메뉴 건너뛰기




Volumn , Issue , 2012, Pages 879-886

Multi-objective evolutionary optimization for generating ensembles of classifiers in the ROC space

Author keywords

ensembles of classifiers; genetic programming; machine learning; multi objective evolutionary algorithms; roc curve

Indexed keywords

BOOLEAN COMBINATIONS; CLASSIFIER ENSEMBLES; DECISION LEVELS; ENSEMBLES OF CLASSIFIERS; EVOLUTIONARY OPTIMIZATIONS; MULTI OBJECTIVE; MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS; MULTI OBJECTIVE OPTIMIZATIONS (MOO); NSGA-II; OPERATING CONDITION; ROC CURVES;

EID: 84864702496     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2330163.2330285     Document Type: Conference Paper
Times cited : (25)

References (26)
  • 4
    • 70449707266 scopus 로고    scopus 로고
    • A multi-model selection framework for unknown and/or evolutive misclassification cost problems
    • C. Chatelain, S. Adam, Y. Lecourtier, L. Heutte, and T. Paquet. A multi-model selection framework for unknown and/or evolutive misclassification cost problems. Pattern Recognition, 43(3):815-823, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 815-823
    • Chatelain, C.1    Adam, S.2    Lecourtier, Y.3    Heutte, L.4    Paquet, T.5
  • 8
    • 58649110205 scopus 로고    scopus 로고
    • Overfitting cautious selection of classifier ensembles with genetic algorithms
    • Apr.
    • E. M. Dos Santos, R. Sabourin, and P. Maupin. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 10(2):150-162, Apr. 2009.
    • (2009) Information Fusion , vol.10 , Issue.2 , pp. 150-162
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 9
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class ROC analysis from a multi-objective optimisation perspective
    • June
    • R. M. Everson and J. E. Fieldsend. Multi-class ROC analysis from a multi-objective optimisation perspective. Pattern Recognition Letters, 27(8):918-927, June 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 918-927
    • Everson, R.M.1    Fieldsend, J.E.2
  • 10
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • June
    • T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861-874, June 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 16
    • 77951257705 scopus 로고    scopus 로고
    • Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs
    • W. Khreich, E. Granger, A. Miri, and R. Sabourin. Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs. Pattern Recognition, 43(8):2732-2752, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2732-2752
    • Khreich, W.1    Granger, E.2    Miri, A.3    Sabourin, R.4
  • 17
    • 80052778744 scopus 로고    scopus 로고
    • Adaptive ROC-based ensembles of HMMs applied to anomaly detection
    • July
    • W. Khreich, E. Granger, A. Miri, and R. Sabourin. Adaptive ROC-based ensembles of HMMs applied to anomaly detection. Pattern Recognition, 45:208-230, July 2012.
    • (2012) Pattern Recognition , vol.45 , pp. 208-230
    • Khreich, W.1    Granger, E.2    Miri, A.3    Sabourin, R.4
  • 21
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42(3):203-231, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 23
    • 34548087763 scopus 로고    scopus 로고
    • ROC-based evolutionary learning: Application to medical data mining
    • Springer
    • M. Sebag, J. Azé, and N. Lucas. ROC-based evolutionary learning: Application to medical data mining. In Artificial Evolution, pages 384-396. Springer, 2004.
    • (2004) Artificial Evolution , pp. 384-396
    • Sebag, M.1    Azé, J.2    Lucas, N.3
  • 24
    • 58249083989 scopus 로고    scopus 로고
    • Threshold-optimized decision-level fusion and its application to biometrics
    • Q. Tao and R. Veldhuis. Threshold-optimized decision-level fusion and its application to biometrics. Pattern Recognition, 42(5):823-836, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 823-836
    • Tao, Q.1    Veldhuis, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.