메뉴 건너뛰기




Volumn 5, Issue 4, 2010, Pages 296-308

A review of ensemble methods in bioinformatics

Author keywords

Bioinformatics; Ensemble feature selection; Ensemble learning; Ensemble of support vector machines; Gene gene interaction; Mass spectrometry based proteomics; Meta ensemble; Microarray; Regulatory elements prediction

Indexed keywords

DNA;

EID: 78951491903     PISSN: 15748936     EISSN: None     Source Type: Journal    
DOI: 10.2174/157489310794072508     Document Type: Article
Times cited : (432)

References (112)
  • 2
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • Allison DB, Cui X, Page GP, et al. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006; 7: 55-66.
    • (2006) Nat Rev Genet , vol.7 , pp. 55-66
    • Allison, D.B.1    Cui, X.2    Page, G.P.3
  • 3
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422: 198-207.
    • (2003) Nature , vol.422 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 4
    • 13144306071 scopus 로고    scopus 로고
    • Genome-wide association studies for common diseases and complex traits
    • Hirschhorn J, Daly M. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6: 95-108.
    • (2005) Nat Rev Genet , vol.6 , pp. 95-108
    • Hirschhorn, J.1    Daly, M.2
  • 5
    • 69249146630 scopus 로고    scopus 로고
    • Towards accurate human promoter recognition: A review of currently used sequence features and classification methods
    • Zeng J, Zhu S, Yan H. Towards accurate human promoter recognition: a review of currently used sequence features and classification methods. Brief Bioinform 2009; 10: 498-508.
    • (2009) Brief Bioinform , vol.10 , pp. 498-508
    • Zeng, J.1    Zhu, S.2    Yan, H.3
  • 6
    • 0036601150 scopus 로고    scopus 로고
    • Computational methods for the prediction of protein interactions
    • Valencia A, Pazos F. Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 2002; 12: 368-73.
    • (2002) Curr Opin Struct Biol , vol.12 , pp. 368-373
    • Valencia, A.1    Pazos, F.2
  • 7
    • 0035346039 scopus 로고    scopus 로고
    • Protein structure prediction in genomics
    • Jones DT. Protein structure prediction in genomics. Brief Bioin form 2001; 2: 111-25.
    • (2001) Brief Bioin Form , vol.2 , pp. 111-125
    • Jones, D.T.1
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees Bagging, Boosting and Randomization
    • Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Mach Learn 2000; 40: 139-158.
    • (2000) Mach Learn , vol.40 , pp. 139-158
    • Dietterich, T.G.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn 1996; 26: 123-140.
    • (1996) Mach Learn , vol.26 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • Webb GI, Zheng Z. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Trans Knowl Data Eng 2004; 16: 980-91.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 980-991
    • Webb, G.I.1    Zheng, Z.2
  • 15
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • Breiman L. Arcing classifiers (with discussion). Ann Appl Probab 1998; 26: 801-49.
    • (1998) Ann Appl Probab , vol.26 , pp. 801-849
    • Breiman, L.1
  • 16
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire RE, Freund Y, Bartlett P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Appl Probab 1998; 26: 1651-86.
    • (1998) Ann Appl Probab , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3
  • 17
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A, Pechenizkiy M, Cunningham P. Diversity in search strategies for ensemble feature selection. Inf Fusion 2005; 6: 83-98.
    • (2005) Inf Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 19
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • Kuncheva LI. Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans Syst Man Cybern 2002; 32: 146-56.
    • (2002) IEEE Trans Syst Man Cybern , vol.32 , pp. 146-156
    • Kuncheva, L.I.1
  • 20
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Gama J, Brazdil P. Cascade generalization. Mach Learn 2000; 41: 315-43.
    • (2000) Mach Learn , vol.41 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 21
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: An analysis of its behavior and performance
    • Lam L, Suen Y. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans Syst Man Cybern 1997; 27: 553-68.
    • (1997) IEEE Trans Syst Man Cybern , vol.27 , pp. 553-568
    • Lam, L.1    Suen, Y.2
  • 23
    • 0031198818 scopus 로고    scopus 로고
    • A framework for probabilistic combination of multiple classifiers at an abstract level
    • Kang H, Kim K, Kim J. A framework for probabilistic combination of multiple classifiers at an abstract level. Eng Appl Artif Intell 1997; 10: 379-85.
    • (1997) Eng Appl Artif Intell , vol.10 , pp. 379-385
    • Kang, H.1    Kim, K.2    Kim, J.3
  • 25
    • 33750541829 scopus 로고    scopus 로고
    • Gene expression profile classification: A review
    • Asyali MH, Colak D, Demirkaya O, et al. Gene expression profile classification: a review. Curr Bioinform 2006; 1: 55-73.
    • (2006) Curr Bioinform , vol.1 , pp. 55-73
    • Asyali, M.H.1    Colak, D.2    Demirkaya, O.3
  • 26
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • Somorjai RL, Dolenko B, Baumgartner R, et al. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003; 19: 1484-91.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 27
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Lnza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23: 2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Lnza, I.2    Larranaga, P.3
  • 28
    • 42049102625 scopus 로고    scopus 로고
    • Approaches to dimensionality reduction in proteomic biomarker studies
    • Hilario M, Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 2008; 9: 102-18.
    • (2008) Brief Bioinform , vol.9 , pp. 102-118
    • Hilario, M.1    Kalousis, A.2
  • 29
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for smallsample microarray classification?
    • Braga-Neto U, Dougherty E. Is cross-validation valid for smallsample microarray classification? Bioinformatics 2004; 20: 374-80.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.2
  • 30
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor A, Bruhn L, Friedman N, et al. Tissue classification with gene expression profiles. Int J Comput 2000; 7: 559-83.
    • (2000) Int J Comput , vol.7 , pp. 559-583
    • Ben-Dor, A.1    Bruhn, L.2    Friedman, N.3
  • 31
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002; 97: 77-87.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 32
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data. Bioinformatics 2003; 19: 1061-9.
    • (2003) Bioinformatics , vol.19 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 33
    • 0038724544 scopus 로고    scopus 로고
    • Boosting and microarray data
    • Long P. Boosting and microarray data. Mach Learn 2003; 53: 31-44.
    • (2003) Mach Learn , vol.53 , pp. 31-44
    • Long, P.1
  • 34
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan A, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Appl Bioinformatics 2003; 2: S75- S83.
    • (2003) Appl Bioinformatics , vol.2
    • Tan, A.1    Gilbert, D.2
  • 35
    • 0036791428 scopus 로고    scopus 로고
    • Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
    • Qu Y, Adam B, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002; 48: 1835-43.
    • (2002) Clin Chem , vol.48 , pp. 1835-1843
    • Qu, Y.1    Adam, B.2    Yasui, Y.3
  • 36
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003; 19: 1636-43.
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 37
    • 64549129955 scopus 로고    scopus 로고
    • Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting
    • Gertheiss J, Tutz G. Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Bioinformatics 2009; 25: 1076-7.
    • (2009) Bioinformatics , vol.25 , pp. 1076-1077
    • Gertheiss, J.1    Tutz, G.2
  • 38
    • 0142008803 scopus 로고    scopus 로고
    • A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
    • Yasui Y, Pepe M, Thompson M, et al. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003; 4: 449-63.
    • (2003) Biostatistics , vol.4 , pp. 449-463
    • Yasui, Y.1    Pepe, M.2    Thompson, M.3
  • 39
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee J, Lee J, Park M, et al. An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 2005; 48: 869-85.
    • (2005) Comput Stat Data Anal , vol.48 , pp. 869-885
    • Lee, J.1    Lee, J.2    Park, M.3
  • 40
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006; 7: 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    de Andres, S.2
  • 41
    • 2942513120 scopus 로고    scopus 로고
    • Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial
    • Izmirlian G. Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. Ann N Y Acad Sci 2004; 1020: 154-74.
    • (2004) Ann N Y Acad Sci , vol.1020 , pp. 154-174
    • Izmirlian, G.1
  • 42
    • 0037388166 scopus 로고    scopus 로고
    • Cell and tumor classification using gene expression data: Construction of forests
    • Zhang H, Yu C, Singer B. Cell and tumor classification using gene expression data: Construction of forests. Proc Indian Natl Sci Acad B Biol Sci 2003; 100: 4168-72.
    • (2003) Proc Indian Natl Sci Acad B Biol Sci , vol.100 , pp. 4168-4172
    • Zhang, H.1    Yu, C.2    Singer, B.3
  • 43
    • 25144482428 scopus 로고    scopus 로고
    • Proteomic mass spectra classification using decision tree based ensemble methods
    • Geurts P, Fillet M, Seny D, et al. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics 2005; 21: 3138-45.
    • (2005) Bioinformatics , vol.21 , pp. 3138-3145
    • Geurts, P.1    Fillet, M.2    Seny, D.3
  • 44
    • 77950126816 scopus 로고    scopus 로고
    • Performance of error estimators for classification
    • Dougherty ER, Sima C, Hanczar B, et al. Performance of error estimators for classification. Curr Bioinform 2010; 5: 53-67.
    • (2010) Curr Bioinform , vol.5 , pp. 53-67
    • Dougherty, E.R.1    Sima, C.2    Hanczar, B.3
  • 45
    • 46149101211 scopus 로고    scopus 로고
    • Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles
    • Ge G, Wong G. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles. BMC Bioinformatics 2008; 9: 275.
    • (2008) BMC Bioinformatics , vol.9 , pp. 275
    • Ge, G.1    Wong, G.2
  • 46
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis C. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008; 9: 319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.3
  • 48
    • 33747841010 scopus 로고    scopus 로고
    • Pathway analysis using random forests classification and regression
    • Pang H, Lin A, Holford M, et al. Pathway analysis using random forests classification and regression. Bioinformatics 2006; 22: 2028-36.
    • (2006) Bioinformatics , vol.22 , pp. 2028-2036
    • Pang, H.1    Lin, A.2    Holford, M.3
  • 49
    • 38549126643 scopus 로고    scopus 로고
    • KEGG for linking genomes to life and the environment
    • Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008; 36: D480-D484.
    • (2008) Nucleic Acids Res , vol.36
    • Kanehisa, M.1    Araki, M.2    Goto, S.3
  • 50
    • 33748803319 scopus 로고    scopus 로고
    • Statistical methods in genetics
    • Montana G. Statistical methods in genetics. Brief Bioinform 2006; 7: 297-308.
    • (2006) Brief Bioinform , vol.7 , pp. 297-308
    • Montana, G.1
  • 51
    • 67349166946 scopus 로고    scopus 로고
    • Detecting gene-gene interactions that underlie human diseases
    • Cordell JH. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009; 10: 392-404.
    • (2009) Nat Rev Genet , vol.10 , pp. 392-404
    • Cordell, J.H.1
  • 52
    • 0033680875 scopus 로고    scopus 로고
    • Use of classification trees for association studies
    • Zhang H, Bonney G. Use of classification trees for association studies. Genet Epidemiol 2000; 19: 323-32.
    • (2000) Genet Epidemiol , vol.19 , pp. 323-332
    • Zhang, H.1    Bonney, G.2
  • 53
    • 3242677689 scopus 로고    scopus 로고
    • Tree-structured supervised learning and the genetics of hypertension
    • Huang J, Lin A, Narasimhan B, et al. Tree-structured supervised learning and the genetics of hypertension. Proc Natl Acad Sci USA 2004; 101: 10529-34.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 10529-34
    • Huang, J.1    Lin, A.2    Narasimhan, B.3
  • 54
    • 2342497705 scopus 로고    scopus 로고
    • Tree and spline based association analysis of gene-gene interaction models for ischemic stroke
    • Cook N, Zee R, Ridker P. Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med 2004; 23: 1439-53.
    • (2004) Stat Med , vol.23 , pp. 1439-1453
    • Cook, N.1    Zee, R.2    Ridker, P.3
  • 55
    • 30344439983 scopus 로고    scopus 로고
    • A genome-wide tree-and forest-based association analysis of comorbidity of alcoholism and smoking
    • Ye Y, Zhong X, Zhang H. A genome-wide tree-and forest-based association analysis of comorbidity of alcoholism and smoking. BMC Genetics 2005; 6: S135.
    • (2005) BMC Genetics , vol.6
    • Ye, Y.1    Zhong, X.2    Zhang, H.3
  • 56
    • 43249122882 scopus 로고    scopus 로고
    • An ensemble learning approach jointly modeling main and interaction effects in genetic association studies
    • Zhang Z, Zhang S, Wong MY, et al. An ensemble learning approach jointly modeling main and interaction effects in genetic association studies. Genet Epidemiol 2008; 32: 285-300.
    • (2008) Genet Epidemiol , vol.32 , pp. 285-300
    • Zhang, Z.1    Zhang, S.2    Wong, M.Y.3
  • 57
    • 33744937046 scopus 로고    scopus 로고
    • Machine learning for detecting gene-gene interactions: A review
    • McKinney BA, Reif DM, Ritchie MD, et al. Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics 2006; 5: 77-88.
    • (2006) Appl Bioinformatics , vol.5 , pp. 77-88
    • McKinney, B.A.1    Reif, D.M.2    Ritchie, M.D.3
  • 58
    • 34248632806 scopus 로고    scopus 로고
    • Mapping complex traits using random forests
    • Bureau A, Dupuis J, Hayward B, et al. Mapping complex traits using random forests. BMC Genet 2003; 4: S64.
    • (2003) BMC Genet , vol.4
    • Bureau, A.1    Dupuis, J.2    Hayward, B.3
  • 59
    • 12744259874 scopus 로고    scopus 로고
    • Identifying SNPs predictive of phenotype using random forests
    • Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 2005; 28: 171-82.
    • (2005) Genet Epidemiol , vol.28 , pp. 171-182
    • Bureau, A.1    Dupuis, J.2    Falls, K.3
  • 60
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using random forests
    • Lunetta KL, Hayward LB, Segal J, et al. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet 2004; 5: 32
    • (2004) BMC Genet , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3
  • 61
    • 37649007447 scopus 로고    scopus 로고
    • A forest-based approach to identifying gene and gene-gene interactions
    • Chen X, Liu C, Zhang M, et al. A forest-based approach to identifying gene and gene-gene interactions. Proc Natl Acad Sci USA 2007; 104: 19199-203.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19199-203
    • Chen, X.1    Liu, C.2    Zhang, M.3
  • 62
    • 20244380171 scopus 로고    scopus 로고
    • Complement factor H polymorphism in age-related macular degeneration
    • Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385-9.
    • (2005) Science , vol.308 , pp. 385-389
    • Klein, R.J.1    Zeiss, C.2    Chew, E.Y.3
  • 63
    • 64549095229 scopus 로고    scopus 로고
    • Performance of random forest when SNPs are in linkage disequilibrium
    • Meng Y, Yu Y, Cupples L, et al. Performance of random forest when SNPs are in linkage disequilibrium. BMC Bioinform 2009; 10: 78.
    • (2009) BMC Bioinform , vol.10 , pp. 78
    • Meng, Y.1    Yu, Y.2    Cupples, L.3
  • 64
    • 60849093174 scopus 로고    scopus 로고
    • A random forest approach to the detection of epistatic interactions in case-control studies
    • Jiang R, Tang W, Wu X, et al. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinform 2009; 10: S65.
    • (2009) BMC Bioinform , vol.10
    • Jiang, R.1    Tang, W.2    Wu, X.3
  • 65
    • 38449108806 scopus 로고    scopus 로고
    • Computational analyses of eukaryotic promoters
    • Zhang M. Computational analyses of eukaryotic promoters. BMC Bioinform 2007; 8: S3.
    • (2007) BMC Bioinform , vol.8
    • Zhang, M.1
  • 66
    • 0036123111 scopus 로고    scopus 로고
    • Computational detection and location of transcription start sites in mammalian genomic DNA
    • Down TA, Hubbard TJP. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res 2002; 12: 458-61.
    • (2002) Genome Res , vol.12 , pp. 458-461
    • Down, T.A.1    Hubbard, T.J.P.2
  • 67
    • 2942564430 scopus 로고    scopus 로고
    • Prediction of post-translational glycosilation and phosphorylation of proteins from amino acid sequence
    • Blon N, Ponten T, Gupta R, et al. Prediction of post-translational glycosilation and phosphorylation of proteins from amino acid sequence. Proteomics Clin Appl 2004; 4: 1633-49.
    • (2004) Proteomics Clin Appl , vol.4 , pp. 1633-1649
    • Blon, N.1    Ponten, T.2    Gupta, R.3
  • 68
    • 20744453850 scopus 로고    scopus 로고
    • A boosting approach for motif modeling using ChIP-chip data
    • Hong P, Liu XS, Zhou Q, et al. A boosting approach for motif modeling using ChIP-chip data. Bioinformatics 2005; 21: 2636-43.
    • (2005) Bioinformatics , vol.21 , pp. 2636-2643
    • Hong, P.1    Liu, X.S.2    Zhou, Q.3
  • 69
    • 33751019180 scopus 로고    scopus 로고
    • PromoterExplorer: An effective promoter identification method based on the AdaBoost algorithm
    • Xie X, Wu S, Lam KM, et al. PromoterExplorer: an effective promoter identification method based on the AdaBoost algorithm. Bioinformatics 2006; 22: 2722-8.
    • (2006) Bioinformatics , vol.22 , pp. 2722-2728
    • Xie, X.1    Wu, S.2    Lam, K.M.3
  • 70
    • 34447525636 scopus 로고    scopus 로고
    • Boosting with stumps for predicting transcription start sites
    • Zhao X, Xuan Z, Zhang M. Boosting with stumps for predicting transcription start sites. Genome Biol 2007; 8: R17.
    • (2007) Genome Biol , vol.8
    • Zhao, X.1    Xuan, Z.2    Zhang, M.3
  • 71
    • 59949103192 scopus 로고    scopus 로고
    • High-resolution human corepromoter prediction with CoreBoost_HM
    • Wang X, Xuan Z, Zhao X, et al. High-resolution human corepromoter prediction with CoreBoost_HM. Genome Res 2009; 19: 266-75.
    • (2009) Genome Res , vol.19 , pp. 266-275
    • Wang, X.1    Xuan, Z.2    Zhao, X.3
  • 72
    • 32144448660 scopus 로고    scopus 로고
    • Improved prediction of bacterial transcription start sites
    • Gordon JJ, Towsey MW, Hogan JM, et al. Improved prediction of bacterial transcription start sites. Bioinformatics 2006; 22: 142-8.
    • (2006) Bioinformatics , vol.22 , pp. 142-148
    • Gordon, J.J.1    Towsey, M.W.2    Hogan, J.M.3
  • 73
    • 62149135362 scopus 로고    scopus 로고
    • Prediction of glycosylation sites using random forests
    • Hamby SE, Hirst JD. Prediction of glycosylation sites using random forests. BMC Bioinformatics 2008; 9: 500.
    • (2008) BMC Bioinformatics , vol.9 , pp. 500
    • Hamby, S.E.1    Hirst, J.D.2
  • 74
    • 38849163717 scopus 로고    scopus 로고
    • Glycosylation site prediction using ensembles of Support Vector Machine classifiers
    • Caragea C, Sinapov J, Silvescu A, et al. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinformatics 2007; 8: 438.
    • (2007) BMC Bioinformatics , vol.8 , pp. 438
    • Caragea, C.1    Sinapov, J.2    Silvescu, A.3
  • 75
    • 46649097611 scopus 로고    scopus 로고
    • SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles
    • Yoo PD, Ho YS, Zhou BB, et al. SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles. BMC Bioinformatics 2008; 9: 272.
    • (2008) BMC Bioinformatics , vol.9 , pp. 272
    • Yoo, P.D.1    Ho, Y.S.2    Zhou, B.B.3
  • 76
    • 47549108100 scopus 로고    scopus 로고
    • Predicting gene function in a hierarchical context with an ensemble of classifiers
    • Guan Y, Myers C, Hess D, et al. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol 2008; 9: S3.
    • (2008) Genome Biol , vol.9
    • Guan, Y.1    Myers, C.2    Hess, D.3
  • 77
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition. Bioinformatics 2006; 22: 1717-22.
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 78
    • 53349096696 scopus 로고    scopus 로고
    • Combining classifiers for improved classification of proteins from sequence or structure
    • Melvin I, Weston J, Leslie CS, et al. Combining classifiers for improved classification of proteins from sequence or structure. BMC Bioinformatics 2008; 9: 389.
    • (2008) BMC Bioinformatics , vol.9 , pp. 389
    • Melvin, I.1    Weston, J.2    Leslie, C.S.3
  • 79
    • 69549097716 scopus 로고    scopus 로고
    • Identification of protein functions using a machine learning approach based on sequence-derived properties
    • Lee B, Shin M, Oh Y, et al. Identification of protein functions using a machine learning approach based on sequence-derived properties. Proteome Sci 2009; 7: 27.
    • (2009) Proteome Sci , vol.7 , pp. 27
    • Lee, B.1    Shin, M.2    Oh, Y.3
  • 80
    • 33748449804 scopus 로고    scopus 로고
    • Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition
    • Wang SQ, Yang J, Chou KC. Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. J Theor Biol 2006; 242: 941-6.
    • (2006) J Theor Biol , vol.242 , pp. 941-946
    • Wang, S.Q.1    Yang, J.2    Chou, K.C.3
  • 81
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using random decision forest framework
    • Chen XW, Liu M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 2005; 21: 4394-400.
    • (2005) Bioinformatics , vol.21 , pp. 4394-4400
    • Chen, X.W.1    Liu, M.2
  • 82
    • 75149112324 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction sites using an ensemble method
    • Deng L, Guan J, Dong Q, et al. Prediction of protein-protein interaction sites using an ensemble method. BMC Bioinformatics 2009; 10: 426.
    • (2009) BMC Bioinformatics , vol.10 , pp. 426
    • Deng, L.1    Guan, J.2    Dong, Q.3
  • 83
    • 77951953607 scopus 로고    scopus 로고
    • Prediction of human functional genetic networks from heterogeneous data using RVM- based ensemble learning
    • Wu CC, Asgharzadeh S, Triche TJ, et al. Prediction of human functional genetic networks from heterogeneous data using RVM- based ensemble learning. Bioinformatics 2010; 26: 807-813.
    • (2010) Bioinformatics , vol.26 , pp. 807-813
    • Wu, C.C.1    Asgharzadeh, S.2    Triche, T.J.3
  • 84
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay G, Emmert-Streib F. Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 2010; 26: 1738-44.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 85
    • 38849163717 scopus 로고    scopus 로고
    • Glycosylation site prediction using ensemble of support vector machine classifiers
    • Caragea C, Sinapov J, Silvescu A, et al. Glycosylation site prediction using ensemble of support vector machine classifiers. BMC Bioinformatics 2007; 8: 438.
    • (2007) BMC Bioinformatics , vol.8 , pp. 438
    • Caragea, C.1    Sinapov, J.2    Silvescu, A.3
  • 86
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Peng Y. A novel ensemble machine learning for robust microarray data classification. Comput Biol Med 2006; 36: 553-73.
    • (2006) Comput Biol Med , vol.36 , pp. 553-573
    • Peng, Y.1
  • 87
    • 12344294601 scopus 로고    scopus 로고
    • Bagboosting for tumor classification with gene expression data
    • Dettling M. Bagboosting for tumor classification with gene expression data. Bioinformatics 2004; 20: 3583-93.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 88
    • 59549101082 scopus 로고    scopus 로고
    • A genetic programming-based approach to the classification of multiclass microarray datasets
    • Liu KH, Xu CG. A genetic programming-based approach to the classification of multiclass microarray datasets. Bioinformatics 2009; 25: 331-7.
    • (2009) Bioinformatics , vol.25 , pp. 331-337
    • Liu, K.H.1    Xu, C.G.2
  • 89
    • 32144435790 scopus 로고    scopus 로고
    • A robust metaclassification strategy for cancer detection from MS data
    • Bhanot G, Alexe G, Venkataraghavan B, et al. A robust metaclassification strategy for cancer detection from MS data. Proteomics 2006; 6: 592-604.
    • (2006) Proteomics , vol.6 , pp. 592-604
    • Bhanot, G.1    Alexe, G.2    Venkataraghavan, B.3
  • 90
    • 33747182577 scopus 로고    scopus 로고
    • Classifier ensembles for protein structural class prediction with varying homology
    • Kedarisetti KD, Kurgan L, Dick S. Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 2006; 348: 981-8.
    • (2006) Biochem Biophys Res Commun , vol.348 , pp. 981-988
    • Kedarisetti, K.D.1    Kurgan, L.2    Dick, S.3
  • 91
    • 60849090745 scopus 로고    scopus 로고
    • A voting approach to identify a small number of highly predictive genes using multiple classifiers
    • Hassan MR, Hossain MM, Bailey J, et al. A voting approach to identify a small number of highly predictive genes using multiple classifiers. BMC Bioinformatics 2009; 10: S19.
    • (2009) BMC Bioinformatics , vol.10
    • Hassan, M.R.1    Hossain, M.M.2    Bailey, J.3
  • 92
    • 75149178749 scopus 로고    scopus 로고
    • A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data
    • Yang P, Zhou BB, Zhang Z, et al. A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data. BMC Bioinformatics 2010; 11: S5.
    • (2010) BMC Bioinformatics , vol.11
    • Yang, P.1    Zhou, B.B.2    Zhang, Z.3
  • 93
    • 77958048688 scopus 로고    scopus 로고
    • A genetic ensemble approach for gene-gene interaction identification
    • Yang P, Ho JWK, Zomaya AY, et al. A genetic ensemble approach for gene-gene interaction identification. BMC Bioinformatics 2010; 11: 524.
    • (2010) BMC Bioinformatics , vol.11 , pp. 524
    • Yang, P.1    Ho, J.W.K.2    Zomaya, A.Y.3
  • 94
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • Liu B, Cui Q, Jiang T, et al. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 2004; 5: 136.
    • (2004) BMC Bioinformatics , vol.5 , pp. 136
    • Liu, B.1    Cui, Q.2    Jiang, T.3
  • 95
    • 58049211939 scopus 로고    scopus 로고
    • The wisdom of the commons: Ensemble tree classifiers for prostate cancer prognosis
    • Koziol JA, Feng AC, Jia Z, et al. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis. Bioinformatics 2009; 25: 54-60.
    • (2009) Bioinformatics , vol.25 , pp. 54-60
    • Koziol, J.A.1    Feng, A.C.2    Jia, Z.3
  • 97
    • 63549134757 scopus 로고    scopus 로고
    • M are better than one: An ensemble-based motif finder and its application to regulatory element prediction
    • Yanover C, Singh M, Zaslavsky E. M are better than one: an ensemble-based motif finder and its application to regulatory element prediction. Bioinformatics 2009; 25: 868-74.
    • (2009) Bioinformatics , vol.25 , pp. 868-874
    • Yanover, C.1    Singh, M.2    Zaslavsky, E.3
  • 99
    • 44949178280 scopus 로고    scopus 로고
    • Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers
    • Armananzas R, Inza I, Larranaga P. Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers. Comput Methods Programs Biomed 2008; 91: 110-21.
    • (2008) Comput Methods Programs Biomed , vol.91 , pp. 110-121
    • Armananzas, R.1    Inza, I.2    Larranaga, P.3
  • 100
    • 3042618109 scopus 로고    scopus 로고
    • Bayesian network multiclassifiers for protein secondary structure prediction
    • Robles V, Larranaga P, Pena JM, et al. Bayesian network multiclassifiers for protein secondary structure prediction. Artif Intell Med 2004; 31: 117-36.
    • (2004) Artif Intell Med , vol.31 , pp. 117-136
    • Robles, V.1    Larranaga, P.2    Pena, J.M.3
  • 101
    • 33847107996 scopus 로고    scopus 로고
    • EMD: An ensemble algorithm for discovering regulatory motifs in DNA sequences
    • Hu J, Yang YD, Kihara D. EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences. BMC Bioinformatics 2006; 7: 342.
    • (2006) BMC Bioinformatics , vol.7 , pp. 342
    • Hu, J.1    Yang, Y.D.2    Kihara, D.3
  • 102
    • 53749085875 scopus 로고    scopus 로고
    • MotifVoter: A novel ensemble method for fine-grained integration of generic motif finders
    • Wijaya E, Yiu SM, Son NT, et al. MotifVoter: a novel ensemble method for fine-grained integration of generic motif finders. Bioinformatics 2008; 24: 2288-95.
    • (2008) Bioinformatics , vol.24 , pp. 2288-2295
    • Wijaya, E.1    Yiu, S.M.2    Son, N.T.3
  • 103
    • 69249085408 scopus 로고    scopus 로고
    • Stability and aggregation of ranked gene lists
    • Boulesteix AL, Slawski M. Stability and aggregation of ranked gene lists. Brief Bioinform 2009; 10: 556-68.
    • (2009) Brief Bioinform , vol.10 , pp. 556-568
    • Boulesteix, A.L.1    Slawski, M.2
  • 104
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • Jiang H, Deng Y, Chen HS, et al. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 2004; 5: 81.
    • (2004) BMC Bioinformatics , vol.5 , pp. 81
    • Jiang, H.1    Deng, Y.2    Chen, H.S.3
  • 105
    • 25444463295 scopus 로고    scopus 로고
    • Feature selection and nearest centroid classification for protein mass spectrometry
    • Levner I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005; 6: 68.
    • (2005) BMC Bioinformatics , vol.6 , pp. 68
    • Levner, I.1
  • 108
    • 75149130548 scopus 로고    scopus 로고
    • An agent-based hybrid system for microarray data analysis
    • Zhang Z, Yang P, Wu X, et al. An agent-based hybrid system for microarray data analysis. IEEE Intel Syst 2009; 24: 53-63.
    • (2009) IEEE Intel Syst , vol.24 , pp. 53-63
    • Zhang, Z.1    Yang, P.2    Wu, X.3
  • 109
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T, Helleputte T, Van de Peer Y, et al. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 2010; 26: 392-8.
    • (2010) Bioinformatics , vol.26 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van de Peer, Y.3
  • 110
    • 63549151475 scopus 로고    scopus 로고
    • A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry
    • Netzer M, Millonig G, Osl M, et al. A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry. Bioinformatics 2009; 25: 941-7.
    • (2009) Bioinformatics , vol.25 , pp. 941-947
    • Netzer, M.1    Millonig, G.2    Osl, M.3
  • 111
    • 16344371755 scopus 로고    scopus 로고
    • Identifying differentially expressed genes from microarray experiments via statistic synthesis
    • Yang YH, Xiao Y, Segal MR. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 2005; 21: 1084-93.
    • (2005) Bioinformatics , vol.21 , pp. 1084-1093
    • Yang, Y.H.1    Xiao, Y.2    Segal, M.R.3
  • 112
    • 85130889021 scopus 로고    scopus 로고
    • An ensemble method for identifying robust features for biomarker identification
    • In: Liu H, Ed., Arizona State University, Tempe, AZ, Hiroshi Motoda, AFOSR/AOARD, Tokyo, Japan. Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
    • Chan D, Bridges SM, Burgess SC. An ensemble method for identifying robust features for biomarker identification. In: Liu H, Ed. Computational Methods of Feature Selection. Arizona State University, Tempe, AZ, Hiroshi Motoda, AFOSR/AOARD, Tokyo, Japan. Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series 2007; pp. 377-92.
    • (2007) Computational Methods of Feature Selection , pp. 377-392
    • Chan, D.1    Bridges, S.M.2    Burgess, S.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.