메뉴 건너뛰기




Volumn , Issue , 2006, Pages 267-274

Evolutionary multiobjective ensemble learning based on Bayesian feature selection

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC RELEVANCE DETERMINATION (ARD); CLASSIFICATION PROBLEMS; MULTIOBJECTIVE ALGORITHMS;

EID: 34547287417     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (42)
  • 5
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural Computation, 6(2): 181-214, 1994.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Denver, Colorado, USA
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In Advances in Neural Information Processing Systems 7, pages 231-238, Denver, Colorado, USA, 1995.
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 9
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • S. Hashem. Optimal linear combinations of neural networks. Neural Networks, 10(4):599-614, 1997.
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 15
    • 0003483421 scopus 로고    scopus 로고
    • Bias, variance, 0-1 loss and the curse of dimensionality
    • Technical report, Stanford University
    • J. H. Friedman. Bias, variance, 0-1 loss and the curse of dimensionality. Technical report, Stanford University, 1996.
    • (1996)
    • Friedman, J.H.1
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2003.
    • (2003) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 18
    • 84898990837 scopus 로고    scopus 로고
    • Constructing heterogeneous committees using input feature grouping: Application to economic forecasting
    • Y. Liao and J. Moody. Constructing heterogeneous committees using input feature grouping: Application to economic forecasting. In Advances in Neural Information Processing Systems, pages 921-927, 1999.
    • (1999) Advances in Neural Information Processing Systems , pp. 921-927
    • Liao, Y.1    Moody, J.2
  • 19
    • 32544459311 scopus 로고    scopus 로고
    • Empirical evaluation of ensemble feature subset selection methods for learning from, a high-dimensional database in drug design
    • H. Mamitsuka. Empirical evaluation of ensemble feature subset selection methods for learning from, a high-dimensional database in drug design. In Proceedings of Third IEEE Symposium on Bioinformatics and BioEngineering, pages 253-257, 2003.
    • (2003) Proceedings of Third IEEE Symposium on Bioinformatics and BioEngineering , pp. 253-257
    • Mamitsuka, H.1
  • 21
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):1399-1404, 1999.
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 23
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training cooperative neural network ensembles. IEEE Transaction on Neural Networks, 14(4):820-834, 2003.
    • (2003) IEEE Transaction on Neural Networks , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 25
    • 32144456690 scopus 로고    scopus 로고
    • A. Chandra and X. Yao. Divace: Diverse and accurate ensemble learning algorithm. In Proceedings of the Fifth International Conference on Intelligent Data Engineering and Automated Learning, 3177, pages 6.19-625, 2004.
    • A. Chandra and X. Yao. Divace: Diverse and accurate ensemble learning algorithm. In Proceedings of the Fifth International Conference on Intelligent Data Engineering and Automated Learning, volume 3177, pages 6.19-625, 2004.
  • 26
    • 34547253730 scopus 로고    scopus 로고
    • H. A. Abbass. A. memetic pareto evolutionary approach to artificial neural networks. In Proceedings of the fourteenth Australian Joint Conference on Artificial Intelligence, 2256, pages 1-12, 2000.
    • H. A. Abbass. A. memetic pareto evolutionary approach to artificial neural networks. In Proceedings of the fourteenth Australian Joint Conference on Artificial Intelligence, volume 2256, pages 1-12, 2000.
  • 27
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • N. García, C. Hervás, and D. Ortiz. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3):271-302, 2005.
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.3 , pp. 271-302
    • García, N.1    Hervás, C.2    Ortiz, D.3
  • 30
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • W. Finnoff, F. Hergert, and H. G. Zimmermann. Improving model selection by nonconvergent methods. Neural Network, 6(6):771-783, 1993.
    • (1993) Neural Network , vol.6 , Issue.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 31
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(3):720-736, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 720-736
    • MacKay, D.J.C.1
  • 33
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1(3):211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 34
    • 0000852513 scopus 로고
    • Multiobjective function optimization using nondominated sorting genetic algorithms
    • N. Srinivas and K. Deb. Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 2(3):221-248, 1995.
    • (1995) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 35
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • 137(l-2):239-263
    • Z. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(l-2):239-263, 2002.
    • (2002) Artificial Intelligence
    • Zhou, Z.1    Wu, J.2    Tang, W.3
  • 38
    • 84958949201 scopus 로고    scopus 로고
    • Every niching method has its niche: Fitness sharing and implicit sharing compared
    • Berlin, Germany
    • P. Darwen and X. Yao. Every niching method has its niche: fitness sharing and implicit sharing compared. In Proceedings of Parallel Problem Solving from Nature (PPSN) IV, volume 1141, pages 398-407, Berlin, Germany, 1996.
    • (1996) Proceedings of Parallel Problem Solving from Nature (PPSN) IV , vol.1141 , pp. 398-407
    • Darwen, P.1    Yao, X.2
  • 42
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Computation, 4(1): 1-58, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.