메뉴 건너뛰기




Volumn 6912 LNAI, Issue PART 2, 2011, Pages 453-469

On oblique random forests

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; DECISION SPACE; DISCRIMINATIVE MODELS; FEATURE SPACE; GENERALIZATION PERFORMANCE; INTERNAL NODES; LEARNING TASKS; NODE MODEL; RANDOM COEFFICIENTS; RANDOM FORESTS; SPECTRAL DATA; TREE ENSEMBLES;

EID: 80052423308     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-23783-6_29     Document Type: Conference Paper
Times cited : (201)

References (45)
  • 1
    • 35748978234 scopus 로고    scopus 로고
    • Empirical characterization of random forest variable importance measures
    • Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52, 2249-2260 (2008)
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 2
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res., 2015-2033 (2008)
    • (2008) J. Mach. Learn. Res. , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24, 123-140 (1996)
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. J. 45, 5-32 (2001)
    • (2001) Mach. Learn. J. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 70349598845 scopus 로고    scopus 로고
    • Appearance-based object recognition using SVMs: Which kernel should I use?
    • Caputo, B., Sim, K., Furesjo, F., Smola, A.: Appearance-based object recognition using SVMs: which kernel should I use? In: Proc NIPS WS (2002)
    • Proc NIPS WS (2002)
    • Caputo, B.1    Sim, K.2    Furesjo, F.3    Smola, A.4
  • 8
    • 11244354640 scopus 로고    scopus 로고
    • LOTUS: An algorithm for building accurate and comprehensible logistic regression trees
    • Chan, K.Y., Loh, W.Y.: LOTUS: An algorithm for building accurate and comprehensible logistic regression trees. J. Comp. Graph. Stat. 13, 826-852 (2004)
    • (2004) J. Comp. Graph. Stat. , vol.13 , pp. 826-852
    • Chan, K.Y.1    Loh, W.Y.2
  • 9
    • 77956002251 scopus 로고    scopus 로고
    • Decision forests with long-range spatial context for organ localization in ct volumes
    • Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in ct volumes. In: Proc. MICCAI-PMMIA (2009)
    • Proc. MICCAI-PMMIA (2009)
    • Criminisi, A.1    Shotton, J.2    Bucciarelli, S.3
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 40, 139-157 (2000)
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35, 109-135 (1993)
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 12
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Vit́anyi, P.M.B. (ed.) EuroCOLT 1995. Springer, Heidelberg
    • Freund, Y., Shapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vit́anyi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, Springer, Heidelberg (1995)
    • (1995) LNCS , vol.904
    • Freund, Y.1    Shapire, R.E.2
  • 17
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K.: The random subspace method for constructing decision forests. IEEE-T Patt. Anal. Mach. Intell. 20, 832-844 (1998)
    • (1998) IEEE-T Patt. Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 19
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • Jiang, H., Deng, Y., Chen, H.S., Tao, L., Sha, Q., Chen, J., Tsai, C.J., Zhang, S.: Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 5(81) (2004)
    • (2004) BMC Bioinformatics , vol.5 , Issue.81
    • Jiang, H.1    Deng, Y.2    Chen, H.S.3    Tao, L.4    Sha, Q.5    Chen, J.6    Tsai, C.J.7    Zhang, S.8
  • 20
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2, 18-22 (2002)
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 21
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • Lin, Y., Jeon, Y.: Random forests and adaptive nearest neighbors. J. Am. Stat. Assoc. 101, 578-590 (2006)
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 23
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Petrich, W., Hamprecht, F.A.: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10, 213 (2009)
    • (2009) BMC Bioinformatics , vol.10 , pp. 213
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3    Himmelreich, U.4    Petrich, W.5    Hamprecht, F.A.6
  • 24
    • 33747330599 scopus 로고    scopus 로고
    • Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors
    • Menze, B.H., Lichy, M.P., Bachert, P., Kelm, B.M., Schlemmer, H.P., Hamprecht, F.A.: Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed. 19, 599-610 (2006)
    • (2006) NMR Biomed. , vol.19 , pp. 599-610
    • Menze, B.H.1    Lichy, M.P.2    Bachert, P.3    Kelm, B.M.4    Schlemmer, H.P.5    Hamprecht, F.A.6
  • 25
    • 33847236254 scopus 로고    scopus 로고
    • Multivariate feature selection and hierarchical classification for infrared spectroscopy: Serum-based detection of bovine spongiform encephalopathy
    • Menze, B.H., Petrich, W., Hamprecht, F.A.: Multivariate feature selection and hierarchical classification for infrared spectroscopy: serum-based detection of bovine spongiform encephalopathy. Anal. Bioanal. Chem. 387, 801-1807 (2007)
    • (2007) Anal. Bioanal. Chem. , vol.387 , pp. 801-1807
    • Menze, B.H.1    Petrich, W.2    Hamprecht, F.A.3
  • 26
    • 33644682971 scopus 로고    scopus 로고
    • Detection of ancient settlement mounds - Archaeological survey based on the SRTM terrain model
    • Menze, B.H., Ur, J.A., Sherratt, A.G.: Detection of ancient settlement mounds - Archaeological survey based on the SRTM terrain model. Photogramm Engin. Rem. Sens. 72, 321-327 (2006)
    • (2006) Photogramm Engin. Rem. Sens. , vol.72 , pp. 321-327
    • Menze, B.H.1    Ur, J.A.2    Sherratt, A.G.3
  • 28
    • 77949388276 scopus 로고    scopus 로고
    • The behaviour of random forest permutation-based variable importance measures under predictor correlation
    • Nicodemus, K., Malley, J., Strobl, C., Ziegler, A.: The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 11, 110 (2010)
    • (2010) BMC Bioinformatics , vol.11 , pp. 110
    • Nicodemus, K.1    Malley, J.2    Strobl, C.3    Ziegler, A.4
  • 29
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M.: Random forest classifier for remote sensing classification. Intern. J. Remote Sensing 1, 217-222 (2005)
    • (2005) Intern. J. Remote Sensing , vol.1 , pp. 217-222
    • Pal, M.1
  • 30
    • 77958023968 scopus 로고    scopus 로고
    • Learning with ensembles of randomized trees: New insights
    • Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. Springer, Heidelberg
    • Pisetta, V., Jouve, P.-E., Zighed, D.A.: Learning with ensembles of randomized trees: New insights. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 67-82. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6323 , pp. 67-82
    • Pisetta, V.1    Jouve, P.-E.2    Zighed, D.A.3
  • 31
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola, A., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) MIT Press, Cambridge
    • Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola, A., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 32
    • 22944453097 scopus 로고    scopus 로고
    • Improving random forests
    • Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. Springer, Heidelberg
    • Robnik-Ŝikonja, M.: Improving random forests. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 359- 370. Springer, Heidelberg (2004)
    • (2004) LNCS (LNAI) , vol.3201 , pp. 359-370
    • Robnik-Ŝikonja, M.1
  • 34
    • 56049119676 scopus 로고    scopus 로고
    • Robust feature selection using ensemble feature selection techniques
    • Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. Springer, Heidelberg
    • Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 313-325. Springer, Heidelberg (2008)
    • (2008) LNCS (LNAI) , vol.5212 , pp. 313-325
    • Saeys, Y.1    Abeel, T.2    Van De Peer, Y.3
  • 36
    • 0025508354 scopus 로고
    • Entropy nets: From decision trees to neural networks
    • Sethi, I.K.: Entropy nets: from decision trees to neural networks. Proc. IEEE 78, 1605-1613 (1990)
    • (1990) Proc. IEEE , vol.78 , pp. 1605-1613
    • Sethi, I.K.1
  • 37
    • 34250698845 scopus 로고    scopus 로고
    • A feature selection method for multi-level mental fatigue EEG classification
    • in press, epub ahead
    • Shen, K.Q., Ong, C.J., Li, X.P., Zheng, H., Wilder-Smith, E.P.V.: A feature selection method for multi-level mental fatigue EEG classification. IEEE-T. Biomed. Engin. 54, 1231-1237 (2007) (in press, epub ahead)
    • (2007) IEEE-T. Biomed. Engin. , vol.54 , pp. 1231-1237
    • Shen, K.Q.1    Ong, C.J.2    Li, X.P.3    Zheng, H.4    Wilder-Smith, E.P.V.5
  • 39
    • 0345548657 scopus 로고    scopus 로고
    • Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
    • Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Model 43, 1947-1958 (2003)
    • (2003) J. Chem. Inf. Model , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 40
    • 22944488897 scopus 로고    scopus 로고
    • MML inference of oblique decision trees
    • Tan, P.J., Dowe, D.L.,Webb, G.I., Yu, X.: MML inference of oblique decision trees. In: Proc. AJCAI, pp. 1082-1088 (2004)
    • (2004) Proc. AJCAI , pp. 1082-1088
    • Tan, P.J.1    Dowe, D.L.2    Webb, G.I.3    Yu, X.4
  • 41
    • 33845943268 scopus 로고    scopus 로고
    • Decision forests with oblique decision trees
    • Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. Springer, Heidelberg
    • Tan, P.J., Dowe, D.L.: Decision forests with oblique decision trees. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 593-603. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI) , vol.4293 , pp. 593-603
    • Tan, P.J.1    Dowe, D.L.2
  • 42
    • 78149316482 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3d brain image segmentation
    • preprint
    • Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE-T. Patt. Anal. Mach. Intell. 99(preprint) (2009)
    • (2009) IEEE-T. Patt. Anal. Mach. Intell. , vol.99
    • Tu, Z.1    Bai, X.2
  • 43
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In: Proc. ICCV, pp. 1589-1596 (2005)
    • (2005) Proc. ICCV , pp. 1589-1596
    • Tu, Z.1
  • 44
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • Tuv, E., Borisov, A., Runger, G., Torkkola, K.: Feature selection with ensembles, artificial variables, and redundancy elimination. J. Mach. Learn. Res. 10, 1341-1366 (2009)
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.3    Torkkola, K.4
  • 45
    • 80052872695 scopus 로고    scopus 로고
    • Combining randomization and discrimination for fine-grained image categorization
    • Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for fine-grained image categorization. In: Proc. CVPR (2011)
    • Proc. CVPR (2011)
    • Yao, B.1    Khosla, A.2    Fei-Fei, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.