메뉴 건너뛰기




Volumn , Issue , 2013, Pages

A hybrid ARIMA-DENFIS method for wind speed forecasting

Author keywords

ARIMA; DENFIS; Forecasting; Wind speed

Indexed keywords

ARIMA; AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; DENFIS; ERROR MEASURES; INFERENCE SYSTEMS; WIND SPEED; WIND SPEED DATA; WIND SPEED FORECASTING;

EID: 84887854108     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZ-IEEE.2013.6622503     Document Type: Conference Paper
Times cited : (16)

References (22)
  • 1
    • 33244491943 scopus 로고    scopus 로고
    • A comparison of a few statistical models for making quantile wind power forecasts
    • J. B. Bremnes, "A comparison of a few statistical models for making quantile wind power forecasts," Wind Energy, vol. 9, pp. 3-11, 2006.
    • (2006) Wind Energy , vol.9 , pp. 3-11
    • Bremnes, J.B.1
  • 2
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons
    • sept. 2010
    • S. Soman, H. Zareipour, O. Malik, and P. Mandal, "A review of wind power and wind speed forecasting methods with different time horizons," in North American Power Symposium (NAPS), 2010, sept. 2010, pp. 1-8.
    • (2010) North American Power Symposium (NAPS) , pp. 1-8
    • Soman, S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 3
    • 79951597495 scopus 로고    scopus 로고
    • A comprehensive overview on wind power forecasting
    • Piscataway, NJ, USA, wind power forecasting;renewable energy sources;wind power industry;wind farm power prediction;power system operators;weather alerts;power system operations planning;power system economic dispatch;. [Online]
    • M. Lydia and S. Kumar, "A comprehensive overview on wind power forecasting," in International Power and Energy Conference (IPEC), Piscataway, NJ, USA, 2010, pp. 268-73, wind power forecasting;renewable energy sources;wind power industry;wind farm power prediction;power system operators;weather alerts;power system operations planning;power system economic dispatch;. [Online]. Available: http://dx.doi.org/10.1109/IPECON.2010.5697118
    • (2010) International Power and Energy Conference (IPEC) , pp. 268-273
    • Lydia, M.1    Kumar, S.2
  • 4
    • 84859070373 scopus 로고    scopus 로고
    • Application of auto-Regressive models to U.K. Wind speed data for power system impact studies
    • Jan
    • D. C. Hill, D. McMillan, K. R. W. Bell, and D. Infield, "Application of auto-regressive models to U.K. wind speed data for power system impact studies," IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 134-141, Jan. 2012.
    • (2012) IEEE Transactions on Sustainable Energy , vol.3 , Issue.1 , pp. 134-141
    • Hill, D.C.1    McMillan, D.2    Bell, K.R.W.3    Infield, D.4
  • 5
    • 50849132200 scopus 로고    scopus 로고
    • A literature review of wind forecasting technology in the world
    • July
    • Y.-K. Wu and J.-S. Hong, "A literature review of wind forecasting technology in the world," in IEEE Lausanne Power Tech, July 2007, pp. 504-509.
    • (2007) IEEE Lausanne Power Tech , pp. 504-509
    • Wu, Y.-K.1    Hong, J.-S.2
  • 6
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • J. Shi, J. Guo, and S. Zheng, "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, vol. 16, pp. 3471-3480, 2012.
    • (2012) Renewable and Sustainable Energy Reviews , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 7
    • 77955322938 scopus 로고    scopus 로고
    • Short-Term electricity prices forecasting based on support vector regression and auto-Regressive integrated moving average modeling
    • J. Che and J. Wang, "Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling," Energy Conversion and Management, vol. 51, pp. 1911-1917, 2010.
    • (2010) Energy Conversion and Management , vol.51 , pp. 1911-1917
    • Che, J.1    Wang, J.2
  • 8
    • 20344388265 scopus 로고    scopus 로고
    • Ahybridarimaand support vector machines model in stock price forecasting
    • P.-F. Pai and C.-S. Lin, "Ahybridarimaand support vector machines model in stock price forecasting," Omega, vol. 33, pp. 497-505, 2005.
    • (2005) Omega , vol.33 , pp. 497-505
    • Pai, P.-F.1    Lin, C.-S.2
  • 9
    • 84867052229 scopus 로고    scopus 로고
    • Carbon priceforecasting with a novel hybrid ARIMA and leasts quares support vector machines methodology
    • B. Zhu and Y. Wei, "Carbon priceforecasting with a novel hybrid ARIMA and leasts quares support vector machines methodology," Omega, vol. 41, pp. 517-524, 2013.
    • (2013) Omega , vol.41 , pp. 517-524
    • Zhu, B.1    Wei, Y.2
  • 12
    • 62649096373 scopus 로고    scopus 로고
    • (Jan.). [Online]
    • V. Zoonekynd. (2007, Jan.) Time series. [Online]. Available: http://zoonek2.free.fr/UNIX/48 R/15.html
    • (2007) Time Series
    • Zoonekynd, V.1
  • 14
    • 77953220347 scopus 로고    scopus 로고
    • University of South Carolina, Tech. Rep.,. [Online]
    • G. Eshel, "The Yule Walker equations for the AR coefficients," University of South Carolina, Tech. Rep., 2010. [Online]. Available: http://www.stat.sc.edu/~vesselin/STAT520 YW.pdf
    • (2010) The Yule Walker Equations for the AR Coefficients
    • Eshel, G.1
  • 15
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. [Online]
    • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.org
    • (2012) R: A Language and Environment for Statistical Computing
  • 17
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-Fuzzy inference system and its application for time-Series prediction
    • N. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 18
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-Network-Based fuzzy inference system
    • J. S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on In Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.
    • (1993) IEEE Transactions on in Systems, Man and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 21
    • 0004156935 scopus 로고    scopus 로고
    • Matlab r2011b. [Online]
    • (2011) Matlab r2011b. The Math Works. [Online]. Available: http://www.mathworks.com
    • (2011) The Math Works


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.