-
2
-
-
84905371122
-
Pose invariant face recognition
-
Washington, DC, USA
-
F. J. Huang, T. Chen, Z. Zhou, and H. Zhang. Pose invariant face recognition. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, pages 245-250, Washington, DC, USA, 2000.
-
(2000)
Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000
, pp. 245-250
-
-
Huang, F.J.1
Chen, T.2
Zhou, Z.3
Zhang, H.4
-
3
-
-
85010604994
-
Ensemble methods for handwritten digit recognition
-
Helsingoer, Denmark
-
L. K. Hansen, L. Liisberg, and P. Salamon. Ensemble methods for handwritten digit recognition. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, pages 333-342, Helsingoer, Denmark, 1992.
-
(1992)
Proceedings of the IEEE Workshop on Neural Networks for Signal Processing
, pp. 333-342
-
-
Hansen, L.K.1
Liisberg, L.2
Salamon, P.3
-
5
-
-
0000262562
-
Hierarchical mixtures of experts and the em algorithm
-
M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural Computation, 6(2): 181-214, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.2
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
6
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Denver, Colorado, USA
-
A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In Advances in Neural Information Processing Systems 7, pages 231-238, Denver, Colorado, USA, 1995.
-
(1995)
Advances in Neural Information Processing Systems 7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
9
-
-
0031171679
-
Optimal linear combinations of neural networks
-
S. Hashem. Optimal linear combinations of neural networks. Neural Networks, 10(4):599-614, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.4
, pp. 599-614
-
-
Hashem, S.1
-
12
-
-
24344486891
-
Multiobjective genetic algorithms to create ensemble of classifiers
-
L. S. Oliveira, M. Morita, R. Sabourin, and F. Bortolozzi. Multiobjective genetic algorithms to create ensemble of classifiers. In Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, volume 87, pages 592-606, 2005.
-
(2005)
Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization
, vol.87
, pp. 592-606
-
-
Oliveira, L.S.1
Morita, M.2
Sabourin, R.3
Bortolozzi, F.4
-
13
-
-
14344254250
-
Featureboost: A meta-leaming algorithm, that improves model robustness
-
San Francisco, CA, USA
-
J. O'Sullivan, J. Langford, R. Caruana, and A. Blum. Featureboost: A meta-leaming algorithm, that improves model robustness. In Proceedings of the Seventeenth International Conference on Machine. Learning, pages 703-710, San Francisco, CA, USA, 2000.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine. Learning
, pp. 703-710
-
-
O'Sullivan, J.1
Langford, J.2
Caruana, R.3
Blum, A.4
-
15
-
-
0003483421
-
Bias, variance, 0-1 loss and the curse of dimensionality
-
Technical report, Stanford University
-
J. H. Friedman. Bias, variance, 0-1 loss and the curse of dimensionality. Technical report, Stanford University, 1996.
-
(1996)
-
-
Friedman, J.H.1
-
16
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
17
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2003.
-
(2003)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
18
-
-
84898990837
-
Constructing heterogeneous committees using input feature grouping: Application to economic forecasting
-
Y. Liao and J. Moody. Constructing heterogeneous committees using input feature grouping: Application to economic forecasting. In Advances in Neural Information Processing Systems, pages 921-927, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, pp. 921-927
-
-
Liao, Y.1
Moody, J.2
-
19
-
-
32544459311
-
Empirical evaluation of ensemble feature subset selection methods for learning from, a high-dimensional database in drug design
-
H. Mamitsuka. Empirical evaluation of ensemble feature subset selection methods for learning from, a high-dimensional database in drug design. In Proceedings of Third IEEE Symposium on Bioinformatics and BioEngineering, pages 253-257, 2003.
-
(2003)
Proceedings of Third IEEE Symposium on Bioinformatics and BioEngineering
, pp. 253-257
-
-
Mamitsuka, H.1
-
20
-
-
0042622207
-
Search strategies for ensemble feature selection in medical diagnostics
-
IEEE Computer Society
-
A. Tsymbal, P. Cunningham, M. Pechenizkiy, and S. Puuronen. Search strategies for ensemble feature selection in medical diagnostics. In Proceedings of 16th IEEE Symposium on Computer-Based Medical Systems, pages 124-129. IEEE Computer Society, 2003.
-
(2003)
Proceedings of 16th IEEE Symposium on Computer-Based Medical Systems
, pp. 124-129
-
-
Tsymbal, A.1
Cunningham, P.2
Pechenizkiy, M.3
Puuronen, S.4
-
21
-
-
0033485370
-
Ensemble learning via negative correlation
-
Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):1399-1404, 1999.
-
(1999)
Neural Networks
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
22
-
-
0033280266
-
Simultaneous training of negatively correlated neural networks in an ensemble
-
Y. Liu and X. Yao. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(6):716-725, 1999.
-
(1999)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.29
, Issue.6
, pp. 716-725
-
-
Liu, Y.1
Yao, X.2
-
23
-
-
0042525838
-
A constructive algorithm for training cooperative neural network ensembles
-
M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training cooperative neural network ensembles. IEEE Transaction on Neural Networks, 14(4):820-834, 2003.
-
(2003)
IEEE Transaction on Neural Networks
, vol.14
, Issue.4
, pp. 820-834
-
-
Islam, M.M.1
Yao, X.2
Murase, K.3
-
25
-
-
32144456690
-
-
A. Chandra and X. Yao. Divace: Diverse and accurate ensemble learning algorithm. In Proceedings of the Fifth International Conference on Intelligent Data Engineering and Automated Learning, 3177, pages 6.19-625, 2004.
-
A. Chandra and X. Yao. Divace: Diverse and accurate ensemble learning algorithm. In Proceedings of the Fifth International Conference on Intelligent Data Engineering and Automated Learning, volume 3177, pages 6.19-625, 2004.
-
-
-
-
26
-
-
34547253730
-
-
H. A. Abbass. A. memetic pareto evolutionary approach to artificial neural networks. In Proceedings of the fourteenth Australian Joint Conference on Artificial Intelligence, 2256, pages 1-12, 2000.
-
H. A. Abbass. A. memetic pareto evolutionary approach to artificial neural networks. In Proceedings of the fourteenth Australian Joint Conference on Artificial Intelligence, volume 2256, pages 1-12, 2000.
-
-
-
-
27
-
-
21044454599
-
Cooperative coevolution of artificial neural network ensembles for pattern classification
-
N. García, C. Hervás, and D. Ortiz. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3):271-302, 2005.
-
(2005)
IEEE Transactions on Evolutionary Computation
, vol.9
, Issue.3
, pp. 271-302
-
-
García, N.1
Hervás, C.2
Ortiz, D.3
-
28
-
-
0142086622
-
A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
-
L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition. International Journal of Pattern Recognition and Artificial Intelligence, 17(6):903-990, 2003.
-
(2003)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.17
, Issue.6
, pp. 903-990
-
-
Oliveira, L.S.1
Sabourin, R.2
Bortolozzi, F.3
Suen, C.Y.4
-
29
-
-
0034315099
-
Evolutionary ensembles with negative correlation learning
-
Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Transaction on Evolutionary Computation, 4(4):380-387, 2000.
-
(2000)
IEEE Transaction on Evolutionary Computation
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
30
-
-
0027294340
-
Improving model selection by nonconvergent methods
-
W. Finnoff, F. Hergert, and H. G. Zimmermann. Improving model selection by nonconvergent methods. Neural Network, 6(6):771-783, 1993.
-
(1993)
Neural Network
, vol.6
, Issue.6
, pp. 771-783
-
-
Finnoff, W.1
Hergert, F.2
Zimmermann, H.G.3
-
31
-
-
0000234257
-
The evidence framework applied to classification networks
-
D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(3):720-736, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 720-736
-
-
MacKay, D.J.C.1
-
33
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1(3):211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
34
-
-
0000852513
-
Multiobjective function optimization using nondominated sorting genetic algorithms
-
N. Srinivas and K. Deb. Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2(3):221-248, 1995.
-
(1995)
Evolutionary Computation
, vol.2
, Issue.3
, pp. 221-248
-
-
Srinivas, N.1
Deb, K.2
-
35
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
137(l-2):239-263
-
Z. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(l-2):239-263, 2002.
-
(2002)
Artificial Intelligence
-
-
Zhou, Z.1
Wu, J.2
Tang, W.3
-
36
-
-
0037936618
-
Performance assessment of multiobjective optimizers: An analysis and review
-
E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. G. d. Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2): 117-132, 2003.
-
(2003)
IEEE Transactions on Evolutionary Computation
, vol.7
, Issue.2
, pp. 117-132
-
-
Zitzler, E.1
Laumanns, M.2
Thiele, L.3
Fonseca, C.M.4
Fonseca, V.G.D.5
-
37
-
-
0003866267
-
-
John Wiley & Sons, Inc, New York, NY, USA
-
K. Deb and D. Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA, 2001.
-
(2001)
Multi-Objective Optimization Using Evolutionary Algorithms
-
-
Deb, K.1
Kalyanmoy, D.2
-
38
-
-
84958949201
-
Every niching method has its niche: Fitness sharing and implicit sharing compared
-
Berlin, Germany
-
P. Darwen and X. Yao. Every niching method has its niche: fitness sharing and implicit sharing compared. In Proceedings of Parallel Problem Solving from Nature (PPSN) IV, volume 1141, pages 398-407, Berlin, Germany, 1996.
-
(1996)
Proceedings of Parallel Problem Solving from Nature (PPSN) IV
, vol.1141
, pp. 398-407
-
-
Darwen, P.1
Yao, X.2
-
41
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
42
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Computation, 4(1): 1-58, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
|