메뉴 건너뛰기




Volumn 65, Issue 1, 2006, Pages 247-271

An analysis of diversity measures

Author keywords

Classifier ensemble; Coincident failure diversity; Disagreement measure; Diversity measures; Double fault measure; Entropy measure; Generalized diversity; Interrater agreement; KW variance; Majority vote; Margin distribution; Measure of difficulty

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS; ENTROPY; INFORMATION ANALYSIS; LEARNING SYSTEMS;

EID: 33749018252     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-006-9449-2     Document Type: Article
Times cited : (393)

References (30)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-142.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • Dietterich, T. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2), 1-22.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 1-22
    • Dietterich, T.1
  • 9
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 11
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification processes
    • Giacinto, G., & Roli, F. (2001). Design of effective neural network ensembles for image classification processes. Image Vision and Computing, 19(9/10), 699-707.
    • (2001) Image Vision and Computing , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 15
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active Learning
    • G. Tesauro, D. S. Touretzky and T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active Learning. In: G. Tesauro, D. S. Touretzky and T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7 (pp. 231-238). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 16
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L., & Whitaker, C. (2003a). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51, 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 17
    • 35048862917 scopus 로고    scopus 로고
    • That elusive diversity in classifier ensembles
    • 2003, Lecture Notes in Computer Science, Springer-Verlag, LNCS 2652
    • Kuncheva, L.I. (2003b). That elusive diversity in classifier ensembles. In: Proc IbPRIA 2003, Mallorca, Spain, 2003, Lecture Notes in Computer Science, Springer-Verlag, LNCS 2652, 1126-1138.
    • (2003) Proc IbPRIA 2003, Mallorca, Spain , pp. 1126-1138
    • Kuncheva, L.I.1
  • 21
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • Mason, L., Bartlett, P. L., & Baxter, J. (2000). Improved generalization through explicit optimization of margins. Machine Learning, 38(3), 243-255.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 243-255
    • Mason, L.1    Bartlett, P.L.2    Baxter, J.3
  • 22
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: Practical statistics for its measurement and exploitation
    • Patridge, D., & Krzanowski, W. J. (1997). Software diversity: Practical statistics for its measurement and exploitation. Information & Software Technology, 39, 707-717.
    • (1997) Information & Software Technology , vol.39 , pp. 707-717
    • Patridge, D.1    Krzanowski, W.J.2
  • 24
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P. L., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 27
    • 0032761276 scopus 로고    scopus 로고
    • Hierarchical overlapped SOM's for pattern classification
    • Suganthan, P. N. (1999). Hierarchical Overlapped SOM's for Pattern Classification. IEEE Transactions on Neural Networks, 10(1), 193-196.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.1 , pp. 193-196
    • Suganthan, P.N.1
  • 29
    • 84974678430 scopus 로고    scopus 로고
    • On the boosting pruning problem
    • R. L. Mantaras and E. Plaza (Eds.), Lecture Notes in Computer Science. Springer
    • Tamon, C., & Xiang, J. (2000). On the Boosting Pruning problem. In: R. L. Mantaras and E. Plaza (Eds.), Machine Learning: Proc. 11th European Conference, Vol. 1810 Lecture Notes in Computer Science (pp. 404-412). Springer.
    • (2000) Machine Learning: Proc. 11th European Conference , vol.1810 , pp. 404-412
    • Tamon, C.1    Xiang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.