메뉴 건너뛰기




Volumn 2, Issue 1, 2009, Pages 1-27

Learning deep architectures for AI

Author keywords

[No Author keywords available]

Indexed keywords

BELIEF NETWORKS; BUILDING BLOCKES; COMPLICATED FUNCTIONS; HIDDEN LAYERS; HIGH-LEVEL ABSTRACTION; MULTIPLE LEVELS; NEURAL NET; NON-LINEAR; PARAMETER SPACES; RESTRICTED BOLTZMANN MACHINE; SINGLE-LAYER MODELS; THEORETICAL RESULT;

EID: 69349090197     PISSN: 19358237     EISSN: 19358245     Source Type: Journal    
DOI: 10.1561/2200000006     Document Type: Article
Times cited : (7282)

References (211)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for boltzmann machines
    • D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A learning algorithm for boltzmann machines," Cognitive Science, vol. 9, pp. 147-169, 1985.
    • (1985) Cognitive Science , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 8
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/information theoretic model of learning via multiple task sampling
    • J. Baxter, "A Bayesian/information theoretic model of learning via multiple task sampling," Machine Learning, vol. 28, pp. 7-40, 1997.
    • (1997) Machine Learning , vol.28 , pp. 7-40
    • Baxter, J.1
  • 10
    • 84898946656 scopus 로고    scopus 로고
    • Using manifold structure for partially labeled classification
    • S. Becker, S. Thrun, and K. Obermayer, eds, Cambridge, MA: MIT Press
    • M. Belkin and P. Niyogi, "Using manifold structure for partially labeled classification," in Advances in Neural Information Processing Systems 15 (NIPS'02), (S. Becker, S. Thrun, and K. Obermayer, eds.), Cambridge, MA: MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems 15 (NIPS'02)
    • Belkin, M.1    Niyogi, P.2
  • 11
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • A. J. Bell and T. J. Sejnowski, "An information maximisation approach to blind separation and blind deconvolution," Neural Computation, vol. 7, no. 6, pp. 1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 12
    • 67651049775 scopus 로고    scopus 로고
    • Justifying and generalizing contrastive divergence
    • Y. Bengio and O. Delalleau, "Justifying and generalizing contrastive divergence," Neural Computation, vol. 21, no. 6, pp. 1601-1621, 2009.
    • (2009) Neural Computation , vol.21 , Issue.6 , pp. 1601-1621
    • Bengio, Y.1    Delalleau, O.2
  • 13
    • 77954662106 scopus 로고    scopus 로고
    • The Curse of highly variable functions for local kernel machines
    • Y. Weiss, B. Schölkopf, and J. Platt, eds, pp, Cambridge, MA: MIT Press
    • Y. Bengio, O. Delalleau, and N. Le Roux, "The Curse of highly variable functions for local kernel machines," in Advances in Neural Information Processing Systems 18 (NIPS'05), (Y. Weiss, B. Schölkopf, and J. Platt, eds.), pp. 107-114, Cambridge, MA: MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18 (NIPS'05) , pp. 107-114
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 19
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds, MIT Press
    • Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI," in Large Scale Kernel Machines, (L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds.), MIT Press, 2007.
    • (2007) Large Scale Kernel Machines
    • Bengio, Y.1    LeCun, Y.2
  • 21
    • 33749451799 scopus 로고    scopus 로고
    • Non-local estimation of manifold structure
    • Y. Bengio, M. Monperrus, and H. Larochelle, "Non-local estimation of manifold structure," Neural Computation, vol. 18, no. 10, pp. 2509-2528, 2006.
    • (2006) Neural Computation , vol.18 , Issue.10 , pp. 2509-2528
    • Bengio, Y.1    Monperrus, M.2    Larochelle, H.3
  • 22
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 23
    • 73249146903 scopus 로고    scopus 로고
    • J. Bergstra and Y. Bengio, Slow, decorrelated features for pretraining complex cell-like networks, in Advances in Neural Information Processing Systems 22 (NIPS'09), (D. Schuurmans, Y. Bengio, C. Williams, J. Lafferty, and A. Culotta, eds.), December 2010.
    • J. Bergstra and Y. Bengio, "Slow, decorrelated features for pretraining complex cell-like networks," in Advances in Neural Information Processing Systems 22 (NIPS'09), (D. Schuurmans, Y. Bengio, C. Williams, J. Lafferty, and A. Culotta, eds.), December 2010.
  • 25
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp, "Auto-association by multilayer perceptrons and singular value decomposition," Biological Cybernetics, vol. 59, pp. 291-294, 1988.
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 26
  • 27
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 34
    • 85153947869 scopus 로고
    • Active learning with statistical models
    • G. Tesauro, D. Touretzky, and T. Leen, eds, pp, Cambridge MA: MIT Press
    • D. Cohn, Z. Ghahramani, and M. I. Jordan, "Active learning with statistical models," in Advances in Neural Information Processing Systems 7 (NIPS'94), (G. Tesauro, D. Touretzky, and T. Leen, eds.), pp. 705-712, Cambridge MA: MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems 7 (NIPS'94) , pp. 705-712
    • Cohn, D.1    Ghahramani, Z.2    Jordan, M.I.3
  • 35
    • 0348021674 scopus 로고
    • Parallel continuation-based global optimization for molecular conformation and protein folding,
    • Dept. of Computer Science
    • T. F. Coleman and Z. Wu, "Parallel continuation-based global optimization for molecular conformation and protein folding," Technical Report Cornell University, Dept. of Computer Science, 1994.
    • (1994) Technical Report Cornell University
    • Coleman, T.F.1    Wu, Z.2
  • 37
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • W. W. Cohen, A. McCallum, and S. T. Roweis, eds, pp, ACM
    • R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," in Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), (W. W. Cohen, A. McCallum, and S. T. Roweis, eds.), pp. 160-167, ACM, 2008.
    • (2008) Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08) , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 39
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Machine Learning, vol. 20, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 40
    • 84898936871 scopus 로고    scopus 로고
    • N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, On kerneltarget alignment, in Advances in Neural Information Processing Systems 14 (NIPS'01), (T. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 367-373, 2002.
    • N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola, "On kerneltarget alignment," in Advances in Neural Information Processing Systems 14 (NIPS'01), (T. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 367-373, 2002.
  • 41
    • 0346728832 scopus 로고    scopus 로고
    • Complexity lower bounds for approximation algebraic computation trees
    • F. Cucker and D. Grigoriev, "Complexity lower bounds for approximation algebraic computation trees," Journal of Complexity, vol. 15, no. 4, pp. 499-512, 1999.
    • (1999) Journal of Complexity , vol.15 , Issue.4 , pp. 499-512
    • Cucker, F.1    Grigoriev, D.2
  • 44
    • 84862619225 scopus 로고    scopus 로고
    • Efficient non-parametric function induction in semi-supervised learning
    • R. G. Cowell and Z. Ghahramani, eds, pp, Society for Artificial Intelligence and Statistics, January
    • O. Delalleau, Y. Bengio, and N. L. Roux, "Efficient non-parametric function induction in semi-supervised learning," in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, (R. G. Cowell and Z. Ghahramani, eds.), pp. 96-103, Society for Artificial Intelligence and Statistics, January 2005.
    • (2005) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics , pp. 96-103
    • Delalleau, O.1    Bengio, Y.2    Roux, N.L.3
  • 45
    • 70049107588 scopus 로고    scopus 로고
    • Empirical evaluation of convolutional RBMs for vision,
    • Technical Report 1327, Département d'Informatique et de Recherche Opérationnelle, Université de Montréal
    • G. Desjardins and Y. Bengio, "Empirical evaluation of convolutional RBMs for vision," Technical Report 1327, Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, 2008.
    • (2008)
    • Desjardins, G.1    Bengio, Y.2
  • 46
    • 84864027013 scopus 로고    scopus 로고
    • A theoretical analysis of robust coding over noisy overcomplete channels
    • Y. Weiss, B. Schölkopf, and J. Platt, eds, pp, Cambridge, MA: MIT Press
    • E. Doi, D. C. Balcan, and M. S. Lewicki, "A theoretical analysis of robust coding over noisy overcomplete channels," in Advances in Neural Information Processing Systems 18 (NIPS'05), (Y. Weiss, B. Schölkopf, and J. Platt, eds.), pp. 307-314, Cambridge, MA: MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18 (NIPS'05) , pp. 307-314
    • Doi, E.1    Balcan, D.C.2    Lewicki, M.S.3
  • 49
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • J. L. Elman, "Learning and development in neural networks: The importance of starting small," Cognition, vol. 48, pp. 781-799, 1993.
    • (1993) Cognition , vol.48 , pp. 781-799
    • Elman, J.L.1
  • 51
    • 56449085852 scopus 로고
    • Unsupervised learning of distributions on binary vectors using two layer networks,
    • Technical Report UCSC-CRL-94-25, University of California, Santa Cruz
    • Y. Freund and D. Haussler, "Unsupervised learning of distributions on binary vectors using two layer networks," Technical Report UCSC-CRL-94-25, University of California, Santa Cruz, 1994.
    • (1994)
    • Freund, Y.1    Haussler, D.2
  • 53
    • 85156256883 scopus 로고    scopus 로고
    • Does the wake-sleep algorithm learn good density estimators?
    • D. Touretzky, M. Mozer, and M. Hasselmo, eds, pp, Cambridge, MA: MIT Press
    • B. J. Frey, G. E. Hinton, and P. Dayan, "Does the wake-sleep algorithm learn good density estimators?," in Advances in Neural Information Processing Systems 8 (NIPS'95), (D. Touretzky, M. Mozer, and M. Hasselmo, eds.), pp. 661-670, Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems 8 (NIPS'95) , pp. 661-670
    • Frey, B.J.1    Hinton, G.E.2    Dayan, P.3
  • 54
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biological Cybernetics, vol. 36, pp. 193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 56
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • T. Gärtner, "A survey of kernels for structured data," ACM SIGKDD Explorations Newsletter, vol. 5, no. 1, pp. 49-58, 2003.
    • (2003) ACM SIGKDD Explorations Newsletter , vol.5 , Issue.1 , pp. 49-58
    • Gärtner, T.1
  • 57
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images
    • November
    • S. Geman and D. Geman, "Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 721-741, November 1984.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 61
    • 0003678451 scopus 로고
    • Markov field on finite graphs and lattices
    • Unpublished manuscript
    • J. M. Hammersley and P. Clifford, "Markov field on finite graphs and lattices," Unpublished manuscript, 1971.
    • (1971)
    • Hammersley, J.M.1    Clifford, P.2
  • 63
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • J. Håstad and M. Goldmann, "On the power of small-depth threshold circuits," Computational Complexity, vol. 1, pp. 113-129, 1991.
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Håstad, J.1    Goldmann, M.2
  • 70
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, pp. 1771-1800, 2002
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 71
    • 34547975984 scopus 로고    scopus 로고
    • To recognize shapes, first learn to generate images,
    • TR 2006-003, University of Toronto
    • G. E. Hinton, "To recognize shapes, first learn to generate images," Technical Report UTML TR 2006-003, University of Toronto, 2006.
    • (2006) Technical Report UTML
    • Hinton, G.E.1
  • 72
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, "The wake-sleep algorithm for unsupervised neural networks," Science, vol. 268, pp. 1558-1161, 1995.
    • (1995) Science , vol.268 , pp. 1558-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 73
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 74
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 75
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, pp. 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 76
    • 73249129254 scopus 로고    scopus 로고
    • G. E. Hinton and T. J. Sejnowski, Learning and relearning in Boltzmann machines, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 1: Foundations, (D. E. Rumelhart and J. L. McClelland, eds.), pp. 282-317, Cambridge, MA: MIT Press, 1986.
    • G. E. Hinton and T. J. Sejnowski, "Learning and relearning in Boltzmann machines," in Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations, (D. E. Rumelhart and J. L. McClelland, eds.), pp. 282-317, Cambridge, MA: MIT Press, 1986.
  • 77
    • 0004243089 scopus 로고
    • Boltzmann machines: Constraint satisfaction networks that learn,
    • Technical Report TR-CMU-CS-84-119, Carnegie-Mellon University, Dept. of Computer Science
    • G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, "Boltzmann machines: Constraint satisfaction networks that learn," Technical Report TR-CMU-CS-84-119, Carnegie-Mellon University, Dept. of Computer Science, 1984.
    • (1984)
    • Hinton, G.E.1    Sejnowski, T.J.2    Ackley, D.H.3
  • 79
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and Helmholtz free energy
    • D. Cowan, G. Tesauro, and J. Alspector, eds, pp, Morgan Kaufmann Publishers, Inc
    • G. E. Hinton and R. S. Zemel, "Autoencoders, minimum description length, and Helmholtz free energy," in Advances in Neural Information Processing Systems 6 (NIPS'93), (D. Cowan, G. Tesauro, and J. Alspector, eds.), pp. 3-10, Morgan Kaufmann Publishers, Inc., 1994.
    • (1994) Advances in Neural Information Processing Systems 6 (NIPS'93) , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 81
    • 0003575034 scopus 로고
    • Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München
    • S. Hochreiter Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991.
    • (1991) Untersuchungen zu dynamischen neuronalen Netzen
    • Hochreiter, S.1
  • 82
    • 0001710505 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling, "Analysis of a complex of statistical variables into principal components," Journal of Educational Psychology, vol. 24, pp. 417-441, 498-520, 1933.
    • (1933) Journal of Educational Psychology , vol.24
    • Hotelling, H.1
  • 83
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex
    • D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex," Journal of Physiology (London), vol. 160, pp. 106-154, 1962.
    • (1962) Journal of Physiology (London) , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 84
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models using score matching
    • A. Hyvärinen, "Estimation of non-normalized statistical models using score matching," Journal of Machine Learning Research, vol. 6, pp. 695-709, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 695-709
    • Hyvärinen, A.1
  • 85
    • 34548644434 scopus 로고    scopus 로고
    • Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables
    • A. Hyvärinen, "Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables," IEEE Transactions on Neural Networks, vol. 18, pp. 1529-1531, 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 1529-1531
    • Hyvärinen, A.1
  • 88
    • 0030488027 scopus 로고    scopus 로고
    • N. Intrator and S. Edelman, How to make a low-dimensional representation suitable for diverse tasks, Connection Science, Special issue on Transfer inv Neuvral Networks, 8, pp. 205-224, 1996.
    • N. Intrator and S. Edelman, "How to make a low-dimensional representation suitable for diverse tasks," Connection Science, Special issue on Transfer inv Neuvral Networks, vol. 8, pp. 205-224, 1996.
  • 89
    • 73249137970 scopus 로고    scopus 로고
    • T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers, Available from http://www.cse.ucsc.edu/ haussler/pubs.html, Preprint, Dept.of Computer Science, Univ. of California. A shorter version is in Advances in Neural Information Processing Systems 11, 1998.
    • T. Jaakkola and D. Haussler, "Exploiting generative models in discriminative classifiers," Available from http://www.cse.ucsc.edu/ haussler/pubs.html, Preprint, Dept.of Computer Science, Univ. of California. A shorter version is in Advances in Neural Information Processing Systems 11, 1998.
  • 90
    • 0034153465 scopus 로고    scopus 로고
    • Nonlinear autoassociation is not equivalent to PCA
    • N. Japkowicz, S. J. Hanson, and M. A. Gluck, "Nonlinear autoassociation is not equivalent to PCA," Neural Computation, vol. 12, no. 3, pp. 531-545, 2000.
    • (2000) Neural Computation , vol.12 , Issue.3 , pp. 531-545
    • Japkowicz, N.1    Hanson, S.J.2    Gluck, M.A.3
  • 92
    • 73249146690 scopus 로고    scopus 로고
    • K. Kavukcuoglu, M. Ranzato, and Y. LeCun, Fast inference in sparse coding algorithms with applications to object recognition, Technical Report, Computational and Biological Learning Lab, Courant Institute, NYU, Technical Report CBLL-TR-2008-12-01, 2008.
    • K. Kavukcuoglu, M. Ranzato, and Y. LeCun, "Fast inference in sparse coding algorithms with applications to object recognition," Technical Report, Computational and Biological Learning Lab, Courant Institute, NYU, Technical Report CBLL-TR-2008-12-01, 2008.
  • 93
    • 26444479778 scopus 로고    scopus 로고
    • S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, Optimization by simulated annealing, Science, 220, pp. 671-680, 1983.
    • S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983.
  • 95
    • 59649113160 scopus 로고    scopus 로고
    • Flexible shaping: How learning in small steps helps
    • K. A. Krueger and P. Dayan, "Flexible shaping: How learning in small steps helps," Cognition, vol. 110, pp. 380-394, 2009.
    • (2009) Cognition , vol.110 , pp. 380-394
    • Krueger, K.A.1    Dayan, P.2
  • 101
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 102
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted boltzmann machines and deep belief networks
    • N. Le Roux and Y. Bengio, "Representational power of restricted boltzmann machines and deep belief networks," Neural Computation, vol. 20, no. 6, pp. 1631-1649, 2008.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 103
    • 0039165044 scopus 로고
    • Modèles connexionistes de l'apprentissage,
    • PhD thesis, Université de Paris VI
    • Y. LeCun, "Modèles connexionistes de l'apprentissage," PhD thesis, Université de Paris VI, 1987.
    • (1987)
    • LeCun, Y.1
  • 106
    • 73249151588 scopus 로고    scopus 로고
    • Y. LeCun, S. Chopra, R. M. Hadsell, M.-A. Ranzato, and F.-J. Huang, A tutorial on energy-based learning, in Predicting Structured Data, pp. 191-246, G. Bakir and T. Hofman and B. Scholkopf and A. Smola and B. Taskar: MIT Press, 2006.
    • Y. LeCun, S. Chopra, R. M. Hadsell, M.-A. Ranzato, and F.-J. Huang, "A tutorial on energy-based learning," in Predicting Structured Data, pp. 191-246, G. Bakir and T. Hofman and B. Scholkopf and A. Smola and B. Taskar: MIT Press, 2006.
  • 108
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Los Alamitos, CA, USA: IEEE Computer Society
    • Y. LeCun, F.-J. Huang, and L. Bottou, "Learning methods for generic object recognition with invariance to pose and lighting," in Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'04), vol. 2, pp. 97-104, Los Alamitos, CA, USA: IEEE Computer Society, 2004.
    • (2004) Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR'04) , vol.2 , pp. 97-104
    • LeCun, Y.1    Huang, F.-J.2    Bottou, L.3
  • 110
    • 73249145044 scopus 로고    scopus 로고
    • H. Lee, C. Ekanadham, and A. Ng, Sparse deep belief net model for visual area V2, in Advances in Neural Information Processing Systems 20 (NIPS'07), (J. Platt, D. Koller, Y. Singer, and S. P. Roweis, eds.), Cambridge, MA: MIT Press, 2008.
    • H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area V2," in Advances in Neural Information Processing Systems 20 (NIPS'07), (J. Platt, D. Koller, Y. Singer, and S. P. Roweis, eds.), Cambridge, MA: MIT Press, 2008.
  • 112
    • 0042565834 scopus 로고    scopus 로고
    • Hierarchical bayesian inference in the visual cortex
    • T.-S. Lee and D. Mumford, "Hierarchical bayesian inference in the visual cortex," Journal of Optical Society of America, A, vol. 20, no. 7, pp. 1434-1448, 2003.
    • (2003) Journal of Optical Society of America, A , vol.20 , Issue.7 , pp. 1434-1448
    • Lee, T.-S.1    Mumford, D.2
  • 113
    • 0037452922 scopus 로고    scopus 로고
    • The cost of cortical computation
    • Mar. 18
    • P. Lennie, "The cost of cortical computation," Current Biology, vol. 13, pp. 493-497, Mar. 18 2003.
    • (2003) Current Biology , vol.13 , pp. 493-497
    • Lennie, P.1
  • 114
    • 73249145043 scopus 로고    scopus 로고
    • PhD thesis, Department of Computer Science, University of Alberta
    • I. Levner, Data Driven Object Segmentation. 2008. PhD thesis, Department of Computer Science, University of Alberta.
    • Data Driven Object Segmentation , pp. 2008
    • Levner, I.1
  • 115
    • 84898976425 scopus 로고    scopus 로고
    • Learning nonlinear overcomplete representations for efficient coding
    • M. Jordan, M. Kearns, and S. Solla, eds, pp, Cambridge, MA, USA: MIT Press
    • M. Lewicki and T. Sejnowski, "Learning nonlinear overcomplete representations for efficient coding," in Advances in Neural Information Processing Systems 10 (NIPS'97), (M. Jordan, M. Kearns, and S. Solla, eds.), pp. 556-562, Cambridge, MA, USA: MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems 10 (NIPS'97) , pp. 556-562
    • Lewicki, M.1    Sejnowski, T.2
  • 116
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M. S. Lewicki and T. J. Sejnowski, "Learning overcomplete representations," Neural Computation, vol. 12, no. 2, pp. 337-365, 2000.
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 118
    • 56449098139 scopus 로고    scopus 로고
    • An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators
    • W. W. Cohen, A. McCallum, and S. T. Roweis, eds, pp, New York, NY, USA: ACM
    • P. Liang and M. I. Jordan, "An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators," in Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), (W. W. Cohen, A. McCallum, and S. T. Roweis, eds.), pp. 584-591, New York, NY, USA: ACM, 2008.
    • (2008) Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08) , pp. 584-591
    • Liang, P.1    Jordan, M.I.2
  • 119
    • 84890453272 scopus 로고
    • Learning long-term dependencies is not as difficult with NARX recurrent neural networks,
    • Technical Report UMICAS-TR-95-78, Institute for Advanced Computer Studies, University of Mariland
    • T. Lin, B. G. Horne, P. Tino, and C. L. Giles, "Learning long-term dependencies is not as difficult with NARX recurrent neural networks," Technical Report UMICAS-TR-95-78, Institute for Advanced Computer Studies, University of Mariland, 1995.
    • (1995)
    • Lin, T.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 120
    • 57849102080 scopus 로고    scopus 로고
    • Training invariant support vector machines using selective sampling
    • L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds, pp, Cambridge, MA: MIT Press
    • G. Loosli, S. Canu, and L. Bottou, "Training invariant support vector machines using selective sampling," in Large Scale Kernel Machines, (L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds.), pp. 301-320, Cambridge, MA: MIT Press, 2007.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Loosli, G.1    Canu, S.2    Bottou, L.3
  • 122
    • 58149409989 scopus 로고
    • An interactive activation model of context effects in letter perception
    • J. L. McClelland and D. E. Rumelhart, "An interactive activation model of context effects in letter perception," Psychological Review, pp. 375-407, 1981.
    • (1981) Psychological Review , pp. 375-407
    • McClelland, J.L.1    Rumelhart, D.E.2
  • 125
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • W. S. McCulloch and W. Pitts, "A logical calculus of ideas immanent in nervous activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 128
    • 34248842385 scopus 로고
    • Natural language processing with modular PDP networks and distributed lexicon
    • R. Miikkulainen and M. G. Dyer, "Natural language processing with modular PDP networks and distributed lexicon," Cognitive Science, vol. 15, pp. 343-399, 1991.
    • (1991) Cognitive Science , vol.15 , pp. 343-399
    • Miikkulainen, R.1    Dyer, M.G.2
  • 130
    • 84858779990 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds, pp
    • A. Mnih and G. E. Hinton, "A scalable hierarchical distributed language model," in Advances in Neural Information Processing Systems 21 (NIPS'08), (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 1081-1088, 2009.
    • (2009) Advances in Neural Information Processing Systems 21 (NIPS'08) , pp. 1081-1088
    • Mnih, A.1    Hinton, G.E.2
  • 132
    • 0006502965 scopus 로고    scopus 로고
    • Smoothing techniques for macromolecular global optimization
    • G. D. Pillo and F. Giannessi, eds, Plenum Press
    • J. More and Z. Wu, "Smoothing techniques for macromolecular global optimization," in Nonlinear Optimization and Applications, (G. D. Pillo and F. Giannessi, eds.), Plenum Press, 1996.
    • (1996) Nonlinear Optimization and Applications
    • More, J.1    Wu, Z.2
  • 133
    • 73249145640 scopus 로고    scopus 로고
    • Evaluating probabilities under highdimensional latent variable models
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds, pp
    • I. Murray and R. Salakhutdinov, "Evaluating probabilities under highdimensional latent variable models," in Advances in Neural Information Processing Systems 21 (NIPS'08), vol. 21, (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 1137-1144, 2009.
    • (2009) Advances in Neural Information Processing Systems 21 (NIPS'08) , vol.21 , pp. 1137-1144
    • Murray, I.1    Salakhutdinov, R.2
  • 134
    • 51149092609 scopus 로고    scopus 로고
    • Object class recognition and localization using sparse features with limited receptive fields
    • J. Mutch and D. G. Lowe, "Object class recognition and localization using sparse features with limited receptive fields," International Journal of Computer Vision, vol. 80, no. 1, pp. 45-57, 2008.
    • (2008) International Journal of Computer Vision , vol.80 , Issue.1 , pp. 45-57
    • Mutch, J.1    Lowe, D.G.2
  • 135
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • R. M. Neal, "Connectionist learning of belief networks," Artificial Intelligence, vol. 56, pp. 71-113, 1992.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 136
    • 0003611509 scopus 로고
    • Bayesian learning for neural networks,
    • PhD thesis, Department of Computer Science, University of Toronto
    • R. M. Neal, "Bayesian learning for neural networks," PhD thesis, Department of Computer Science, University of Toronto, 1994.
    • (1994)
    • Neal, R.M.1
  • 137
    • 59549087165 scopus 로고    scopus 로고
    • On Discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • T. Dietterich, S. Becker, and Z. Ghahramani, eds, pp
    • A. Y. Ng and M. I. Jordan, "On Discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes," in Advances in Neural Information Processing Systems 14 (NIPS'01), (T. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 841-848, 2002.
    • (2002) Advances in Neural Information Processing Systems 14 (NIPS'01) , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 139
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • December
    • B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: a strategy employed by V1?," Vision Research, vol. 37, pp. 3311-3325, December 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 140
    • 0037901061 scopus 로고
    • Computational complexity of neural networks: A survey
    • P. Orponen, "Computational complexity of neural networks: a survey," Nordic Journal of Computing, vol. 1, no. 1, pp. 94-110, 1994.
    • (1994) Nordic Journal of Computing , vol.1 , Issue.1 , pp. 94-110
    • Orponen, P.1
  • 141
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of Markov random field
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, eds, pp, Cambridge, MA: MIT Press
    • S. Osindero and G. E. Hinton, "Modeling image patches with a directed hierarchy of Markov random field," in Advances in Neural Information Processing Systems 20 (NIPS'07), (J. Platt, D. Koller, Y. Singer, and S. Roweis, eds.), pp. 1121-1128, Cambridge, MA: MIT Press, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 (NIPS'07) , pp. 1121-1128
    • Osindero, S.1    Hinton, G.E.2
  • 144
    • 12344258158 scopus 로고    scopus 로고
    • A day of great illumination: B. F. Skinner's discovery of shaping
    • G. B. Peterson, "A day of great illumination: B. F. Skinner's discovery of shaping," Journal of the Experimental Analysis of Behavior, vol. 82, no. 3, pp. 317-328, 2004.
    • (2004) Journal of the Experimental Analysis of Behavior , vol.82 , Issue.3 , pp. 317-328
    • Peterson, G.B.1
  • 145
    • 79952501854 scopus 로고    scopus 로고
    • Establishing good benchmarks and baselines for face recognition
    • Marseille France, Erik Learned-Miller and Andras Ferencz and Frédéric Jurie
    • N. Pinto, J. DiCarlo, and D. Cox, "Establishing good benchmarks and baselines for face recognition," in ECCV 2008 Faces in 'Real-Life' Images Workshop, 2008. Marseille France, Erik Learned-Miller and Andras Ferencz and Frédéric Jurie.
    • (2008) ECCV 2008 Faces in 'Real-Life' Images Workshop
    • Pinto, N.1    DiCarlo, J.2    Cox, D.3
  • 146
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • J. B. Pollack, "Recursive distributed representations," Artificial Intelligence, vol. 46, no. 1, pp. 77-105, 1990.
    • (1990) Artificial Intelligence , vol.46 , Issue.1 , pp. 77-105
    • Pollack, J.B.1
  • 147
    • 0022594196 scopus 로고
    • An Introduction to hidden Markov models
    • january
    • L. R. Rabiner and B. H. Juang, "An Introduction to hidden Markov models," IEEE ASSP Magazine, pp. 257-285, january 1986.
    • (1986) IEEE ASSP Magazine , pp. 257-285
    • Rabiner, L.R.1    Juang, B.H.2
  • 150
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, eds, pp, Cambridge, MA: MIT Press
    • M. Ranzato, Y.-L. Boureau, and Y. LeCun, "Sparse feature learning for deep belief networks," in Advances in Neural Information Processing Systems 20 (NIPS'07), (J. Platt, D. Koller, Y. Singer, and S. Roweis, eds.), pp. 1185-1192, Cambridge, MA: MIT Press, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 (NIPS'07) , pp. 1185-1192
    • Ranzato, M.1    Boureau, Y.-L.2    LeCun, Y.3
  • 152
    • 51149113745 scopus 로고    scopus 로고
    • A sparse and locally shift invariant feature extractor applied to document images
    • Washington, DC, USA: IEEE Computer Society
    • M. Ranzato and Y. LeCun, "A sparse and locally shift invariant feature extractor applied to document images," in International Conference on Document Analysis and Recognition (ICDAR'07), pp. 1213-1217, Washington, DC, USA: IEEE Computer Society, 2007.
    • (2007) International Conference on Document Analysis and Recognition (ICDAR'07) , pp. 1213-1217
    • Ranzato, M.1    LeCun, Y.2
  • 153
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • B. Schölkopf, J. Platt, and T. Hoffman, eds, pp, MIT Press
    • M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient learning of sparse representations with an energy-based model," in Advances in Neural Information Processing Systems 19 (NIPS'06), (B. Schölkopf, J. Platt, and T. Hoffman, eds.), pp. 1137-1144, MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems 19 (NIPS'06) , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 154
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • W. W. Cohen, A. McCallum, and S. T. Roweis, eds, pp, ACM
    • M. Ranzato and M. Szummer, "Semi-supervised learning of compact document representations with deep networks," in Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), vol. 307, (W. W. Cohen, A. McCallum, and S. T. Roweis, eds.), pp. 792-799, ACM, 2008.
    • (2008) Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08) , vol.307 , pp. 792-799
    • Ranzato, M.1    Szummer, M.2
  • 155
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 156
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 160
    • 85162037149 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for Gaussian processes
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, eds, pp, Cambridge, MA: MIT Press
    • R. Salakhutdinov and G. E. Hinton, "Using deep belief nets to learn covariance kernels for Gaussian processes," in Advances in Neural Information Processing Systems 20 (NIPS'07), (J. Platt, D. Koller, Y. Singer, and S. Roweis, eds.), pp. 1249-1256, Cambridge, MA: MIT Press, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 (NIPS'07) , pp. 1249-1256
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 165
    • 0040081674 scopus 로고    scopus 로고
    • Descartes' rule of signs for radial basis function neural networks
    • M. Schmitt, "Descartes' rule of signs for radial basis function neural networks," Neural Computation, vol. 14, no. 12, pp. 2997-3011, 2002.
    • (2002) Neural Computation , vol.14 , Issue.12 , pp. 2997-3011
    • Schmitt, M.1
  • 168
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Computation, vol. 10, pp. 1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 171
    • 33745216478 scopus 로고    scopus 로고
    • Building continuous space language models for transcribing European languages
    • H. Schwenk and J.-L. Gauvain, "Building continuous space language models for transcribing European languages," in Interspeech, pp. 737-740, 2005.
    • (2005) Interspeech , pp. 737-740
    • Schwenk, H.1    Gauvain, J.-L.2
  • 172
    • 85153961469 scopus 로고
    • Transformation invariant autoassociation with application to handwritten character recognition
    • G. Tesauro, D. Touretzky, and T. Leen, eds, pp, MIT Press
    • H. Schwenk and M. Milgram, "Transformation invariant autoassociation with application to handwritten character recognition," in Advances in Neural Information Processing Systems 7 (NIPS'94), (G. Tesauro, D. Touretzky, and T. Leen, eds.), pp. 991-998, MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems 7 (NIPS'94) , pp. 991-998
    • Schwenk, H.1    Milgram, M.2
  • 174
    • 0000938157 scopus 로고    scopus 로고
    • Learning continuous attractors in recurrent networks
    • M. Jordan, M. Kearns, and S. Solla, eds, pp, MIT Press
    • S. H. Seung, "Learning continuous attractors in recurrent networks," in Advances in Neural Information Processing Systems 10 (NIPS'97), (M. Jordan, M. Kearns, and S. Solla, eds.), pp. 654-660, MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems 10 (NIPS'97) , pp. 654-660
    • Seung, S.H.1
  • 176
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • C. Giles, S. Hanson, and J. Cowan, eds, pp, Morgan Kaufmann, San Mateo
    • P. Y. Simard, Y. LeCun, and J. Denker, "Efficient pattern recognition using a new transformation distance," in Advances in Neural Information Processing Systems 5 (NIPS'92), (C. Giles, S. Hanson, and J. Cowan, eds.), pp. 50-58, Morgan Kaufmann, San Mateo, 1993.
    • (1993) Advances in Neural Information Processing Systems 5 (NIPS'92) , pp. 50-58
    • Simard, P.Y.1    LeCun, Y.2    Denker, J.3
  • 177
    • 85050787417 scopus 로고
    • Reinforcement today
    • B. F. Skinner, "Reinforcement today," American Psychologist, vol. 13, pp. 94-99, 1958.
    • (1958) American Psychologist , vol.13 , pp. 94-99
    • Skinner, B.F.1
  • 178
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart and J. L. McClelland, eds, pp, Cambridge: MIT Press, ch. 6
    • P. Smolensky, "Information processing in dynamical systems: Foundations of harmony theory," in Parallel Distributed Processing, vol. 1, (D. E. Rumelhart and J. L. McClelland, eds.), pp. 194-281, Cambridge: MIT Press, 1986. ch. 6.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 182
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted Boltzmann machines for modeling motion style
    • L. Bottou and M. Littman, eds, pp, Montreal: Omnipress, June
    • G. Taylor and G. Hinton, "Factored conditional restricted Boltzmann machines for modeling motion style," in Proceedings of the 26th International Conference on Machine Learning (ICML'09), (L. Bottou and M. Littman, eds.), pp. 1025-1032, Montreal: Omnipress, June 2009.
    • (2009) Proceedings of the 26th International Conference on Machine Learning (ICML'09) , pp. 1025-1032
    • Taylor, G.1    Hinton, G.2
  • 183
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • B. Schölkopf, J. Platt, and T. Hoffman, eds, pp, Cambridge, MA: MIT Press
    • G. Taylor, G. E. Hinton, and S. Roweis, "Modeling human motion using binary latent variables," in Advances in Neural Information Processing Systems 19 (NIPS'06), (B. Schölkopf, J. Platt, and T. Hoffman, eds.), pp. 1345-1352, Cambridge, MA: MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems 19 (NIPS'06) , pp. 1345-1352
    • Taylor, G.1    Hinton, G.E.2    Roweis, S.3
  • 185
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.C.3
  • 186
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • D. Touretzky, M. Mozer, and M. Hasselmo, eds, pp, Cambridge, MA: MIT Press
    • S. Thrun, "Is learning the n-th thing any easier than learning the first?," in Advances in Neural Information Processing Systems 8 (NIPS'95), (D. Touretzky, M. Mozer, and M. Hasselmo, eds.), pp. 640-646, Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems 8 (NIPS'95) , pp. 640-646
    • Thrun, S.1
  • 187
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • W. W. Cohen, A. McCallum, and S. T. Roweis, eds, pp, ACM
    • T. Tieleman, "Training restricted Boltzmann machines using approximations to the likelihood gradient," in Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), (W. W. Cohen, A. McCallum, and S. T. Roweis, eds.), pp. 1064-1071, ACM, 2008.
    • (2008) Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08) , pp. 1064-1071
    • Tieleman, T.1
  • 200
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • L. Saul, Y. Weiss, and L. Bottou, eds, pp, Cambridge, MA: MIT Press
    • M. Welling, M. Rosen-Zvi, and G. E. Hinton, "Exponential family harmoniums with an application to information retrieval," in Advances in Neural Information Processing Systems 17 (NIPS'04), (L. Saul, Y. Weiss, and L. Bottou, eds.), pp. 1481-1488, Cambridge, MA: MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 (NIPS'04) , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.E.3
  • 203
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. Touretzky, M. Mozer, and M. Hasselmo, eds, pp, Cambridge, MA: MIT Press
    • C. K. I. Williams and C. E. Rasmussen, "Gaussian processes for regression," in Advances in neural information processing systems 8 (NIPS'95), (D. Touretzky, M. Mozer, and M. Hasselmo, eds.), pp. 514-520, Cambridge, MA: MIT Press, 1996.
    • (1996) Advances in neural information processing systems 8 (NIPS'95) , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 204
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. J. Sejnowski, "Slow feature analysis: Unsupervised learning of invariances," Neural Computation, vol. 14, no. 4, pp. 715-770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2
  • 205
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert, "Stacked generalization," Neural Networks, vol. 5, pp. 241-249, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-249
    • Wolpert, D.H.1
  • 206
    • 0031285908 scopus 로고    scopus 로고
    • Global continuation for distance geometry problems
    • Z. Wu, "Global continuation for distance geometry problems," SIAM Journal of Optimization, vol. 7, pp. 814-836, 1997.
    • (1997) SIAM Journal of Optimization , vol.7 , pp. 814-836
    • Wu, Z.1
  • 211
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • T. Fawcett and N. Mishra, eds, pp, AAAI Press
    • M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent," in Proceedings of the Twenty International Conference on Machine Learning (ICML'03), (T. Fawcett and N. Mishra, eds.), pp. 928-936, AAAI Press, 2003.
    • (2003) Proceedings of the Twenty International Conference on Machine Learning (ICML'03) , pp. 928-936
    • Zinkevich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.