메뉴 건너뛰기




Volumn 36, Issue 4, 2012, Pages 2141-2147

SVM feature selection based rotation forest ensemble classifiers to improve computer-Aided diagnosis of Parkinson disease

Author keywords

Breast cancer; Computer aided diagnosis; Diabetes; Ensemble classification; Feature selection; Parkinson; Rotation forest; Support vector machine

Indexed keywords

ARTICLE; CLASSIFICATION ALGORITHM; CLASSIFIER; CLINICAL ARTICLE; CLINICAL CLASSIFICATION; COMPUTER ASSISTED DIAGNOSIS; DIAGNOSTIC ACCURACY; HUMAN; KAPPA STATISTICS; PARKINSON DISEASE; RECEIVER OPERATING CHARACTERISTIC; SUPPORT VECTOR MACHINE; ALGORITHM; CLASSIFICATION; METHODOLOGY;

EID: 84873048938     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-011-9678-1     Document Type: Article
Times cited : (110)

References (34)
  • 1
    • 85093655082 scopus 로고    scopus 로고
    • Data mining based-Assistant tools for physicians to diagnose diseases, Micro-nano mechatronics and human science
    • Wahed, M., and Wahba, K., Data mining based-Assistant tools for physicians to diagnose diseases, Micro-nano mechatronics and human science, 2003 IEEE Int. Symp. 388-391, 2003.
    • (2003) 2003 IEEE Int. Symp. , pp. 388-391
    • Wahed, M.1    Wahba, K.2
  • 2
    • 56649114257 scopus 로고    scopus 로고
    • Assessing effects of preprocessing mass spectrometry data on classification performance
    • Ozcift, A., and Gulten, A., Assessing effects of preprocessing mass spectrometry data on classification performance. Eur. J. Mass Spectrom. 267-273, 2008.
    • (2008) Eur. J. Mass Spectrom. , pp. 267-273
    • Ozcift, A.1    Gulten, A.2
  • 3
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • 1966582 10.1016/S0933-3657(01)00077-X
    • Kononenko, I., Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 23(1):89-109, 2001.
    • (2001) Artif. Intell. Med. , vol.23 , Issue.1 , pp. 89-109
    • Kononenko, I.1
  • 4
    • 77449133004 scopus 로고    scopus 로고
    • An ensemble machine learning approach to predict survival in breast cancer
    • 10.1504/IJCBDD.2008.021422
    • Djebbari, A., An ensemble machine learning approach to predict survival in breast cancer. Int. J. Comput. Biol. Drug Des. 1(3):275-294, 2008.
    • (2008) Int. J. Comput. Biol. Drug Des. , vol.1 , Issue.3 , pp. 275-294
    • Djebbari, A.1
  • 5
    • 77950188774 scopus 로고    scopus 로고
    • Evaluation of ensemble methods for diagnosing of valvular heart disease
    • Das, R., and Sengur, A., Evaluation of ensemble methods for diagnosing of valvular heart disease. Expert Syst. Appl. 2010.
    • (2010) Expert Syst. Appl.
    • Das, R.1    Sengur, A.2
  • 7
    • 50049119239 scopus 로고    scopus 로고
    • Learning from ensembles: Using artificial neural network ensemble for medical outcomes prediction
    • IEEE
    • Shadabi, F., Sharma, D., and Cox, R., Learning from ensembles: Using artificial neural network ensemble for medical outcomes prediction. Innovations in Information Technology, IEEE. 1-5, 2006.
    • (2006) Innovations in Information Technology , pp. 1-5
    • Shadabi, F.1    Sharma, D.2    Cox, R.3
  • 8
    • 0346502020 scopus 로고    scopus 로고
    • Meta-learner for unknown attribute values processing: Dealing with inconsistency of meta-databases
    • Bruha, I., Meta-learner for unknown attribute values processing: Dealing with inconsistency of meta-databases. J.I I.S. 71-87, 2004.
    • (2004) J.I I.S. , pp. 71-87
    • Bruha, I.1
  • 9
    • 35348887748 scopus 로고    scopus 로고
    • An ensemble based data fusion approach for early diagnosis of Alzheimer's disease
    • Polikar, R., An ensemble based data fusion approach for early diagnosis of Alzheimer's disease. Inf. Fusion. 83-95, 2008.
    • (2008) Inf. Fusion. , pp. 83-95
    • Polikar, R.1
  • 10
    • 71749106281 scopus 로고    scopus 로고
    • A comparison of multiple classification methods for diagnosis of Parkinson disease
    • Das, R., A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 1568-1572, 2010.
    • (2010) Expert Syst. Appl. , pp. 1568-1572
    • Das, R.1
  • 11
    • 77950278119 scopus 로고    scopus 로고
    • Suitability of dysphonia measurements for telemonitoring of Parkinson's disease
    • Little, M., and McSharry, P., Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. Nature Precedings. 1-27, 2008.
    • (2008) Nature Precedings , pp. 1-27
    • Little, M.1    McSharry, P.2
  • 12
    • 32544432029 scopus 로고    scopus 로고
    • Non-motor symptoms of Parkinson's disease: Diagnosis and management
    • Chaudhuri, K., and Healy, D. G., Non-motor symptoms of Parkinson's disease: Diagnosis and management. Lancet Neurol. 235-245, 2006.
    • (2006) Lancet Neurol. , pp. 235-245
    • Chaudhuri, K.1    Healy, D.G.2
  • 13
    • 33747815414 scopus 로고    scopus 로고
    • Parametric quantitative acoustic analysis of conversation produced by speakers with dysarthria and healthy speakers
    • Rosen, K., and Kent R. D., Parametric quantitative acoustic analysis of conversation produced by speakers with dysarthria and healthy speakers. J. Speech Lang. Hear. Res. 395-411, 2006.
    • (2006) J. Speech Lang. Hear. Res. , pp. 395-411
    • Rosen, K.1    Kent, R.D.2
  • 14
    • 77950278119 scopus 로고    scopus 로고
    • Suitability of dysphonia measurements for telemonitoring of Parkinson's disease
    • Little, M., and McSharry, P., Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans. Biomed. Eng. 1-8, 2008.
    • (2008) IEEE Trans. Biomed. Eng. , pp. 1-8
    • Little, M.1    McSharry, P.2
  • 15
    • 51849162939 scopus 로고    scopus 로고
    • A two-step approach for feature selection and classifier ensemble construction in computer-Aided diagnosis
    • Lee, M., and Boroczky, L., A two-step approach for feature selection and classifier ensemble construction in computer-Aided diagnosis. Computer-Based Med. Syst. 548-553, 2008.
    • (2008) Computer-Based Med. Syst. , pp. 548-553
    • Lee, M.1    Boroczky, L.2
  • 18
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., A review of feature selection techniques in bioinformatics. Bioinformatics. Review. 2507-2517, 2007.
    • (2007) Bioinformatics. Review , pp. 2507-2517
    • Saeys, Y.1
  • 19
    • 17044376597 scopus 로고    scopus 로고
    • Feature selection in proteomic pattern data with support vector machines, computational intelligence in bioinformatics and computational biology
    • Jong, K., Feature selection in proteomic pattern data with support vector machines, computational intelligence in bioinformatics and computational biology, Proceedings of the 2004 IEEE Symposium. 41-48, 2004.
    • (2004) Proceedings of the 2004 IEEE Symposium , pp. 41-48
    • Jong, K.1
  • 21
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Gene selection for cancer classification using support vector machines. Mach. Learn. 389-422, 2002.
    • (2002) Mach. Learn. , pp. 389-422
    • Guyon, I.1
  • 23
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based system in decision making
    • Polikar, R., Ensemble based system in decision making. IEEE Circuits Syst. Mag. 21-44. 2006.
    • (2006) IEEE Circuits Syst. Mag. , pp. 21-44
    • Polikar, R.1
  • 24
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: A technique for combining rotation forest and adaboost
    • Zhang, C. and Zhang,J. S., RotBoost: a technique for combining rotation forest and adaboost. Pattern Recogn. Lett. 1524-1536, 2008.
    • (2008) Pattern Recogn. Lett. , pp. 1524-1536
    • Zhang, C.1    Zhang, J.S.2
  • 26
    • 37249046891 scopus 로고    scopus 로고
    • An experimental study on rotation forest ensembles
    • Kuncheva, L., and Rodriguez, J., An experimental study on rotation forest ensembles. Lect. Notes Comput. Sci. 459-468, 2007.
    • (2007) Lect. Notes Comput. Sci. , pp. 459-468
    • Kuncheva, L.1    Rodriguez, J.2
  • 28
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D. W., and Kibler, D., Instance-based learning algorithms. Mach. Learn. 37-66, 1991.
    • (1991) Mach. Learn. , pp. 37-66
    • Aha, D.W.1    Kibler, D.2
  • 30
    • 80855135228 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques
    • Witten, I. H. and Ian, H., Data mining: practical machine learning tools and techniques. Morgan Kaufmann Ser. Data Manage. Syst. 153-168, 2005.
    • (2005) Morgan Kaufmann Ser. Data Manage. Syst. , pp. 153-168
    • Witten, I.H.1    Ian, H.2
  • 31
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • Huang, J.,and Ling, C., Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 299-310, 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , pp. 299-310
    • Huang, J.1    Ling, C.2
  • 32
    • 36148976852 scopus 로고    scopus 로고
    • Comparison of classification accuracy using Cohen's weighted kappa
    • David, A., Comparison of classification accuracy using Cohen's weighted kappa. Expert Syst. Appl. 825-832, 2008.
    • (2008) Expert Syst. Appl. , pp. 825-832
    • David, A.1
  • 33
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian, O., and Wolberg, W., Cancer diagnosis via linear programming. SIAM News. 1-18, 1990.
    • (1990) SIAM News , pp. 1-18
    • Mangasarian, O.1    Wolberg, W.2
  • 34
    • 0012054882 scopus 로고
    • Automated interpretation of diabetes patient data: Detecting temporal changes in insulin therapy
    • IEEE Computer Society Press
    • Kahn, M., Automated interpretation of diabetes patient data: Detecting temporal changes in insulin therapy. Proc Symp. Comp. Appl. Med. Care, IEEE Computer Society Press, 569-573, 1990.
    • (1990) Proc Symp. Comp. Appl. Med. Care , pp. 569-573
    • Kahn, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.