-
1
-
-
0037381016
-
Boosting HONG networks
-
Atukorale, A. S., Downs, T., & Suganthan, P. N. (2003). Boosting HONG Networks. Neurocomputing, 51, 75-86.
-
(2003)
Neurocomputing
, vol.51
, pp. 75-86
-
-
Atukorale, A.S.1
Downs, T.2
Suganthan, P.N.3
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-142.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
10444221886
-
Diversity Creation Methods: A Survey and Categorization
-
Brown, G., Wyatt, J. L., Harris, R. & Yao, X. (2004). Diversity Creation Methods: A Survey and Categorization. Information Fusion Journal (Special issue on Diversity in Multiple Classifier Systems), 6(1), 5-20.
-
(2004)
Information Fusion Journal (Special Issue on Diversity in Multiple Classifier Systems)
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.L.2
Harris, R.3
Yao, X.4
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
7
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2), 1-22.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 1-22
-
-
Dietterich, T.1
-
9
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
11
-
-
0035420134
-
Design of effective neural network ensembles for image classification processes
-
Giacinto, G., & Roli, F. (2001). Design of effective neural network ensembles for image classification processes. Image Vision and Computing, 19(9/10), 699-707.
-
(2001)
Image Vision and Computing
, vol.19
, Issue.9-10
, pp. 699-707
-
-
Giacinto, G.1
Roli, F.2
-
15
-
-
85054435084
-
Neural network ensembles, cross validation, and active Learning
-
G. Tesauro, D. S. Touretzky and T. K. Leen (Eds.), Cambridge, MA: MIT Press
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active Learning. In: G. Tesauro, D. S. Touretzky and T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7 (pp. 231-238). Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
16
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva, L., & Whitaker, C. (2003a). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51, 181-207.
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
17
-
-
35048862917
-
That elusive diversity in classifier ensembles
-
2003, Lecture Notes in Computer Science, Springer-Verlag, LNCS 2652
-
Kuncheva, L.I. (2003b). That elusive diversity in classifier ensembles. In: Proc IbPRIA 2003, Mallorca, Spain, 2003, Lecture Notes in Computer Science, Springer-Verlag, LNCS 2652, 1126-1138.
-
(2003)
Proc IbPRIA 2003, Mallorca, Spain
, pp. 1126-1138
-
-
Kuncheva, L.I.1
-
18
-
-
0000086449
-
Negatively correlated neural networks can produce best ensembles
-
Liu, Y., & Yao, X. (1997). Negatively correlated neural networks can produce best ensembles. Australian Journal of Intelligent Information Processing Systems, 4(3/4), 176-185.
-
(1997)
Australian Journal of Intelligent Information Processing Systems
, vol.4
, Issue.3-4
, pp. 176-185
-
-
Liu, Y.1
Yao, X.2
-
19
-
-
0034315099
-
Evolutionary ensembles with negative correlation learning
-
Liu, Y., Yao, X., & Higuchi, T. (2000). Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation, 4, 380-387.
-
(2000)
IEEE Transactions on Evolutionary Computation
, vol.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
21
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
Mason, L., Bartlett, P. L., & Baxter, J. (2000). Improved generalization through explicit optimization of margins. Machine Learning, 38(3), 243-255.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 243-255
-
-
Mason, L.1
Bartlett, P.L.2
Baxter, J.3
-
22
-
-
0031244715
-
Software diversity: Practical statistics for its measurement and exploitation
-
Patridge, D., & Krzanowski, W. J. (1997). Software diversity: Practical statistics for its measurement and exploitation. Information & Software Technology, 39, 707-717.
-
(1997)
Information & Software Technology
, vol.39
, pp. 707-717
-
-
Patridge, D.1
Krzanowski, W.J.2
-
23
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287-320.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
24
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P. L., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651-1686.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
27
-
-
0032761276
-
Hierarchical overlapped SOM's for pattern classification
-
Suganthan, P. N. (1999). Hierarchical Overlapped SOM's for Pattern Classification. IEEE Transactions on Neural Networks, 10(1), 193-196.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.1
, pp. 193-196
-
-
Suganthan, P.N.1
-
28
-
-
0037695279
-
-
World Scientific
-
Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares Support Vector Machines Singapore. World Scientific.
-
(2002)
Least Squares Support Vector Machines Singapore
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
29
-
-
84974678430
-
On the boosting pruning problem
-
R. L. Mantaras and E. Plaza (Eds.), Lecture Notes in Computer Science. Springer
-
Tamon, C., & Xiang, J. (2000). On the Boosting Pruning problem. In: R. L. Mantaras and E. Plaza (Eds.), Machine Learning: Proc. 11th European Conference, Vol. 1810 Lecture Notes in Computer Science (pp. 404-412). Springer.
-
(2000)
Machine Learning: Proc. 11th European Conference
, vol.1810
, pp. 404-412
-
-
Tamon, C.1
Xiang, J.2
|