-
2
-
-
29244448340
-
Microarray data analysis: From disarray to consolidation and consensus
-
Allison DB, Cui X, Page GP, et al. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006; 7: 55-66.
-
(2006)
Nat Rev Genet
, vol.7
, pp. 55-66
-
-
Allison, D.B.1
Cui, X.2
Page, G.P.3
-
3
-
-
0037435030
-
Mass spectrometry-based proteomics
-
Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422: 198-207.
-
(2003)
Nature
, vol.422
, pp. 198-207
-
-
Aebersold, R.1
Mann, M.2
-
4
-
-
13144306071
-
Genome-wide association studies for common diseases and complex traits
-
Hirschhorn J, Daly M. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6: 95-108.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 95-108
-
-
Hirschhorn, J.1
Daly, M.2
-
5
-
-
69249146630
-
Towards accurate human promoter recognition: A review of currently used sequence features and classification methods
-
Zeng J, Zhu S, Yan H. Towards accurate human promoter recognition: a review of currently used sequence features and classification methods. Brief Bioinform 2009; 10: 498-508.
-
(2009)
Brief Bioinform
, vol.10
, pp. 498-508
-
-
Zeng, J.1
Zhu, S.2
Yan, H.3
-
6
-
-
0036601150
-
Computational methods for the prediction of protein interactions
-
Valencia A, Pazos F. Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 2002; 12: 368-73.
-
(2002)
Curr Opin Struct Biol
, vol.12
, pp. 368-373
-
-
Valencia, A.1
Pazos, F.2
-
7
-
-
0035346039
-
Protein structure prediction in genomics
-
Jones DT. Protein structure prediction in genomics. Brief Bioin form 2001; 2: 111-25.
-
(2001)
Brief Bioin Form
, vol.2
, pp. 111-125
-
-
Jones, D.T.1
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees Bagging, Boosting and Randomization
-
Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Mach Learn 2000; 40: 139-158.
-
(2000)
Mach Learn
, vol.40
, pp. 139-158
-
-
Dietterich, T.G.1
-
10
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach Learn 1996; 26: 123-140.
-
(1996)
Mach Learn
, vol.26
, pp. 123-140
-
-
Breiman, L.1
-
12
-
-
0035478854
-
Random Forests
-
Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
4344706336
-
Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
-
Webb GI, Zheng Z. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Trans Knowl Data Eng 2004; 16: 980-91.
-
(2004)
IEEE Trans Knowl Data Eng
, vol.16
, pp. 980-991
-
-
Webb, G.I.1
Zheng, Z.2
-
15
-
-
0346786584
-
Arcing classifiers (with discussion)
-
Breiman L. Arcing classifiers (with discussion). Ann Appl Probab 1998; 26: 801-49.
-
(1998)
Ann Appl Probab
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
16
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire RE, Freund Y, Bartlett P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Appl Probab 1998; 26: 1651-86.
-
(1998)
Ann Appl Probab
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
-
17
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
Tsymbal A, Pechenizkiy M, Cunningham P. Diversity in search strategies for ensemble feature selection. Inf Fusion 2005; 6: 83-98.
-
(2005)
Inf Fusion
, vol.6
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
19
-
-
0036532571
-
Switching between selection and fusion in combining classifiers: An experiment
-
Kuncheva LI. Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans Syst Man Cybern 2002; 32: 146-56.
-
(2002)
IEEE Trans Syst Man Cybern
, vol.32
, pp. 146-156
-
-
Kuncheva, L.I.1
-
20
-
-
0034541162
-
Cascade generalization
-
Gama J, Brazdil P. Cascade generalization. Mach Learn 2000; 41: 315-43.
-
(2000)
Mach Learn
, vol.41
, pp. 315-343
-
-
Gama, J.1
Brazdil, P.2
-
21
-
-
0031238275
-
Application of majority voting to pattern recognition: An analysis of its behavior and performance
-
Lam L, Suen Y. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans Syst Man Cybern 1997; 27: 553-68.
-
(1997)
IEEE Trans Syst Man Cybern
, vol.27
, pp. 553-568
-
-
Lam, L.1
Suen, Y.2
-
23
-
-
0031198818
-
A framework for probabilistic combination of multiple classifiers at an abstract level
-
Kang H, Kim K, Kim J. A framework for probabilistic combination of multiple classifiers at an abstract level. Eng Appl Artif Intell 1997; 10: 379-85.
-
(1997)
Eng Appl Artif Intell
, vol.10
, pp. 379-385
-
-
Kang, H.1
Kim, K.2
Kim, J.3
-
25
-
-
33750541829
-
Gene expression profile classification: A review
-
Asyali MH, Colak D, Demirkaya O, et al. Gene expression profile classification: a review. Curr Bioinform 2006; 1: 55-73.
-
(2006)
Curr Bioinform
, vol.1
, pp. 55-73
-
-
Asyali, M.H.1
Colak, D.2
Demirkaya, O.3
-
26
-
-
0042923097
-
Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
-
Somorjai RL, Dolenko B, Baumgartner R, et al. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003; 19: 1484-91.
-
(2003)
Bioinformatics
, vol.19
, pp. 1484-1491
-
-
Somorjai, R.L.1
Dolenko, B.2
Baumgartner, R.3
-
27
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Lnza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23: 2507-17.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Lnza, I.2
Larranaga, P.3
-
28
-
-
42049102625
-
Approaches to dimensionality reduction in proteomic biomarker studies
-
Hilario M, Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 2008; 9: 102-18.
-
(2008)
Brief Bioinform
, vol.9
, pp. 102-118
-
-
Hilario, M.1
Kalousis, A.2
-
29
-
-
1342330535
-
Is cross-validation valid for smallsample microarray classification?
-
Braga-Neto U, Dougherty E. Is cross-validation valid for smallsample microarray classification? Bioinformatics 2004; 20: 374-80.
-
(2004)
Bioinformatics
, vol.20
, pp. 374-380
-
-
Braga-Neto, U.1
Dougherty, E.2
-
30
-
-
0033692876
-
Tissue classification with gene expression profiles
-
Ben-Dor A, Bruhn L, Friedman N, et al. Tissue classification with gene expression profiles. Int J Comput 2000; 7: 559-83.
-
(2000)
Int J Comput
, vol.7
, pp. 559-583
-
-
Ben-Dor, A.1
Bruhn, L.2
Friedman, N.3
-
31
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002; 97: 77-87.
-
(2002)
J Am Stat Assoc
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
32
-
-
0038391397
-
Boosting for tumor classification with gene expression data
-
Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data. Bioinformatics 2003; 19: 1061-9.
-
(2003)
Bioinformatics
, vol.19
, pp. 1061-1069
-
-
Dettling, M.1
Buhlmann, P.2
-
33
-
-
0038724544
-
Boosting and microarray data
-
Long P. Boosting and microarray data. Mach Learn 2003; 53: 31-44.
-
(2003)
Mach Learn
, vol.53
, pp. 31-44
-
-
Long, P.1
-
34
-
-
2942596534
-
Ensemble machine learning on gene expression data for cancer classification
-
Tan A, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Appl Bioinformatics 2003; 2: S75- S83.
-
(2003)
Appl Bioinformatics
, vol.2
-
-
Tan, A.1
Gilbert, D.2
-
35
-
-
0036791428
-
Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
-
Qu Y, Adam B, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002; 48: 1835-43.
-
(2002)
Clin Chem
, vol.48
, pp. 1835-1843
-
-
Qu, Y.1
Adam, B.2
Yasui, Y.3
-
36
-
-
0141738784
-
Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
-
Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003; 19: 1636-43.
-
(2003)
Bioinformatics
, vol.19
, pp. 1636-1643
-
-
Wu, B.1
Abbott, T.2
Fishman, D.3
-
37
-
-
64549129955
-
Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting
-
Gertheiss J, Tutz G. Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Bioinformatics 2009; 25: 1076-7.
-
(2009)
Bioinformatics
, vol.25
, pp. 1076-1077
-
-
Gertheiss, J.1
Tutz, G.2
-
38
-
-
0142008803
-
A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
-
Yasui Y, Pepe M, Thompson M, et al. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003; 4: 449-63.
-
(2003)
Biostatistics
, vol.4
, pp. 449-463
-
-
Yasui, Y.1
Pepe, M.2
Thompson, M.3
-
39
-
-
10444280144
-
An extensive comparison of recent classification tools applied to microarray data
-
Lee J, Lee J, Park M, et al. An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 2005; 48: 869-85.
-
(2005)
Comput Stat Data Anal
, vol.48
, pp. 869-885
-
-
Lee, J.1
Lee, J.2
Park, M.3
-
40
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Diaz-Uriarte R, de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006; 7: 3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Diaz-Uriarte, R.1
de Andres, S.2
-
41
-
-
2942513120
-
Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial
-
Izmirlian G. Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. Ann N Y Acad Sci 2004; 1020: 154-74.
-
(2004)
Ann N Y Acad Sci
, vol.1020
, pp. 154-174
-
-
Izmirlian, G.1
-
42
-
-
0037388166
-
Cell and tumor classification using gene expression data: Construction of forests
-
Zhang H, Yu C, Singer B. Cell and tumor classification using gene expression data: Construction of forests. Proc Indian Natl Sci Acad B Biol Sci 2003; 100: 4168-72.
-
(2003)
Proc Indian Natl Sci Acad B Biol Sci
, vol.100
, pp. 4168-4172
-
-
Zhang, H.1
Yu, C.2
Singer, B.3
-
43
-
-
25144482428
-
Proteomic mass spectra classification using decision tree based ensemble methods
-
Geurts P, Fillet M, Seny D, et al. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics 2005; 21: 3138-45.
-
(2005)
Bioinformatics
, vol.21
, pp. 3138-3145
-
-
Geurts, P.1
Fillet, M.2
Seny, D.3
-
44
-
-
77950126816
-
Performance of error estimators for classification
-
Dougherty ER, Sima C, Hanczar B, et al. Performance of error estimators for classification. Curr Bioinform 2010; 5: 53-67.
-
(2010)
Curr Bioinform
, vol.5
, pp. 53-67
-
-
Dougherty, E.R.1
Sima, C.2
Hanczar, B.3
-
45
-
-
46149101211
-
Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles
-
Ge G, Wong G. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles. BMC Bioinformatics 2008; 9: 275.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 275
-
-
Ge, G.1
Wong, G.2
-
46
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis C. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008; 9: 319.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.3
-
48
-
-
33747841010
-
Pathway analysis using random forests classification and regression
-
Pang H, Lin A, Holford M, et al. Pathway analysis using random forests classification and regression. Bioinformatics 2006; 22: 2028-36.
-
(2006)
Bioinformatics
, vol.22
, pp. 2028-2036
-
-
Pang, H.1
Lin, A.2
Holford, M.3
-
49
-
-
38549126643
-
KEGG for linking genomes to life and the environment
-
Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008; 36: D480-D484.
-
(2008)
Nucleic Acids Res
, vol.36
-
-
Kanehisa, M.1
Araki, M.2
Goto, S.3
-
50
-
-
33748803319
-
Statistical methods in genetics
-
Montana G. Statistical methods in genetics. Brief Bioinform 2006; 7: 297-308.
-
(2006)
Brief Bioinform
, vol.7
, pp. 297-308
-
-
Montana, G.1
-
51
-
-
67349166946
-
Detecting gene-gene interactions that underlie human diseases
-
Cordell JH. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009; 10: 392-404.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 392-404
-
-
Cordell, J.H.1
-
52
-
-
0033680875
-
Use of classification trees for association studies
-
Zhang H, Bonney G. Use of classification trees for association studies. Genet Epidemiol 2000; 19: 323-32.
-
(2000)
Genet Epidemiol
, vol.19
, pp. 323-332
-
-
Zhang, H.1
Bonney, G.2
-
53
-
-
3242677689
-
Tree-structured supervised learning and the genetics of hypertension
-
Huang J, Lin A, Narasimhan B, et al. Tree-structured supervised learning and the genetics of hypertension. Proc Natl Acad Sci USA 2004; 101: 10529-34.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 10529-34
-
-
Huang, J.1
Lin, A.2
Narasimhan, B.3
-
54
-
-
2342497705
-
Tree and spline based association analysis of gene-gene interaction models for ischemic stroke
-
Cook N, Zee R, Ridker P. Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med 2004; 23: 1439-53.
-
(2004)
Stat Med
, vol.23
, pp. 1439-1453
-
-
Cook, N.1
Zee, R.2
Ridker, P.3
-
55
-
-
30344439983
-
A genome-wide tree-and forest-based association analysis of comorbidity of alcoholism and smoking
-
Ye Y, Zhong X, Zhang H. A genome-wide tree-and forest-based association analysis of comorbidity of alcoholism and smoking. BMC Genetics 2005; 6: S135.
-
(2005)
BMC Genetics
, vol.6
-
-
Ye, Y.1
Zhong, X.2
Zhang, H.3
-
56
-
-
43249122882
-
An ensemble learning approach jointly modeling main and interaction effects in genetic association studies
-
Zhang Z, Zhang S, Wong MY, et al. An ensemble learning approach jointly modeling main and interaction effects in genetic association studies. Genet Epidemiol 2008; 32: 285-300.
-
(2008)
Genet Epidemiol
, vol.32
, pp. 285-300
-
-
Zhang, Z.1
Zhang, S.2
Wong, M.Y.3
-
57
-
-
33744937046
-
Machine learning for detecting gene-gene interactions: A review
-
McKinney BA, Reif DM, Ritchie MD, et al. Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics 2006; 5: 77-88.
-
(2006)
Appl Bioinformatics
, vol.5
, pp. 77-88
-
-
McKinney, B.A.1
Reif, D.M.2
Ritchie, M.D.3
-
58
-
-
34248632806
-
Mapping complex traits using random forests
-
Bureau A, Dupuis J, Hayward B, et al. Mapping complex traits using random forests. BMC Genet 2003; 4: S64.
-
(2003)
BMC Genet
, vol.4
-
-
Bureau, A.1
Dupuis, J.2
Hayward, B.3
-
59
-
-
12744259874
-
Identifying SNPs predictive of phenotype using random forests
-
Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 2005; 28: 171-82.
-
(2005)
Genet Epidemiol
, vol.28
, pp. 171-182
-
-
Bureau, A.1
Dupuis, J.2
Falls, K.3
-
60
-
-
25444453244
-
Screening large-scale association study data: Exploiting interactions using random forests
-
Lunetta KL, Hayward LB, Segal J, et al. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet 2004; 5: 32
-
(2004)
BMC Genet
, vol.5
, pp. 32
-
-
Lunetta, K.L.1
Hayward, L.B.2
Segal, J.3
-
61
-
-
37649007447
-
A forest-based approach to identifying gene and gene-gene interactions
-
Chen X, Liu C, Zhang M, et al. A forest-based approach to identifying gene and gene-gene interactions. Proc Natl Acad Sci USA 2007; 104: 19199-203.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19199-203
-
-
Chen, X.1
Liu, C.2
Zhang, M.3
-
62
-
-
20244380171
-
Complement factor H polymorphism in age-related macular degeneration
-
Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385-9.
-
(2005)
Science
, vol.308
, pp. 385-389
-
-
Klein, R.J.1
Zeiss, C.2
Chew, E.Y.3
-
63
-
-
64549095229
-
Performance of random forest when SNPs are in linkage disequilibrium
-
Meng Y, Yu Y, Cupples L, et al. Performance of random forest when SNPs are in linkage disequilibrium. BMC Bioinform 2009; 10: 78.
-
(2009)
BMC Bioinform
, vol.10
, pp. 78
-
-
Meng, Y.1
Yu, Y.2
Cupples, L.3
-
64
-
-
60849093174
-
A random forest approach to the detection of epistatic interactions in case-control studies
-
Jiang R, Tang W, Wu X, et al. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinform 2009; 10: S65.
-
(2009)
BMC Bioinform
, vol.10
-
-
Jiang, R.1
Tang, W.2
Wu, X.3
-
65
-
-
38449108806
-
Computational analyses of eukaryotic promoters
-
Zhang M. Computational analyses of eukaryotic promoters. BMC Bioinform 2007; 8: S3.
-
(2007)
BMC Bioinform
, vol.8
-
-
Zhang, M.1
-
66
-
-
0036123111
-
Computational detection and location of transcription start sites in mammalian genomic DNA
-
Down TA, Hubbard TJP. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res 2002; 12: 458-61.
-
(2002)
Genome Res
, vol.12
, pp. 458-461
-
-
Down, T.A.1
Hubbard, T.J.P.2
-
67
-
-
2942564430
-
Prediction of post-translational glycosilation and phosphorylation of proteins from amino acid sequence
-
Blon N, Ponten T, Gupta R, et al. Prediction of post-translational glycosilation and phosphorylation of proteins from amino acid sequence. Proteomics Clin Appl 2004; 4: 1633-49.
-
(2004)
Proteomics Clin Appl
, vol.4
, pp. 1633-1649
-
-
Blon, N.1
Ponten, T.2
Gupta, R.3
-
68
-
-
20744453850
-
A boosting approach for motif modeling using ChIP-chip data
-
Hong P, Liu XS, Zhou Q, et al. A boosting approach for motif modeling using ChIP-chip data. Bioinformatics 2005; 21: 2636-43.
-
(2005)
Bioinformatics
, vol.21
, pp. 2636-2643
-
-
Hong, P.1
Liu, X.S.2
Zhou, Q.3
-
69
-
-
33751019180
-
PromoterExplorer: An effective promoter identification method based on the AdaBoost algorithm
-
Xie X, Wu S, Lam KM, et al. PromoterExplorer: an effective promoter identification method based on the AdaBoost algorithm. Bioinformatics 2006; 22: 2722-8.
-
(2006)
Bioinformatics
, vol.22
, pp. 2722-2728
-
-
Xie, X.1
Wu, S.2
Lam, K.M.3
-
70
-
-
34447525636
-
Boosting with stumps for predicting transcription start sites
-
Zhao X, Xuan Z, Zhang M. Boosting with stumps for predicting transcription start sites. Genome Biol 2007; 8: R17.
-
(2007)
Genome Biol
, vol.8
-
-
Zhao, X.1
Xuan, Z.2
Zhang, M.3
-
71
-
-
59949103192
-
High-resolution human corepromoter prediction with CoreBoost_HM
-
Wang X, Xuan Z, Zhao X, et al. High-resolution human corepromoter prediction with CoreBoost_HM. Genome Res 2009; 19: 266-75.
-
(2009)
Genome Res
, vol.19
, pp. 266-275
-
-
Wang, X.1
Xuan, Z.2
Zhao, X.3
-
72
-
-
32144448660
-
Improved prediction of bacterial transcription start sites
-
Gordon JJ, Towsey MW, Hogan JM, et al. Improved prediction of bacterial transcription start sites. Bioinformatics 2006; 22: 142-8.
-
(2006)
Bioinformatics
, vol.22
, pp. 142-148
-
-
Gordon, J.J.1
Towsey, M.W.2
Hogan, J.M.3
-
73
-
-
62149135362
-
Prediction of glycosylation sites using random forests
-
Hamby SE, Hirst JD. Prediction of glycosylation sites using random forests. BMC Bioinformatics 2008; 9: 500.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 500
-
-
Hamby, S.E.1
Hirst, J.D.2
-
74
-
-
38849163717
-
Glycosylation site prediction using ensembles of Support Vector Machine classifiers
-
Caragea C, Sinapov J, Silvescu A, et al. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinformatics 2007; 8: 438.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 438
-
-
Caragea, C.1
Sinapov, J.2
Silvescu, A.3
-
75
-
-
46649097611
-
SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles
-
Yoo PD, Ho YS, Zhou BB, et al. SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles. BMC Bioinformatics 2008; 9: 272.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 272
-
-
Yoo, P.D.1
Ho, Y.S.2
Zhou, B.B.3
-
76
-
-
47549108100
-
Predicting gene function in a hierarchical context with an ensemble of classifiers
-
Guan Y, Myers C, Hess D, et al. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol 2008; 9: S3.
-
(2008)
Genome Biol
, vol.9
-
-
Guan, Y.1
Myers, C.2
Hess, D.3
-
77
-
-
33747880465
-
Ensemble classifier for protein fold pattern recognition
-
Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition. Bioinformatics 2006; 22: 1717-22.
-
(2006)
Bioinformatics
, vol.22
, pp. 1717-1722
-
-
Shen, H.B.1
Chou, K.C.2
-
78
-
-
53349096696
-
Combining classifiers for improved classification of proteins from sequence or structure
-
Melvin I, Weston J, Leslie CS, et al. Combining classifiers for improved classification of proteins from sequence or structure. BMC Bioinformatics 2008; 9: 389.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 389
-
-
Melvin, I.1
Weston, J.2
Leslie, C.S.3
-
79
-
-
69549097716
-
Identification of protein functions using a machine learning approach based on sequence-derived properties
-
Lee B, Shin M, Oh Y, et al. Identification of protein functions using a machine learning approach based on sequence-derived properties. Proteome Sci 2009; 7: 27.
-
(2009)
Proteome Sci
, vol.7
, pp. 27
-
-
Lee, B.1
Shin, M.2
Oh, Y.3
-
80
-
-
33748449804
-
Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition
-
Wang SQ, Yang J, Chou KC. Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. J Theor Biol 2006; 242: 941-6.
-
(2006)
J Theor Biol
, vol.242
, pp. 941-946
-
-
Wang, S.Q.1
Yang, J.2
Chou, K.C.3
-
81
-
-
28944450149
-
Prediction of protein-protein interactions using random decision forest framework
-
Chen XW, Liu M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 2005; 21: 4394-400.
-
(2005)
Bioinformatics
, vol.21
, pp. 4394-4400
-
-
Chen, X.W.1
Liu, M.2
-
82
-
-
75149112324
-
Prediction of protein-protein interaction sites using an ensemble method
-
Deng L, Guan J, Dong Q, et al. Prediction of protein-protein interaction sites using an ensemble method. BMC Bioinformatics 2009; 10: 426.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 426
-
-
Deng, L.1
Guan, J.2
Dong, Q.3
-
83
-
-
77951953607
-
Prediction of human functional genetic networks from heterogeneous data using RVM- based ensemble learning
-
Wu CC, Asgharzadeh S, Triche TJ, et al. Prediction of human functional genetic networks from heterogeneous data using RVM- based ensemble learning. Bioinformatics 2010; 26: 807-813.
-
(2010)
Bioinformatics
, vol.26
, pp. 807-813
-
-
Wu, C.C.1
Asgharzadeh, S.2
Triche, T.J.3
-
84
-
-
77954484005
-
Revealing differences in gene network inference algorithms on the network level by ensemble methods
-
Altay G, Emmert-Streib F. Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 2010; 26: 1738-44.
-
(2010)
Bioinformatics
, vol.26
, pp. 1738-1744
-
-
Altay, G.1
Emmert-Streib, F.2
-
85
-
-
38849163717
-
Glycosylation site prediction using ensemble of support vector machine classifiers
-
Caragea C, Sinapov J, Silvescu A, et al. Glycosylation site prediction using ensemble of support vector machine classifiers. BMC Bioinformatics 2007; 8: 438.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 438
-
-
Caragea, C.1
Sinapov, J.2
Silvescu, A.3
-
86
-
-
33646181069
-
A novel ensemble machine learning for robust microarray data classification
-
Peng Y. A novel ensemble machine learning for robust microarray data classification. Comput Biol Med 2006; 36: 553-73.
-
(2006)
Comput Biol Med
, vol.36
, pp. 553-573
-
-
Peng, Y.1
-
87
-
-
12344294601
-
Bagboosting for tumor classification with gene expression data
-
Dettling M. Bagboosting for tumor classification with gene expression data. Bioinformatics 2004; 20: 3583-93.
-
(2004)
Bioinformatics
, vol.20
, pp. 3583-3593
-
-
Dettling, M.1
-
88
-
-
59549101082
-
A genetic programming-based approach to the classification of multiclass microarray datasets
-
Liu KH, Xu CG. A genetic programming-based approach to the classification of multiclass microarray datasets. Bioinformatics 2009; 25: 331-7.
-
(2009)
Bioinformatics
, vol.25
, pp. 331-337
-
-
Liu, K.H.1
Xu, C.G.2
-
89
-
-
32144435790
-
A robust metaclassification strategy for cancer detection from MS data
-
Bhanot G, Alexe G, Venkataraghavan B, et al. A robust metaclassification strategy for cancer detection from MS data. Proteomics 2006; 6: 592-604.
-
(2006)
Proteomics
, vol.6
, pp. 592-604
-
-
Bhanot, G.1
Alexe, G.2
Venkataraghavan, B.3
-
90
-
-
33747182577
-
Classifier ensembles for protein structural class prediction with varying homology
-
Kedarisetti KD, Kurgan L, Dick S. Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 2006; 348: 981-8.
-
(2006)
Biochem Biophys Res Commun
, vol.348
, pp. 981-988
-
-
Kedarisetti, K.D.1
Kurgan, L.2
Dick, S.3
-
91
-
-
60849090745
-
A voting approach to identify a small number of highly predictive genes using multiple classifiers
-
Hassan MR, Hossain MM, Bailey J, et al. A voting approach to identify a small number of highly predictive genes using multiple classifiers. BMC Bioinformatics 2009; 10: S19.
-
(2009)
BMC Bioinformatics
, vol.10
-
-
Hassan, M.R.1
Hossain, M.M.2
Bailey, J.3
-
92
-
-
75149178749
-
A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data
-
Yang P, Zhou BB, Zhang Z, et al. A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data. BMC Bioinformatics 2010; 11: S5.
-
(2010)
BMC Bioinformatics
, vol.11
-
-
Yang, P.1
Zhou, B.B.2
Zhang, Z.3
-
93
-
-
77958048688
-
A genetic ensemble approach for gene-gene interaction identification
-
Yang P, Ho JWK, Zomaya AY, et al. A genetic ensemble approach for gene-gene interaction identification. BMC Bioinformatics 2010; 11: 524.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 524
-
-
Yang, P.1
Ho, J.W.K.2
Zomaya, A.Y.3
-
94
-
-
13244252329
-
A combinational feature selection and ensemble neural network method for classification of gene expression data
-
Liu B, Cui Q, Jiang T, et al. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 2004; 5: 136.
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 136
-
-
Liu, B.1
Cui, Q.2
Jiang, T.3
-
95
-
-
58049211939
-
The wisdom of the commons: Ensemble tree classifiers for prostate cancer prognosis
-
Koziol JA, Feng AC, Jia Z, et al. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis. Bioinformatics 2009; 25: 54-60.
-
(2009)
Bioinformatics
, vol.25
, pp. 54-60
-
-
Koziol, J.A.1
Feng, A.C.2
Jia, Z.3
-
97
-
-
63549134757
-
M are better than one: An ensemble-based motif finder and its application to regulatory element prediction
-
Yanover C, Singh M, Zaslavsky E. M are better than one: an ensemble-based motif finder and its application to regulatory element prediction. Bioinformatics 2009; 25: 868-74.
-
(2009)
Bioinformatics
, vol.25
, pp. 868-874
-
-
Yanover, C.1
Singh, M.2
Zaslavsky, E.3
-
99
-
-
44949178280
-
Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers
-
Armananzas R, Inza I, Larranaga P. Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers. Comput Methods Programs Biomed 2008; 91: 110-21.
-
(2008)
Comput Methods Programs Biomed
, vol.91
, pp. 110-121
-
-
Armananzas, R.1
Inza, I.2
Larranaga, P.3
-
100
-
-
3042618109
-
Bayesian network multiclassifiers for protein secondary structure prediction
-
Robles V, Larranaga P, Pena JM, et al. Bayesian network multiclassifiers for protein secondary structure prediction. Artif Intell Med 2004; 31: 117-36.
-
(2004)
Artif Intell Med
, vol.31
, pp. 117-136
-
-
Robles, V.1
Larranaga, P.2
Pena, J.M.3
-
101
-
-
33847107996
-
EMD: An ensemble algorithm for discovering regulatory motifs in DNA sequences
-
Hu J, Yang YD, Kihara D. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences. BMC Bioinformatics 2006; 7: 342.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 342
-
-
Hu, J.1
Yang, Y.D.2
Kihara, D.3
-
102
-
-
53749085875
-
MotifVoter: A novel ensemble method for fine-grained integration of generic motif finders
-
Wijaya E, Yiu SM, Son NT, et al. MotifVoter: a novel ensemble method for fine-grained integration of generic motif finders. Bioinformatics 2008; 24: 2288-95.
-
(2008)
Bioinformatics
, vol.24
, pp. 2288-2295
-
-
Wijaya, E.1
Yiu, S.M.2
Son, N.T.3
-
103
-
-
69249085408
-
Stability and aggregation of ranked gene lists
-
Boulesteix AL, Slawski M. Stability and aggregation of ranked gene lists. Brief Bioinform 2009; 10: 556-68.
-
(2009)
Brief Bioinform
, vol.10
, pp. 556-568
-
-
Boulesteix, A.L.1
Slawski, M.2
-
104
-
-
13244289883
-
Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
-
Jiang H, Deng Y, Chen HS, et al. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 2004; 5: 81.
-
(2004)
BMC Bioinformatics
, vol.5
, pp. 81
-
-
Jiang, H.1
Deng, Y.2
Chen, H.S.3
-
105
-
-
25444463295
-
Feature selection and nearest centroid classification for protein mass spectrometry
-
Levner I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005; 6: 68.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 68
-
-
Levner, I.1
-
108
-
-
75149130548
-
An agent-based hybrid system for microarray data analysis
-
Zhang Z, Yang P, Wu X, et al. An agent-based hybrid system for microarray data analysis. IEEE Intel Syst 2009; 24: 53-63.
-
(2009)
IEEE Intel Syst
, vol.24
, pp. 53-63
-
-
Zhang, Z.1
Yang, P.2
Wu, X.3
-
109
-
-
77949507309
-
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
-
Abeel T, Helleputte T, Van de Peer Y, et al. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 2010; 26: 392-8.
-
(2010)
Bioinformatics
, vol.26
, pp. 392-398
-
-
Abeel, T.1
Helleputte, T.2
Van de Peer, Y.3
-
110
-
-
63549151475
-
A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry
-
Netzer M, Millonig G, Osl M, et al. A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry. Bioinformatics 2009; 25: 941-7.
-
(2009)
Bioinformatics
, vol.25
, pp. 941-947
-
-
Netzer, M.1
Millonig, G.2
Osl, M.3
-
111
-
-
16344371755
-
Identifying differentially expressed genes from microarray experiments via statistic synthesis
-
Yang YH, Xiao Y, Segal MR. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 2005; 21: 1084-93.
-
(2005)
Bioinformatics
, vol.21
, pp. 1084-1093
-
-
Yang, Y.H.1
Xiao, Y.2
Segal, M.R.3
-
112
-
-
85130889021
-
An ensemble method for identifying robust features for biomarker identification
-
In: Liu H, Ed., Arizona State University, Tempe, AZ, Hiroshi Motoda, AFOSR/AOARD, Tokyo, Japan. Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
-
Chan D, Bridges SM, Burgess SC. An ensemble method for identifying robust features for biomarker identification. In: Liu H, Ed. Computational Methods of Feature Selection. Arizona State University, Tempe, AZ, Hiroshi Motoda, AFOSR/AOARD, Tokyo, Japan. Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series 2007; pp. 377-92.
-
(2007)
Computational Methods of Feature Selection
, pp. 377-392
-
-
Chan, D.1
Bridges, S.M.2
Burgess, S.C.3
|