메뉴 건너뛰기




Volumn 17, Issue , 2014, Pages 1-13

Research on particle swarm optimization based clustering: A systematic review of literature and techniques

Author keywords

Data clustering; Data mining; Particle swarm optimization; Swarm intelligence

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; DATA MINING;

EID: 84903698283     PISSN: 22106502     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.swevo.2014.02.001     Document Type: Review
Times cited : (199)

References (69)
  • 3
    • 33746332772 scopus 로고    scopus 로고
    • Knowledge discovery in databases tools and techniques
    • P. Wright Knowledge discovery in databases tools and techniques Crossroads 5 2 1998 23 26
    • (1998) Crossroads , vol.5 , Issue.2 , pp. 23-26
    • Wright, P.1
  • 7
    • 84945263084 scopus 로고    scopus 로고
    • K-harmonic means - A spatial clustering algorithm with boosting
    • B. Zhang, M. Hsu, U. Dayal, K-harmonic means - a spatial clustering algorithm with boosting, in: TSDM, 2000, pp. 31-45.
    • (2000) TSDM , pp. 31-45
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 9
    • 0034228041 scopus 로고    scopus 로고
    • Rock a robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim Rock a robust clustering algorithm for categorical attributes Inf. Syst. 25 5 2000 345 366
    • (2000) Inf. Syst. , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 10
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • ACM
    • T. Zhang, R. Ramakrishnan, M. Livny, Birch: an efficient data clustering method for very large databases, in: ACM SIGMOD Record, vol. 25, ACM, 1996, pp. 103-114.
    • (1996) ACM SIGMOD Record , vol.25 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 11
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • ACM
    • S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large databases, in: ACM SIGMOD Record, vol. 27, ACM, 1998, pp. 73-84.
    • (1998) ACM SIGMOD Record , vol.27 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 12
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon hierarchical clustering using dynamic modeling
    • G. Karypis, E.-H. Han, and V. Kumar Chameleon hierarchical clustering using dynamic modeling Computer 32 8 1999 68 75
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 13
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases the algorithm gdbscan and its applications
    • 10.1023/A:1009745219419
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu Density-based clustering in spatial databases the algorithm gdbscan and its applications Data Min. Knowl. Discov. 2 2 1998 169 194 10.1023/A:1009745219419
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 15
    • 57649236236 scopus 로고    scopus 로고
    • An evolutionary particle swarm optimization algorithm for data clustering
    • doi:10.1109/SIS.2008.4668294
    • S. Alam, G. Dobbie, P. Riddle, An evolutionary particle swarm optimization algorithm for data clustering, in: IEEE Swarm Intelligence Symposium (SIS 2008), 2008, pp. 1-6, http://dx.doi.org/10.1109/SIS.2008.4668294.
    • (2008) IEEE Swarm Intelligence Symposium (SIS 2008) , pp. 1-6
    • Alam, S.1    Dobbie, G.2    Riddle, P.3
  • 18
    • 33751235251 scopus 로고    scopus 로고
    • Swarm intelligence: Foundations, perspectives and applications
    • Springer
    • A. Abraham, H. Guo, H. Liu, Swarm intelligence: foundations, perspectives and applications, in: Swarm Intelligent Systems, Springer, 2006, pp. 3-25.
    • (2006) Swarm Intelligent Systems , pp. 3-25
    • Abraham, A.1    Guo, H.2    Liu, H.3
  • 20
    • 0035350696 scopus 로고    scopus 로고
    • Swarm intelligence a whole new way to think about business
    • E. Bonabeau, and C. Meyer Swarm intelligence a whole new way to think about business Harv. Bus. Rev. 79 5 2001 106 115
    • (2001) Harv. Bus. Rev. , vol.79 , Issue.5 , pp. 106-115
    • Bonabeau, E.1    Meyer, C.2
  • 21
    • 78650705743 scopus 로고    scopus 로고
    • Editorial survey swarm intelligence for data mining
    • D. Martens, B. Baesens, and T. Fawcett Editorial survey swarm intelligence for data mining Mach. Learn. 82 1 2011 1 42
    • (2011) Mach. Learn. , vol.82 , Issue.1 , pp. 1-42
    • Martens, D.1    Baesens, B.2    Fawcett, T.3
  • 22
    • 84872422874 scopus 로고    scopus 로고
    • A single pass algorithm for clustering evolving data streams based on swarm intelligence
    • A. Forestiero, C. Pizzuti, and G. Spezzano A single pass algorithm for clustering evolving data streams based on swarm intelligence Data Min. Knowl. Discov. 26 1 2013 1 26
    • (2013) Data Min. Knowl. Discov. , vol.26 , Issue.1 , pp. 1-26
    • Forestiero, A.1    Pizzuti, C.2    Spezzano, G.3
  • 28
    • 2642563714 scopus 로고    scopus 로고
    • Particle swarm based data mining algorithms for classification tasks
    • T. Sousa, A. Silva, and A. Neves Particle swarm based data mining algorithms for classification tasks Parallel Comput. 30 5 2004 767 783
    • (2004) Parallel Comput. , vol.30 , Issue.5 , pp. 767-783
    • Sousa, T.1    Silva, A.2    Neves, A.3
  • 29
    • 67650458942 scopus 로고    scopus 로고
    • Multi-objective rule mining using a chaotic particle swarm optimization algorithm
    • B. Alatas, and E. Akin Multi-objective rule mining using a chaotic particle swarm optimization algorithm Knowl.-Based Syst. 22 6 2009 455 460
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.6 , pp. 455-460
    • Alatas, B.1    Akin, E.2
  • 30
    • 84857777260 scopus 로고    scopus 로고
    • Weighted association rule mining using particle swarm optimization
    • R. Pears, Y.S. Koh, Weighted association rule mining using particle swarm optimization, in: New Frontiers in Applied Data Mining, Springer, 2012, pp. 327-338.
    • (2012) New Frontiers in Applied Data Mining, Springer , pp. 327-338
    • Pears, R.1    Koh, Y.S.2
  • 31
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen Feature selection based on rough sets and particle swarm optimization Pattern Recognit. Lett. 28 4 2007 459 471
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 32
    • 38149046533 scopus 로고    scopus 로고
    • A new rough set reduct algorithm based on particle swarm optimization
    • Springer
    • B. Yue, W. Yao, A. Abraham, H. Liu, A new rough set reduct algorithm based on particle swarm optimization, in: Bio-inspired Modeling of Cognitive Tasks, Springer, 2007, pp. 397-406.
    • (2007) Bio-inspired Modeling of Cognitive Tasks , pp. 397-406
    • Yue, B.1    Yao, W.2    Abraham, A.3    Liu, H.4
  • 36
    • 84857698739 scopus 로고    scopus 로고
    • Towards recommender system using particle swarm optimization based web usage clustering
    • Springer
    • S. Alam, G. Dobbie, P. Riddle, Towards recommender system using particle swarm optimization based web usage clustering, in: New Frontiers in Applied Data Mining, Springer, 2012, pp. 316-326.
    • (2012) New Frontiers in Applied Data Mining , pp. 316-326
    • Alam, S.1    Dobbie, G.2    Riddle, P.3
  • 39
    • 80051475044 scopus 로고    scopus 로고
    • A novel bankruptcy prediction model based on an adaptive fuzzy k nearest neighbor method
    • H.-L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.-J. Wang, and D.-Y. Liu A novel bankruptcy prediction model based on an adaptive fuzzy k nearest neighbor method Knowl.-Based Syst. 24 8 2011 1348 1359
    • (2011) Knowl.-Based Syst. , vol.24 , Issue.8 , pp. 1348-1359
    • Chen, H.-L.1    Yang, B.2    Wang, G.3    Liu, J.4    Xu, X.5    Wang, S.-J.6    Liu, D.-Y.7
  • 40
    • 34047170719 scopus 로고    scopus 로고
    • An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment
    • X. Wang, S. Wang, and J.-J. Ma An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment Sensors 7 3 2007 354 370
    • (2007) Sensors , vol.7 , Issue.3 , pp. 354-370
    • Wang, X.1    Wang, S.2    Ma, J.-J.3
  • 41
    • 34547238433 scopus 로고    scopus 로고
    • A pso-based mobile sensor network for odor source localization in dynamic environment: Theory, simulation and measurement
    • W. Jatmiko, K. Sekiyama, T. Fukuda, A pso-based mobile sensor network for odor source localization in dynamic environment: theory, simulation and measurement, in: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE, 2006, pp. 1036-1043.
    • (2006) IEEE Congress on Evolutionary Computation (CEC 2006), IEEE , pp. 1036-1043
    • Jatmiko, W.1    Sekiyama, K.2    Fukuda, T.3
  • 43
    • 34249885891 scopus 로고    scopus 로고
    • Distributed particle swarm optimization and simulated annealing for energy-efficient coverage in wireless sensor networks
    • X. Wang, J.-J. Ma, S. Wang, and D.-W. Bi Distributed particle swarm optimization and simulated annealing for energy-efficient coverage in wireless sensor networks Sensors 7 5 2007 628 648
    • (2007) Sensors , vol.7 , Issue.5 , pp. 628-648
    • Wang, X.1    Ma, J.-J.2    Wang, S.3    Bi, D.-W.4
  • 44
  • 45
    • 84869864314 scopus 로고    scopus 로고
    • Cluster based wireless sensor network routing using artificial bee colony algorithm
    • D. Karaboga, S. Okdem, and C. Ozturk Cluster based wireless sensor network routing using artificial bee colony algorithm Wirel. Netw. 18 7 2012 847 860
    • (2012) Wirel. Netw. , vol.18 , Issue.7 , pp. 847-860
    • Karaboga, D.1    Okdem, S.2    Ozturk, C.3
  • 46
    • 29244436135 scopus 로고    scopus 로고
    • A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems
    • A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems IEEE Trans. Ind. Electron. 52 6 2005 1478 1489
    • (2005) IEEE Trans. Ind. Electron. , vol.52 , Issue.6 , pp. 1478-1489
    • Chatterjee, A.1    Pulasinghe, K.2    Watanabe, K.3    Izumi, K.4
  • 48
    • 67650147998 scopus 로고    scopus 로고
    • Distributed scalable multi-robot learning using particle swarm optimization
    • J. Pugh, and A. Martinoli Distributed scalable multi-robot learning using particle swarm optimization Swarm Intell. 3 3 2009 203 222
    • (2009) Swarm Intell. , vol.3 , Issue.3 , pp. 203-222
    • Pugh, J.1    Martinoli, A.2
  • 49
    • 34248402008 scopus 로고    scopus 로고
    • A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment theory, simulation and measurement
    • W. Jatmiko, K. Sekiyama, and T. Fukuda A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment theory, simulation and measurement IEEE Comput. Intell. Mag. 2 2 2007 37 51
    • (2007) IEEE Comput. Intell. Mag. , vol.2 , Issue.2 , pp. 37-51
    • Jatmiko, W.1    Sekiyama, K.2    Fukuda, T.3
  • 50
    • 31944437793 scopus 로고    scopus 로고
    • Dynamic clustering using particle swarm optimization with application in image segmentation
    • M.G. Omran, A. Salman, and A.P. Engelbrecht Dynamic clustering using particle swarm optimization with application in image segmentation Pattern Anal. Appl. 8 4 2006 332 344
    • (2006) Pattern Anal. Appl. , vol.8 , Issue.4 , pp. 332-344
    • Omran, M.G.1    Salman, A.2    Engelbrecht, A.P.3
  • 51
    • 84929521912 scopus 로고    scopus 로고
    • A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data
    • A.A. Esmin, R.A. Coelho, and S. Matwin A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data Artif. Intell. Rev. 2013 1 23
    • (2013) Artif. Intell. Rev. , pp. 1-23
    • Esmin, A.A.1    Coelho, R.A.2    Matwin, S.3
  • 56
    • 81855218654 scopus 로고    scopus 로고
    • A particle swarm optimization approach to clustering
    • T. Cura A particle swarm optimization approach to clustering Expert Syst. Appl. 39 1 2012 1582 1588
    • (2012) Expert Syst. Appl. , vol.39 , Issue.1 , pp. 1582-1588
    • Cura, T.1
  • 57
    • 64049093707 scopus 로고    scopus 로고
    • An efficient hybrid data clustering method based on k-harmonic means and particle swarm optimization
    • F. Yang, T. Sun, and C. Zhang An efficient hybrid data clustering method based on k-harmonic means and particle swarm optimization Expert Syst. Appl. 36 6 2009 9847 9852
    • (2009) Expert Syst. Appl. , vol.36 , Issue.6 , pp. 9847-9852
    • Yang, F.1    Sun, T.2    Zhang, C.3
  • 58
    • 37349047955 scopus 로고    scopus 로고
    • A hybridized approach to data clustering
    • Y.-T. Kao, E. Zahara, and I.-W. Kao A hybridized approach to data clustering Expert Syst. Appl. 34 2008 1754 1762
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1754-1762
    • Kao, Y.-T.1    Zahara, E.2    Kao, I.-W.3
  • 59
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Asuncion, D. Newman, Uci Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, " http://www.ics.uci.edu/~mlearn/mlrepository.html "
    • Uci Machine Learning Repository
    • Asuncion, A.1    Newman, D.2
  • 60
    • 38749142896 scopus 로고    scopus 로고
    • Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm
    • S. Das, A. Abraham, and A. Konar Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm Pattern Recognit. Lett. 29 5 2008 688 699
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.5 , pp. 688-699
    • Das, S.1    Abraham, A.2    Konar, A.3
  • 62
    • 84868506559 scopus 로고    scopus 로고
    • A hybrid anfis model for business failure prediction utilizing particle swarm optimization and subtractive clustering
    • 10.1016/j.ins.2011.09.013
    • M.-Y. Chen A hybrid anfis model for business failure prediction utilizing particle swarm optimization and subtractive clustering Inf. Sci. 220 2013 180 195 10.1016/j.ins.2011.09.013
    • (2013) Inf. Sci. , vol.220 , pp. 180-195
    • Chen, M.-Y.1
  • 63
    • 84866451766 scopus 로고    scopus 로고
    • Prediction of corporate financial distress an application of the america banking industry
    • F.S. Shie, M.-Y. Chen, and Y.-S. Liu Prediction of corporate financial distress an application of the america banking industry Neural Comput. Appl. 21 7 2012 1687 1696
    • (2012) Neural Comput. Appl. , vol.21 , Issue.7 , pp. 1687-1696
    • Shie, F.S.1    Chen, M.-Y.2    Liu, Y.-S.3
  • 64
    • 82255175559 scopus 로고    scopus 로고
    • Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches
    • M.-Y. Chen Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches Comput. Math. Appl. 62 12 2011 4514 4524
    • (2011) Comput. Math. Appl. , vol.62 , Issue.12 , pp. 4514-4524
    • Chen, M.-Y.1
  • 67
    • 82555198460 scopus 로고    scopus 로고
    • Exploiting swarm behaviour of simple agents for clustering web users session data
    • L. Cao, Springer US
    • S. Alam, G. Dobbie, and P. Riddle Exploiting swarm behaviour of simple agents for clustering web users session data L. Cao, Data Min. Multi-agent Integr. 2009 Springer US 61 75
    • (2009) Data Min. Multi-agent Integr. , pp. 61-75
    • Alam, S.1    Dobbie, G.2    Riddle, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.