
    • 63049114961 scopus 로고    scopus 로고
    • Analysis of CCME: Coevolutionary dynamics, automatic problem decomposition and regularization
    • M. Nguyen, H. A. Abbass, and R. I. McKay, "Analysis of CCME: Coevolutionary dynamics, automatic problem decomposition and regularization," IEEE Trans. Syst. Man, Cybern. C, vol. 38, no. 1, pp. 100-109, 2008.
    • (2008) IEEE Trans. Syst. Man, Cybern. C , vol.38 , Issue.1 , pp. 100-109
    • Nguyen, M.1    Abbass, H.A.2    McKay, R.I.3
  • 104
    • 84882871948 scopus 로고    scopus 로고
    • Hierarchical age estimation with dissimilarity-based classification
    • Nov.
    • S. Kohli, S. Prakash, and P. Gupta, "Hierarchical age estimation with dissimilarity-based classification," Neurocomputing, vol. 120, pp. 164-176, Nov. 2013.
    • (2013) Neurocomputing , vol.120 , pp. 164-176
    • Kohli, S.1    Prakash, S.2    Gupta, P.3
  • 105
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Dec.
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, Dec. 1999.
    • (1999) Neural Netw. , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 106
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Dec.
    • G. Brown, J. L. Wyatt, and P. Tino, "Managing diversity in regression ensembles," J. Mach. Learn. Res., vol. 6, pp. 1621-1650, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tino, P.3
  • 107
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • Apr.
    • M. Alhamdoosh and D. Wang, "Fast decorrelated neural network ensembles with random weights," Inform. Sci., vol. 264, pp. 104-117, Apr. 2014.
    • (2014) Inform. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.2
  • 108
  • 110
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • Portland, OR
    • Y. Jin, T. Okabe, and B. Sendhoff, "Neural network regularization and ensembling using multi-objective evolutionary algorithms," in Proc. Congr. Evolutionary Computation, Portland, OR, 2004, pp. 1-8.
    • (2004) Proc. Congr. Evolutionary Computation , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 111
    • 32144456690 scopus 로고    scopus 로고
    • DIVACE: Diverse and accurate ensemble learning algorithm
    • Berlin, Germany: Springer-Verlag
    • A. Chandra and X. Yao, "DIVACE: Diverse and accurate ensemble learning algorithm," in Intelligent Data Engineering and Automated Learning-IDEAL. Berlin, Germany: Springer-Verlag, 2004, pp. 619-625.
    • (2004) Intelligent Data Engineering and Automated Learning-IDEAL , pp. 619-625
    • Chandra, A.1    Yao, X.2
  • 112
    • 32544450795 scopus 로고    scopus 로고
    • Ensemble learning using multi-objective evolutionary algorithms
    • A. Chandra and X. Yao, "Ensemble learning using multi-objective evolutionary algorithms," J. Math. Model. Algorithms, vol. 5, no. 4, pp. 417-445, 2006.
    • (2006) J. Math. Model. Algorithms , vol.5 , Issue.4 , pp. 417-445
    • Chandra, A.1    Yao, X.2
  • 113
    • 7444246843 scopus 로고    scopus 로고
    • Pareto neuro-ensembles
    • T. Gedeon and L. Fung, Eds. Berlin, Germany: Springer-Verlag
    • H. Abbass, "Pareto neuro-ensembles," in AI 2003: Advances in Artificial Intelligence, vol. 2903, T. Gedeon and L. Fung, Eds. Berlin, Germany: Springer-Verlag, 2003, pp. 554-566.
    • (2003) AI 2003: Advances in Artificial Intelligence , vol.2903 , pp. 554-566
    • Abbass, H.1
  • 114
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • H. A. Abbass, "Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization," in Proc. IEEE Congr. Evolutionary Computation, 2003, vol. 3, pp. 2074-2080.
    • (2003) Proc IEEE Congr. Evolutionary Computation , vol.3 , pp. 2074-2080
    • Abbass, H.A.1
  • 115
    • 0034876065 scopus 로고    scopus 로고
    • PDE: A Pareto-frontier differential evolution approach for multiobjective optimization problems
    • H. A. Abbass, R. Sarker, and C. Newton, "PDE: A Pareto-frontier differential evolution approach for multiobjective optimization problems," in Proc. IEEE Congr. Evolutionary Computation, 2001, vol. 2, pp. 971-978.
    • (2001) Proc IEEE Congr. Evolutionary Computation , vol.2 , pp. 971-978
    • Abbass, H.A.1    Sarker, R.2    Newton, C.3
  • 117
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • A. Chandra and X. Yao, "Evolving hybrid ensembles of learning machines for better generalisation," Neurocomputing, vol. 69, no. 7, pp. 686-700, 2006.
    • (2006) Neurocomputing , vol.69 , Issue.7 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 118
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • Cambridge, MA: MIT Press
    • D. W. Opitz and J. W. Shavlik, "Generating accurate and diverse members of a neural-network ensemble," in Advances in Neural Information Processing Systems, vol. 8. Cambridge, MA: MIT Press, 1996, pp. 535-541.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 119
    • 34547287417 scopus 로고    scopus 로고
    • Evolutionary multiobjective ensemble learning based on Bayesian feature selection
    • H. Chen and X. Yao, "Evolutionary multiobjective ensemble learning based on Bayesian feature selection," in Proc. IEEE Congr. Evolutionary Computation, 2006, pp. 267-274.
    • (2006) Proc IEEE Congr. Evolutionary Computation , pp. 267-274
    • Chen, H.1    Yao, X.2
  • 120
    • 78149249078 scopus 로고    scopus 로고
    • Multiobjective neural network ensembles based on regularized negative correlation learning
    • H. Chen and X. Yao, "Multiobjective neural network ensembles based on regularized negative correlation learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 12, pp. 1738-1751, 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.12 , pp. 1738-1751
    • Chen, H.1    Yao, X.2
  • 121
    • 84904798148 scopus 로고    scopus 로고
    • A unified evolutionary training scheme for single and ensemble of feedforward neural network
    • Nov.
    • W.-C. Chen, L.-Y. Tseng, and C.-S. Wu, "A unified evolutionary training scheme for single and ensemble of feedforward neural network," Neurocomputing, vol. 143, pp. 347-361, Nov. 2014.
    • (2014) Neurocomputing , vol.143 , pp. 347-361
    • Chen, W.-C.1    Tseng, L.-Y.2    Wu, C.-S.3
  • 122
    • 84888074993 scopus 로고    scopus 로고
    • A multiobjective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
    • Feb.
    • C. J. Tan, C. P. Lim, and Y.-N. Cheah, "A multiobjective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models," Neurocomputing, vol. 125, pp. 217-228, Feb. 2014.
    • (2014) Neurocomputing , vol.125 , pp. 217-228
    • Tan, C.J.1    Lim, C.P.2    Cheah, Y.-N.3
  • 123
    • 83755196700 scopus 로고    scopus 로고
    • Ensemble learning and pruning in multi-objective genetic programming for classification with unbalanced data
    • Berlin, Germany: Springer-Verlag
    • U. Bhowan, M. Johnston, and M. Zhang, "Ensemble learning and pruning in multi-objective genetic programming for classification with unbalanced data," in AI 2011: Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2011, pp. 192-202.
    • (2011) AI 2011: Advances in Artificial Intelligence , pp. 192-202
    • Bhowan, U.1    Johnston, M.2    Zhang, M.3
  • 125
    • 84864702496 scopus 로고    scopus 로고
    • Multi-objective evolutionary optimization for generating ensembles of classifiers in the ROC space
    • ACM
    • J.-C. Lesque, A. Durand, C. Gagn and R. Sabourin, "Multi-objective evolutionary optimization for generating ensembles of classifiers in the ROC space," in Proc. Genetic Evolutionary Computation, ACM, 2012, pp. 879-886.
    • (2012) Proc. Genetic Evolutionary Computation , pp. 879-886
    • Lesque, J.-C.1    Durand, A.2    Gagn, C.3    Sabourin, R.4
  • 126
    • 84961990247 scopus 로고    scopus 로고
    • RBF networks ensemble construction based on evolutionary multi-objective optimization
    • N. Kondo, T. Hatanaka, and K. Uosaki, "RBF networks ensemble construction based on evolutionary multi-objective optimization," J. Adv. Comput. Intell. Informat., vol. 12, no. 3, pp. 297-303, 2008.
    • (2008) J. Adv. Comput. Intell. Informat. , vol.12 , Issue.3 , pp. 297-303
    • Kondo, N.1    Hatanaka, T.2    Uosaki, K.3
  • 128
    • 84997317397 scopus 로고    scopus 로고
    • An analysis of multiobjective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation
    • ACM
    • L. L. Minku and X. Yao, "An analysis of multiobjective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation," in Proc. Int. Conf. Predictive Models Software Engineering, ACM, 2013, p. 8.
    • (2013) Proc. Int. Conf. Predictive Models Software Engineering , pp. 8
    • Minku, L.L.1    Yao, X.2
  • 129
    • 84904797921 scopus 로고    scopus 로고
    • Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction
    • Nov.
    • C. Smith and Y. Jin, "Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction," Neurocomputing, vol. 143, pp. 302-311, Nov. 2014.
    • (2014) Neurocomputing , vol.143 , pp. 302-311
    • Smith, C.1    Jin, Y.2
  • 130
    • 84908584310 scopus 로고    scopus 로고
    • Multi-objective evolutionary recurrent neural network ensemble for prediction of computational f luid dynamic simulations
    • C. Smith, J. Doherty, and Y. Jin, "Multi-objective evolutionary recurrent neural network ensemble for prediction of computational f luid dynamic simulations," in Proc. IEEE Congr. Evolutionary Computation, 2014, pp. 2609-2616.
    • (2014) Proc IEEE Congr. Evolutionary Computation , pp. 2609-2616
    • Smith, C.1    Doherty, J.2    Jin, Y.3
  • 131
    • 84905869674 scopus 로고    scopus 로고
    • Time series forecasting by neural networks: A knee pointbased multiobjective evolutionary algorithm approach
    • W. Du, S. Y. S. Leung, and C. K. Kwong, "Time series forecasting by neural networks: A knee pointbased multiobjective evolutionary algorithm approach," Expert Syst. Aplicat., vol. 41, no. 18, pp. 8049-8061, 2014.
    • (2014) Expert Syst. Aplicat. , vol.41 , Issue.18 , pp. 8049-8061
    • Du, W.1    Leung, S.Y.S.2    Kwong, C.K.3
  • 132
    • 0346076780 scopus 로고    scopus 로고
    • 'Fuzzy' versus 'nonfuzzy' in combining classifiers designed by boosting
    • L. I. Kuncheva, "'Fuzzy' versus 'nonfuzzy' in combining classifiers designed by boosting," IEEE Trans. Fuzzy Syst., vol. 11, no. 6, pp. 729-741, 2003.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.6 , pp. 729-741
    • Kuncheva, L.I.1
  • 134
    • 33750540348 scopus 로고    scopus 로고
    • A classifier ensemble method for fuzzy classifiers
    • Berlin, Germany: Springer-Verlag
    • A.-M. Yang, Y.-M. Zhou, and M. Tang, "A classifier ensemble method for fuzzy classifiers," in Fuzzy Systems and Knowledge Discovery. Berlin, Germany: Springer-Verlag, 2006, pp. 784-793.
    • (2006) Fuzzy Systems and Knowledge Discovery , pp. 784-793
    • Yang, A.-M.1    Zhou, Y.-M.2    Tang, M.3
  • 135
    • 50149111947 scopus 로고    scopus 로고
    • A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers
    • O. Cord, A. Quirin, and L. Schez, "A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers," in Proc. Int. Workshop Genetic Evolving Systems, 2008, pp. 11-16.
    • (2008) Proc. Int. Workshop Genetic Evolving Systems , pp. 11-16
    • Cord, O.1    Quirin, A.2    Schez, L.3
  • 136
    • 84889248780 scopus 로고    scopus 로고
    • Ensemble learning algorithm in classification of fuzzy-classes
    • Z. Fu, D. Zhang, L. Wang, and X. Li, "Ensemble learning algorithm in classification of fuzzy-classes," J. Comput. Inform. Syst., vol. 9, no. 22, pp. 8929-8938, 2013.
    • (2013) J. Comput. Inform. Syst. , vol.9 , Issue.22 , pp. 8929-8938
    • Fu, Z.1    Zhang, D.2    Wang, L.3    Li, X.4
  • 137
    • 40249104718 scopus 로고    scopus 로고
    • Designing fuzzy ensemble classifiers by evolutionary multiobjective optimization with an entropy-based diversity criterion
    • Y. Nojima and H. Ishibuchi, "Designing fuzzy ensemble classifiers by evolutionary multiobjective optimization with an entropy-based diversity criterion," in Proc. Int. Conf. Hybrid Intelligent Systems, 2006, pp. 59-59.
    • (2006) Proc. Int. Conf. Hybrid Intelligent Systems , pp. 59
    • Nojima, Y.1    Ishibuchi, H.2
  • 138
    • 35248819821 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers
    • H. Ishibuchi and T. Yamamoto, "Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers," in Proc. Genetic Evolutionary Computation, 2003, pp. 1077-1088.
    • (2003) Proc. Genetic Evolutionary Computation , pp. 1077-1088
    • Ishibuchi, H.1    Yamamoto, T.2
  • 139
    • 83755186783 scopus 로고    scopus 로고
    • Combining interpretable fuzzy rule-based classifiers via multiobjective hierarchical evolutionary algorithm
    • J. Cao, H. Wang, S. Kwong, and K. Li, "Combining interpretable fuzzy rule-based classifiers via multiobjective hierarchical evolutionary algorithm," in Proc. IEEE Int. Conf. Systems, Man, Cybernetics, 2011, pp. 1771-1776.
    • (2011) Proc IEEE Int. Conf. Systems, Man, Cybernetics , pp. 1771-1776
    • Cao, J.1    Wang, H.2    Kwong, S.3    Li, K.4
  • 141
    • 84901659628 scopus 로고    scopus 로고
    • Ensemble of multiple kernel SVM classifiers
    • Berlin, Germany: Springer-Verlag
    • X. Wang, X. Liu, N. Japkowicz, and S. Matwin, "Ensemble of multiple kernel SVM classifiers," in Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2014, pp. 239-250.
    • (2014) Advances in Artificial Intelligence , pp. 239-250
    • Wang, X.1    Liu, X.2    Japkowicz, N.3    Matwin, S.4
  • 147
    • 84857883067 scopus 로고    scopus 로고
    • Multi kernel learning with online-batch optimization
    • F. Orabona, L. Jie, and B. Caputo, "Multi kernel learning with online-batch optimization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 227-253, 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 227-253
    • Orabona, F.1    Jie, L.2    Caputo, B.3
  • 149
    • 80053050350 scopus 로고    scopus 로고
    • SpicyMKL: A fast algorithm for multiple kernel learning with thousands of kernels
    • T. Suzuki and R. Tomioka, "SpicyMKL: A fast algorithm for multiple kernel learning with thousands of kernels," Mach. Learn., vol. 85, nos. 1-2, pp. 77-108, 2011.
    • (2011) Mach. Learn. , vol.85 , Issue.1-2 , pp. 77-108
    • Suzuki, T.1    Tomioka, R.2
  • 155
    • 34547992388 scopus 로고    scopus 로고
    • Multiclass multiple kernel learning
    • attend the panel "IEEE and CIS in the Next Decade", that will be held during WCCI 2016, the World Congress on Computational Intelligence, that will be held on July 25-29, in Vancouver, Canada
    • A. Zien and C. S. Ong, "Multiclass multiple kernel learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1191-1198. attend the panel "IEEE and CIS in the Next Decade", that will be held during WCCI 2016, the World Congress on Computational Intelligence, that will be held on July 25-29, in Vancouver, Canada (http://www.wcci2016.org/).
    • (2007) Proc. Int. Conf. Mach. Learn. , pp. 1191-1198
    • Zien, A.1    Ong, C.S.2
  • 158
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 159
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 161
    • 84861776914 scopus 로고    scopus 로고
    • Multi-column deep neural network for traffic sign classification
    • Aug.
    • D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification," Neural Netw., vol. 32, pp. 333-338, Aug. 2012.
    • (2012) Neural Netw. , vol.32 , pp. 333-338
    • Ciresan, D.1    Meier, U.2    Masci, J.3    Schmidhuber, J.4
  • 162
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 164
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec.
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, Dec. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 167
    • 70449399643 scopus 로고    scopus 로고
    • Spatial pyramids and two-layer stacking SVM classifiers for image categorization: A comparative study
    • A. Abdullah, R. C. Veltkamp, and M. A. Wiering, "Spatial pyramids and two-layer stacking SVM classifiers for image categorization: A comparative study," in Proc. IEEE Int. Joint Conf. Neural Networks, 2009, pp. 5-12.
    • (2009) Proc IEEE Int. Joint Conf. Neural Networks , pp. 5-12
    • Abdullah, A.1    Veltkamp, R.C.2    Wiering, M.A.3
  • 175
    • 80052837450 scopus 로고    scopus 로고
    • A novel ensemble method for regression via classification problems
    • S. M. Halawani, I. A. Albidewi, and A. Ahmad, "A novel ensemble method for regression via classification problems," J. Comput. Sci., vol. 7, no. 3, pp. 387-393, 2011.
    • (2011) J. Comput. Sci. , vol.7 , Issue.3 , pp. 387-393
    • Halawani, S.M.1    Albidewi, I.A.2    Ahmad, A.3
  • 176
    • 84908019121 scopus 로고    scopus 로고
    • Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]
    • Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, "Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum]," IEEE Comput. Intell. Mag., vol. 9, no. 4, pp. 62-74, 2014.
    • (2014) IEEE Comput. Intell. Mag. , vol.9 , Issue.4 , pp. 62-74
    • Zhou, Z.-H.1    Chawla, N.V.2    Jin, Y.3    Williams, G.J.4
  • 177
    • 84903698283 scopus 로고    scopus 로고
    • Research on particle swarm optimization based clustering: A systematic review of literature and techniques
    • Aug.
    • S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U. Rehman, "Research on particle swarm optimization based clustering: A systematic review of literature and techniques," Swarm Evol. Comput., vol. 17, pp. 1-13, Aug. 2014.
    • (2014) Swarm Evol. Comput. , vol.17 , pp. 1-13
    • Alam, S.1    Dobbie, G.2    Koh, Y.S.3    Riddle, P.4    Rehman, S.U.5
  • 178
    • 84897050613 scopus 로고    scopus 로고
    • A survey on nature inspired metaheuristic algorithms for partitional clustering
    • June
    • S. J. Nanda and G. Panda, "A survey on nature inspired metaheuristic algorithms for partitional clustering," Swarm Evol. Comput., vol. 16, pp. 1-18, June 2014.
    • (2014) Swarm Evol. Comput. , vol.16 , pp. 1-18
    • Nanda, S.J.1    Panda, G.2
  • 179
    • 84872689875 scopus 로고    scopus 로고
    • Variable hidden neuron ensemble for mass classification in digital mammograms [application notes]
    • P. Mc Leod and B. Verma, "Variable hidden neuron ensemble for mass classification in digital mammograms [application notes]," IEEE Comput. Intell. Mag., vol. 8, no. 1, pp. 68-76, 2013.
    • (2013) IEEE Comput. Intell. Mag. , vol.8 , Issue.1 , pp. 68-76
    • Mc Leod, P.1    Verma, B.2
  • 180
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems
    • M. Ferndez-Delgado, E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems" J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133-3181, 2014.
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 3133-3181
    • Ferndez-Delgado, M.1    Cernadas, E.2    Barro, S.3    Amorim, D.4
  • 181
    • 84861528628 scopus 로고    scopus 로고
    • Efficient constraint handling for optimal reactive power dispatch problems
    • Aug.
    • R. Mallipeddi, S. Jeyadevi, P. N. Suganthan, and S. Baskar, "Efficient constraint handling for optimal reactive power dispatch problems," Swarm Evol. Comput., vol. 5, pp. 28-36, Aug. 2012.
    • (2012) Swarm Evol. Comput. , vol.5 , pp. 28-36
    • Mallipeddi, R.1    Jeyadevi, S.2    Suganthan, P.N.3    Baskar, S.4
  • 182
    • 78650872465 scopus 로고    scopus 로고
    • Differential evolution algorithm with ensemble of parameters and mutation strategies
    • R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren, "Differential evolution algorithm with ensemble of parameters and mutation strategies," Appl. Soft Comput., vol. 11, no. 2, pp. 1679-1696, 2011.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 1679-1696
    • Mallipeddi, R.1    Suganthan, P.N.2    Pan, Q.-K.3    Tasgetiren, M.F.4
  • 183
    • 84887038980 scopus 로고    scopus 로고
    • How can surrogates inf luence the convergence of evolutionary algorithms
    • Oct.
    • Y. Chen, W. Xie, and X. Zou, "How can surrogates inf luence the convergence of evolutionary algorithms" Swarm Evol. Comput., vol. 12, pp. 18-23, Oct. 2013.
    • (2013) Swarm Evol. Comput. , vol.12 , pp. 18-23
    • Chen, Y.1    Xie, W.2    Zou, X.3
  • 184
    • 84863906586 scopus 로고    scopus 로고
    • Surrogate-assisted evolutionary computation: Recent advances and future challenges
    • Y. Jin, "Surrogate-assisted evolutionary computation: Recent advances and future challenges," Swarm Evol. Comput., vol. 1, no. 2, pp. 61-70, 2011.
    • (2011) Swarm Evol. Comput. , vol.1 , Issue.2 , pp. 61-70
    • Jin, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.