-
1
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., and Lander E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
2
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 (1999) 6745-6750
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
3
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
van't Veer L.J., Dai H., Van De Vijver M.J., He Y.D., Hart A.A.M., Mao M., Peterse H.L., Van Der Kooy K., Marton M.J., Witteveen A.T., Schreiber G.J., Kerkhoven R.M., Roberts C., Linsley P.S., Bernards R., and Friend S.H. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 (2002) 530-536
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
van't Veer, L.J.1
Dai, H.2
Van De Vijver, M.J.3
He, Y.D.4
Hart, A.A.M.5
Mao, M.6
Peterse, H.L.7
Van Der Kooy, K.8
Marton, M.J.9
Witteveen, A.T.10
Schreiber, G.J.11
Kerkhoven, R.M.12
Roberts, C.13
Linsley, P.S.14
Bernards, R.15
Friend, S.H.16
-
4
-
-
0242295767
-
Bayesian Factor Regression Models in the 'Large p, Small n' Paradigm
-
West M. Bayesian Factor Regression Models in the 'Large p, Small n' Paradigm. Bayesian Stat. 7 (2003) 723-732
-
(2003)
Bayesian Stat.
, vol.7
, pp. 723-732
-
-
West, M.1
-
6
-
-
0038391397
-
Boosting for tumor classification with gene expression data
-
Dettling M., and Bu{combining double acute accent}hlmann P. Boosting for tumor classification with gene expression data. Bioinformatics 19 9 (2003) 1061-1069
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1061-1069
-
-
Dettling, M.1
Buhlmann, P.2
-
7
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Ramo{combining double acute accent}n D.U., and Sara A.D.A. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 (2006)
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Ramon, D.U.1
Sara, A.D.A.2
-
8
-
-
33646181069
-
A novel ensemble machine learning for robust microarray data classification
-
Peng Y. A novel ensemble machine learning for robust microarray data classification. Comput. in Biol. Med. 36 (2006) 553-573
-
(2006)
Comput. in Biol. Med.
, vol.36
, pp. 553-573
-
-
Peng, Y.1
-
10
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119-139
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
12
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach. Learn. 45 (2001) 5-32
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
13
-
-
37249046891
-
-
L.I. Kuncheva, J.J. Rodriguez, An experimental study on Rotation Forest ensembles, in: MCS 2007, Lecture Notes in Computer Science, vol. 4472, Springer, Berlin, 2007, pp. 459-468.
-
L.I. Kuncheva, J.J. Rodriguez, An experimental study on Rotation Forest ensembles, in: MCS 2007, Lecture Notes in Computer Science, vol. 4472, Springer, Berlin, 2007, pp. 459-468.
-
-
-
-
14
-
-
0036166753
-
Linear modes of gene expression determined by independent component analysis
-
Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics 18 (2002) 51-60
-
(2002)
Bioinformatics
, vol.18
, pp. 51-60
-
-
Liebermeister, W.1
-
15
-
-
1542473171
-
Application of independent component analysis to microarrays
-
Lee S.I., and Batzoglou S. Application of independent component analysis to microarrays. Genome Biol. 4 (2003)
-
(2003)
Genome Biol.
, vol.4
-
-
Lee, S.I.1
Batzoglou, S.2
-
16
-
-
30744439853
-
Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis
-
Zhang X.W., Yap Y.L., Wei D., Chen F., and Danchin A. Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis. Eur. J. Hum. Genet. 13 (2005) 1303-1311
-
(2005)
Eur. J. Hum. Genet.
, vol.13
, pp. 1303-1311
-
-
Zhang, X.W.1
Yap, Y.L.2
Wei, D.3
Chen, F.4
Danchin, A.5
-
17
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
Singh D., Febbo P.G., Ross K., Jackson D.G., Manola J., Ladd C., Tamayo P., Renshaw A.A., D'Amico A.V., Richie J.P., Lander E.S., Loda M., Kantoff P.W., Golub T.R., and Sellers W.R. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1 (2002) 203-209
-
(2002)
Cancer Cell
, vol.1
, pp. 203-209
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
Jackson, D.G.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.A.8
D'Amico, A.V.9
Richie, J.P.10
Lander, E.S.11
Loda, M.12
Kantoff, P.W.13
Golub, T.R.14
Sellers, W.R.15
-
19
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomeld C.D., and Lander E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomeld, C.D.11
Lander, E.S.12
-
20
-
-
42749088501
-
-
M. Zaalon, M. Hutter, Robust feature selection by mutual information distributions, in: Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence, 2002.
-
M. Zaalon, M. Hutter, Robust feature selection by mutual information distributions, in: Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence, 2002.
-
-
-
-
21
-
-
10244252786
-
Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
-
Pochet N., Smet F.D., Suykens J.A.K., and Moor B.L.R.D. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (2004) 3185-3195
-
(2004)
Bioinformatics
, vol.20
, pp. 3185-3195
-
-
Pochet, N.1
Smet, F.D.2
Suykens, J.A.K.3
Moor, B.L.R.D.4
-
22
-
-
0032629347
-
Fast and robust fixed-point algorithms for independent component analysis
-
Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 (1999) 626-634
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 626-634
-
-
Hyvärinen, A.1
-
24
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y., and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 (1995) 289-300
-
(1995)
J. R. Stat. Soc. Ser. B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
25
-
-
42749087195
-
-
D.D. Margineantu, T.G. Detterich, Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 378-387.
-
D.D. Margineantu, T.G. Detterich, Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 378-387.
-
-
-
|