메뉴 건너뛰기




Volumn 38, Issue 5, 2008, Pages 601-610

Cancer classification using Rotation Forest

Author keywords

Cancer classification; DNA microarray dataset; Linear transformation method; Multiple classifier system (MCS); Rotation Forest

Indexed keywords

DATA STRUCTURES; IMAGE CLASSIFICATION; MATHEMATICAL TRANSFORMATIONS; MICROARRAYS; ONCOLOGY;

EID: 42749094856     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2008.02.007     Document Type: Article
Times cited : (132)

References (25)
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 (1999) 6745-6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 4
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian Factor Regression Models in the 'Large p, Small n' Paradigm
    • West M. Bayesian Factor Regression Models in the 'Large p, Small n' Paradigm. Bayesian Stat. 7 (2003) 723-732
    • (2003) Bayesian Stat. , vol.7 , pp. 723-732
    • West, M.1
  • 6
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M., and Bu{combining double acute accent}hlmann P. Boosting for tumor classification with gene expression data. Bioinformatics 19 9 (2003) 1061-1069
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 7
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Ramo{combining double acute accent}n D.U., and Sara A.D.A. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 (2006)
    • (2006) BMC Bioinformatics , vol.7
    • Ramon, D.U.1    Sara, A.D.A.2
  • 8
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Peng Y. A novel ensemble machine learning for robust microarray data classification. Comput. in Biol. Med. 36 (2006) 553-573
    • (2006) Comput. in Biol. Med. , vol.36 , pp. 553-573
    • Peng, Y.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach. Learn. 45 (2001) 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 13
    • 37249046891 scopus 로고    scopus 로고
    • L.I. Kuncheva, J.J. Rodriguez, An experimental study on Rotation Forest ensembles, in: MCS 2007, Lecture Notes in Computer Science, vol. 4472, Springer, Berlin, 2007, pp. 459-468.
    • L.I. Kuncheva, J.J. Rodriguez, An experimental study on Rotation Forest ensembles, in: MCS 2007, Lecture Notes in Computer Science, vol. 4472, Springer, Berlin, 2007, pp. 459-468.
  • 14
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics 18 (2002) 51-60
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 15
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee S.I., and Batzoglou S. Application of independent component analysis to microarrays. Genome Biol. 4 (2003)
    • (2003) Genome Biol. , vol.4
    • Lee, S.I.1    Batzoglou, S.2
  • 16
    • 30744439853 scopus 로고    scopus 로고
    • Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis
    • Zhang X.W., Yap Y.L., Wei D., Chen F., and Danchin A. Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis. Eur. J. Hum. Genet. 13 (2005) 1303-1311
    • (2005) Eur. J. Hum. Genet. , vol.13 , pp. 1303-1311
    • Zhang, X.W.1    Yap, Y.L.2    Wei, D.3    Chen, F.4    Danchin, A.5
  • 20
    • 42749088501 scopus 로고    scopus 로고
    • M. Zaalon, M. Hutter, Robust feature selection by mutual information distributions, in: Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence, 2002.
    • M. Zaalon, M. Hutter, Robust feature selection by mutual information distributions, in: Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence, 2002.
  • 21
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • Pochet N., Smet F.D., Suykens J.A.K., and Moor B.L.R.D. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (2004) 3185-3195
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1    Smet, F.D.2    Suykens, J.A.K.3    Moor, B.L.R.D.4
  • 22
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 (1999) 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 24
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., and Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 (1995) 289-300
    • (1995) J. R. Stat. Soc. Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 25
    • 42749087195 scopus 로고    scopus 로고
    • D.D. Margineantu, T.G. Detterich, Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 378-387.
    • D.D. Margineantu, T.G. Detterich, Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, 1997, pp. 378-387.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.