메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Ensemble deep learning for regression and time series forecasting

Author keywords

Deep learning; Ensemble method; Load demand forecasting; Neural Networks; Regression; Support Vector Regression; Time series forecasting

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; NEURAL NETWORKS; TIME SERIES;

EID: 84946688846     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIEL.2014.7015739     Document Type: Conference Paper
Times cited : (358)

References (29)
  • 2
    • 84893743079 scopus 로고    scopus 로고
    • Short-term load forecasting based on support vector regression and load profiling
    • J. C. Sousa, H. M. Jorge, and L. P. Neves, "Short-term load forecasting based on support vector regression and load profiling," International Journal of Energy Research, vol. 38, no. 3, pp. 350-362, 2014.
    • (2014) International Journal of Energy Research , vol.38 , Issue.3 , pp. 350-362
    • Sousa, J.C.1    Jorge, H.M.2    Neves, L.P.3
  • 5
    • 84857251935 scopus 로고    scopus 로고
    • Efficient prediction of software fault proneness modules using support vector machines and probabilistic neural networks
    • H. A. Al-Jamimi and L. Ghouti, "Efficient prediction of software fault proneness modules using support vector machines and probabilistic neural networks," in 5th Malaysian Conference in Software Engineering (MySEC2011), 2011, pp. 251-255.
    • (2011) 5th Malaysian Conference in Software Engineering (MySEC2011) , pp. 251-255
    • Al-Jamimi, H.A.1    Ghouti, L.2
  • 6
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 11
    • 84972529288 scopus 로고
    • Kinship and correlation (reprinted 1989)
    • F. Galton, "Kinship and correlation (reprinted 1989)," in Statistical Science, 1989, vol. 4, no. 2, pp. 80-86.
    • (1989) Statistical Science , vol.4 , Issue.2 , pp. 80-86
    • Galton, F.1
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Kluwer Academic Publishers
    • L. Breiman, "Bagging predictors," in Machine Learning. Kluwer Academic Publishers, 1996, vol. 24, no. 3, pp. 123-140.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • -, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Machine learning, vol. 63, no. 1, pp. 3-42, 2006.
    • (2006) Machine Learning , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 15
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," The Journal of Machine Learning Research, vol. 11, pp. 3371-3408, 2010.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer
    • T. G. Dietterich, "Ensemble methods in machine learning," in Multiple classifier systems. Springer, 2000, pp. 1-15.
    • (2000) Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.G.1
  • 24
    • 84864677650 scopus 로고    scopus 로고
    • L. Torgo. (2014) Regression datasets. [Online]. Available: http: //www. dcc. fc. up. pt/-ltorgo/Regression/DataSets. html
    • (2014) Regression Datasets
    • Torgo, L.1
  • 25
    • 0002432565 scopus 로고
    • Multivariate adaptative regression splines
    • J. FRIEDMAN, "Multivariate adaptative regression splines," in Annals of Statistics, 1991, vol. 19, no. 1, pp. 1-141.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.1
  • 29
    • 34248640313 scopus 로고    scopus 로고
    • Comparing support vector machines and feedforward neural networks with similar hidden-layer weights
    • E. Romero and D. Toppo, "Comparing support vector machines and feedforward neural networks with similar hidden-layer weights," IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 959-963, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 959-963
    • Romero, E.1    Toppo, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.